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Abstract— In this paper, we discuss Quipu our multi-
dimensional quantitative prediction model for hardware-
software partitioning. The proposed model is based on
linear regression between software metrics determined on
a dataset of 127 kernels and measures from their corre-
sponding hardware designs. These software metrics cap-
ture the complexity of the C language description. The
hardware designs are determined using the DWARV C-to-
VHDL translator [1].

Currently, Quipu exhibits a relatively large error com-
pared to lower level approaches, however the Quipu model
can make fast and early predictions and is applicable to a
wide variety of applications. For the moment, we have only
considered prediction of area measures, like the number of
slices or flip-flops. The main steps to improve Quipu are
the following: 1) re-evaluation of the selected software met-
rics. 2) use of a lower level representation of the C code.
3) extension of the set of kernels. 4) extension of the mod-
eled hardware parameters. In other words, a consolidated
model can provide more, and more accurate information.

We conclude that fast and early prediction of hardware
characteristics is important, but our approach was not ac-
curate enough in the past. While a somewhat larger error
is acceptable in the early stages of design, we need to im-
prove our Quipu model. Furthermore, for Quipu to be
applicable, it must predict additional hardware measures
for a wider range of application domains.

Keywords—Reconfigurable architectures, Modeling, Es-
timation, Statistics, Software metrics, System analysis and
design

I. Introduction

With the advent of Heterogeneous and Reconfig-
urable Computing, a need for a new generation of de-
sign support tools targeting these emerging paradigms
has arisen. Where traditional tools focus on either
hardware or software, as engineers are either software
or hardware engineers, these new tools target both
hardware and software in order to assist the future
configware engineers [2].

The Delft Workbench[3] is such a tool platform sup-
porting integrated hardware-software co-design, start-
ing from profiling and partitioning to synthesis and
compilation. An important step in any development

Fig. 1
Work flow of code profiling in Delft

Workbench

process is Design Space Exploration, not in the least
because decisions in this phase have a significant im-
pact on the course of the project. During DSE in het-
erogeneous system design, engineers need to partition
an application over different computational compo-
nents, like CPUs, FPGAs, ASICs, or DSPs. This pro-
cess, called hardware-software partitioning, requires
evaluating the cost of implementing a task on each
component. Because, DSE and HW-SW Partitioning
iteratively evaluate a very large design space, fast cost
evaluation is essential. Therefore, Delft Workbench
uses code profiling to predict hardware characteris-
tics and identify hot-spots, as depicted in Fig. 1. Us-
ing the profiling information we can prune the design
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space and guide the partitioning process. Estimates
for hardware resource consumption, for example, can
be used to omit functions that are too large to fit on
an FPGA, or too small to exploit any degree of par-
allelism.

For this purpose, we developed Quipu1, a Multi-
Dimensional Quantitative Prediction Model for Early
Design Space Exploration as part of the Delft Work-
bench reconfigurable platform. This prediction model
provides resource estimates for implementing tasks on
hardware from a high level functional specification in
C. The model is based on the hypothesis that software
and hardware complexity are related. In [4] we have
shown that this hypothesis holds true in case of area
estimation. Quipu captures this relation by statistical
modeling techniques.

In this paper, we evaluate the performance and ap-
plicability of our Quipu model and discuss several ar-
eas of improvement. First, we describe the current
model in Section III and briefly evaluate previous re-
sults. Then, we discuss in detail the different areas of
improvement in Section IV. And finally, we conclude
in Section V

II. Related Research

Other prediction for early design space exploration
can be found in e.g. [5], where a constant time in-
cremental estimation approach targeted at iterative
hardware/software partitioning is presented. This ap-
proach updates estimates at each partitioning step.
In [6], the authors estimate area by using linear mod-
els at each DFG node. Each type of node uses its
own type of linear model. In [7], another early esti-
mation approach was presented. The authors present
three custom prediction models for determining hard-
ware implementation cost from VHDL specifications.
However, they don’t present a sound statistical analy-
sis of their results. Furthermore, they use a small set
of (60) observations and produce a large (not quanti-
fied) error. However, these approaches do not operate
on C-level specifications as our model does.

In [8], we do find an early estimation scheme from
C code. The authors present a custom model for ex-
ecution time estimation based on the SPARK C-to-
VHDL compiler. They briefly mention software met-
rics, but only use a kind of critical path estimation
scheme based on CFGs. They also do not present a
sound statistical analysis of their results. Based on 9

1A Quipu, is a calculating and recording device use in the
ancient Inca Empire made from multiple strings and knots.
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Summary of PCA with Scree-plot and Variance,

showing 12 PCs.

kernels from 2 applications they report an error be-
tween 39.3% and 44.4%.

III. Quipu: A Multi-Dimensional
Quantitative Prediction Model

Our Quantitative Model, Quipu, is based on Multi-
Dimensional Linear Regression using Software Com-
plexity Metrics. SCMs capture different aspects of
software complexity from computer programs and
functions, like program size or control intensity. Al-
ready, SCMs are used in software development pro-
cesses to predict e.g. development time or the num-
ber of errors. Therefore, one advantage of using SCMs
is that several independent variables may already be
available. Additionally, most metrics are inherently
simple and can be determined in a relatively short
time.

Previously, we gathered 24 software metrics for
Quipu. For a detailed description of these metrics
refer to [4]. Together, these metrics capture a wide
range of code characteristics. We have shown that
some of these metrics correlate with hardware [4], [9].
However, there is also a certain level of correlation
among the SCMs. This phenomenon is called interde-
pendence or multicollinearity. For example, the Aver-
age Path Length, Maximum Path Length, and State-
ments all measure program length. Because classi-
cal linear regression requires independent variables,
we transformed the set of metrics by applying Princi-
pal Component Analysis (PCA), yielding 8 principal
components. In Fig. 2, we see the summary of this
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Fig. 3
Predicted vs. Actual number of flip-flops with

indication or Virtex II Pro flip-lops (square)

and ideal prediction (diagonal)

analysis. There are several ways to choose the number
of relevant principal components (PC). For this paper
we chose the number of PCs that represent 95% of the
variance in the dataset.

The Delft Workbench targets the MOLEN recon-
figurable platform[10], a combination of conventional
and reconfigurable processors. The MOLEN platform
as we used it, contains a Xilinx Virtex-II Pro. There-
fore, we used the following area cost measures, which
are basic elements of Xilinx FPGAs.
• Flip-Flops - D-type Flip-Flops.
• Look-Up Tables (LUTs) - 4-input LUTs.
• Slices - A basic element consisting of 2 LUTs, 2 D-
Type Flip-Flops, and some extra elements like multi-
plexers and carry chains.
• Multipliers - 18bit multipliers
Furthermore, we added the number of states as a cri-
terion for Finite State Machine (FSM) size. The hard-
ware measures were obtained from automatically gen-
erating VHDL with the DWARV C-to-VHDL com-
piler[1]. The used VHDL compiler and synthesizer
with their respective optimization options affects the
behavior and quality of the Quipu model. Currently,
Quipu is based on a specific set of tools. However, in
the future we envision an automatic model generator
for other tool sets.

Currently, Quipu utilizes a set of 135 C–kernels that

Model Prediction Error R2

Slices 89.5% 0.717
Flip-Flops 66.6% 0.920
LUTs 128.6% 0.628
States 79.5% 0.795

TABLE I
Error Analysis of the Quipu model.

have been translated into VHDL with the DWARV
C–to–VHDL translator as the basis for linear regres-
sion. We were able to make predictions for the number
of flip-flops with an average expected error of 66.6%,
as listed in Table I. The predictive quality of Quipu’s
model for flip-flops is depicted in Fig. 3.

A. Evaluation

The current version of our model has some strong
and weak points that we need to evaluate. First, the
strong points of our model are:
• Early Estimation
Our approach works from a high level specification
by using software complexity metrics, making early
predictions possible.
• Fast Estimation
Our approach can make estimations very fast. For
example, area estimations for 135 kernels took 7.5 s
on a 2.4 GHz Athlon64 processor.
• One Model
Our model can estimate several aspects, without the
need for different estimation techniques. For example,
when a new optimization is introduced, the model can
easily be extended to predict the area requirements of
this optimization.

These three characteristics make the model espe-
cially suited for design space exploration. In the first
place, early estimation is essential for any DSE on a
high level specification. Secondly, fast estimation min-
imizes the overhead of DSE and partitioning due to
their highly iterative nature. And finally, a single eas-
ily extensible model minimizes the costs of considering
new optimizations and components during DSE.

However, there are also two major shortcomings
that need to be addressed for our model to be viable:
• Large Prediction Error
The Quipu model still results in large error margins on
the scale of 66.6%-128.6%. While this margin might
be acceptable for a proof-of-concept model, it is un-
acceptable for any real world situation.
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• Narrow Scope
Our model is currently tailored to the DWARV C-to-
VHDL compiler, i.e. it has the same code restrictions
and disregards resource constraints.

Although some margin of error is acceptable at the
high level that our model operates at, the current ex-
pected error margins give problems. Especially when
an application has a small set of kernels, which all ex-
hibit a large error, the model can not be used to guide
DSE. Furthermore, in order to consider different hard-
ware generation schemes, Quipu should loosen it’s re-
strictions on the source code.

IV. Areas of Improvement

Given the shortcomings mentioned in Section III-
A, we need to establish how the Quipu model can be
improved. In previous work, we have identified several
areas of improvement and in this section we describe
these in more detail.

A. Software Metrics

As Quipu is based on capturing software complex-
ity, the quality of the different software complexity
metrics has a substantial influence on the quality of
the model. Previously, we used 24 SCMs, without pre-
cisely evaluating their individual qualities. We iden-
tify four possible improvements to our use of SCMs.
• Additional Metrics
One obvious improvement to our previous model is
the addition of new metrics. Already we have iden-
tified 24 additional metrics concerning basic blocks,
operations, and fractals[11]. Also, Quipu currently
doesn’t support floating points. For future versions of
the Quipu model, floating point metrics are essential.
• Selection of metrics
The statistical methods that we use do not automat-
ically discard any metric that may corrupt the Quipu
model. It is therefore important to look at methods
to choose a subset of metrics that is relevant to the
model. One possibility is looking at Partial Least
Squares Regression[12], a method that finds linear
components in the independent variables that are also
relevant to the dependent variables.
• Metric Transformations
Not every metric necessarily relates to hardware cost
in a linear fashion. It is therefore important to indi-
vidually observe this relation for each software metric.
As an example, the number of paths in a kernel grows
exponentially with the number of subsequent loops,
while hardware area is expected to grow in a more

(sub)linear fashion. In this case we can apply a log-
transformation.
• Advanced Linear Modeling Techniques
Traditional linear modeling techniques, assume that
independent variables are continuous ratio scales.
However, this assumption does not hold for many met-
rics. More precise, some metrics are discrete measures
or even categorical by nature. Using advanced linear
modeling techniques, like Probit, Logit, or Poisson Re-
gression[13], these kinds of measures can be modeled
more correctly.

B. Kernel Representation

Although capturing software complexity from a
high level description like C makes early prediction
possible, information on optimizations is not avail-
able. Furthermore, restricting prediction to applica-
tions written in C prohibits designers to use other high
level languages more suitable to a problem. For ex-
ample, a mathematical routine might be written in
Fortran, or a computer game in an object oriented
language like C++.

In order to solve both these problems, measure-
ments of software complexity could be done on a com-
monly used intermediate representation. For example,
we could use the GIMPLE intermediate representa-
tion used in the newest generation of the GNU Com-
piler Collection (GCC)[14]. Because GCC has many
language front-ends, we would be able to estimate
hardware costs for various languages. Furthermore,
optimization passes are often defined on the interme-
diate representation, which allows us to estimate after
optimizations are performed, instead of estimating the
actual optimizations. The drawback, however, is that
the speed of estimation will deteriorate. It is there-
fore important to choose those optimizations that also
improve hardware generation.

C. Kernel Library

As mentioned, Quipu is currently based on a kernel
library of 135 kernels. Table II shows the different
application domains that are present in the library, as
well as several characterizations of the code present
in those domains. We can deduce several points of
improvement from this overview.
• Size of the Library
First and foremost, we can increase the accuracy of the
Quipu model by building our model from a larger set
of kernels. Especially, when the number of indepen-
dent variables increases, the number of observations
need to grow accordingly. We can illustrate this need
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Cryptography 56 x x xb 169

DSP 5 x x xb 28
ECC 6 x x x 110
Mathematics 19 22

Multimedia 32 xb x x 54

General 15 xb x 35

Total 135 98

a
Non-constant space complexity.

b
Only some instances in that domain express this characteristic.

TABLE II
Overview of the collection of functions.

by looking at the model quality indicator Adjusted R2.
This value captures the variance in the data explained
by the model adjusted for the number of variables and
observations,

R2
A = 1− (1−R2)cadjust, cadjust =

N − 1
N − k − 1

(1)

where N is the number of observations and k is the
number of independent variables. The more cadjust

deviates from 1.0 the less the quality will be from the
ideal. For our model this factor is 1.61 lowering R2

from 92.0% to 87.1%. In order keep the deteriora-
tion within 5% or 10%, we need at least 1008 or 518
observations respectively.
• Balance in Application Domains
Just increasing the number of observations might not
be a good idea. Already the table shows the kernel
library has more kernels in some application domains
than others. As the use of language features and de-
sign patterns may differ per application domain, over-
representing one domain may make predictions for
this domain better, while deteriorating predictions for
another one. Therefore, a kernel library with a bal-
anced distribution of kernels over application domains
is preferable.
• Balance in Code Size
Analogously, the small kernels are overrepresented in
the current Quipu model. As an illustration, the num-
ber of operators in the C code ranges from 0–12000
per kernel, while 100 (or almost 80%) of the kernels
have less than 1000 operators. This is in violation of
the Homoscedasticity assumption, required for linear

regression.
• Relax Code Restrictions
Outside these observed points of improvement, the
code restrictions in the library can be relaxed. This fa-
cilitates building models for different tool chains with
different restrictions. The drawback for loosening the
restrictions is that the impact of code rewriting affects
Quipu’s quality.

D. Predicted Hardware

Currently, Quipu predicts several area cost mea-
sures, like Slices, Flip-Flops, or LUTs. However, there
are other hardware characteristics essential for DSE:
• Delay / Speed-up
An important question for selecting kernels for hard-
ware implementation is: how much speed-up can we
attain?. Delay estimation would therefore be a valu-
able addition to our model. However, there are some
difficulties in establishing the delay of a circuit; in case
of highly data dependent kernels the delay may vary.
Therefore, we envision a delay model that uses ob-
servations from dynamic profiling with representative
input data as independent variables. Furthermore,
the delay measurements require not only synthesis but
also simulation with the representative input data.
• Interconnect
Another factor to be considered is the number of re-
sources dedicated to interconnection. Especially on
FPGAs the number of available wires is limited. Ker-
nels that use a huge amount of interconnect can in-
hibit the use of other kernels, although enough compu-
tational components might be available. For accurate
interconnect estimates, observations must be deter-
mined after the place and route phase in synthesis.
• Throughput
Delay is not the only hardware performance indicator;
in streaming applications, for example, the through-
put is the main point of interest. As with delay es-
timation, dynamic profiling and simulation are nec-
essary to make accurate predictions. Problems may
arise when part of a kernel’s input and output data
are accessed via pointers, which can make data depen-
dency size estimation difficult.
• Power
Another important hardware cost measure in mod-
ern computing systems is power dissipation. Where
in high performance computing, servers, and desktop
computing heat is a growing problem, mobile applica-
tions have a limited power supply available. As with
delay, power requires dynamic profiling information
and simulation, and additionally a power model is re-
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quired during simulation.

E. Other Issues

Apart from improving the quality and applicabil-
ity of the Quipu model, there are also several more
general elements that need attention in the future.
• Integration
Integrating Quipu in existing tool chains like Delft
Workbench is essential to make semi-automatic DSE
possible. Quipu should provide output in formats re-
quired by the tool-chain. Both integration with other
DSE tools and tools from subsequent passes should be
considered. Also feed back from later passes can be
used to improve Quipu’s prediction.
• Modeling Tool
Because Quipu is targeted at a specific tool-chains, an
automatic modeling tool resulting in a tailored model
can make our estimation scheme available to other
tool chains.
• Quality Assessment
Apart from error analysis, it is important to test the
Quipu model in real DSE situations. For example,
how does it compare with other approaches when driv-
ing hardware-software partitioning.

V. Conclusion

We presented our Multi-Dimensional Quantitative
Model for Early Design Space Exploration called
Quipu. We conclude that fast and early prediction
of hardware characteristics is important, but our ap-
proach was not accurate enough in the past. While a
somewhat larger error is acceptable in the early stages
of design, we need to improve on the current Quipu
model. Furthermore, for Quipu to be useful in a pro-
duction tool chain, it must predict additional hard-
ware measures for a wider range of application do-
mains.
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