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Abstract—In this paper, we propose an implementation of a 
two-dimensional interleaved memory organization with 
dynamically reconfigurable access patterns. Our solution targets 
computing devices with high demands on memory bandwidth, 
such as multimedia-specific DSPs, scientific vector processors, 
and SIMD machines. The approach extends prior art by 
introducing advanced two-dimensional strided accesses 
augmented with additional parameters for arbitrary 
rectangular data patterns support. Our scheme provides run-
time dynamical reconfiguration and guarantees minimum 
memory latency and efficient bandwidth utilization for 
arbitrary chosen pattern parameter combinations. We have 
implemented in VHDL an architecture independent memory 
organization and synthesized a set of configurations with 2x2 up 
to 8x8 memory modules for 90 nm CMOS technology. Synthesis 
results support our claim on high performance of the memory 
organization together with high system scalability. More 
specifically, our estimations suggest that a throughput of up to 
1182 Gbit/s can be obtained at the cost of only 212 Kgates.

Index Terms—Conflict-free access, high bandwidth, parallel 
memories.

I. INTRODUCTION

With modern increase of technology development, the 
performance of memory subsystems lags more and more 
behind the processing units. This trend becomes increasingly 
evident for architectures with massively parallel data 
processing, such as multimedia accelerators, vector 
processors, SIMD-based machines, etc. There are several 
techniques developed to reduce the processor versus memory 
performance gap, including various caching mechanisms, 
memories advanced with extra wide data word or multiple 
ports. But most of all, the parallelism phenomenon is utilized 
in parallel memory organizations, where the storage 
subsystem consists of a set of memory modules working in 
parallel. The main advantages of this organization are: 
relatively small overheads, low latency, efficient 
interconnection usage and possibility of accessing specific 
data patterns. The data patterns depend very much on the 
target application and might have various shapes, sizes and 
strides (distances between the successive elements).

The design challenge is to ensure conflict-free parallel 
data access to all (or maximum possible number of) memory 
modules for a set of different data patterns. This is obtained 
by means of a module assignment function. According to the 
data pattern format (in other words template), various module 
assignments can be implemented, such as linear functions [1], 
XOR-schemes [2], rectangular addressable memories [3],
periodic schemes [4] and others. Row address function
specifies physical address inside a memory module. 
Together, module assignment and row address functions form 
the class of skewing schemes. However, there is no single 
skewing scheme which would support conflict-free access for 
all possible data patterns [5]. Two solutions that deal with 
such limitation are: Configurable Parallel Memory 
Architecture (CPMA) [6], [8] and Dynamic Storage Scheme
(DSS) [5], [7], [9], [12]. CPMA provides access to a number 
of data templates using a single relatively complex hardware
when the number of memory modules is arbitrary. A more 
dedicated DSS unifies multiple storage schemes within one 
system. The appropriate scheme is chosen dynamically 
according to the specific data pattern in use. DSS restricts the 
amount of memory modules to the power of two and 
considers only interleaved memory system [7], [9].

More precisely, DSS for a strided vector access was 
presented in [7]. The stride value is detected by the compiler 
and sent directly to the pipelined address transformation 
hardware. In such a way, the scheme supports conflict-free 
accesses for non-restricted vectors with constant arbitrary 
stride.

In [9] the authors extended their scheme with block, 
multistride and FFT accesses. To decrease the latency of 
multistride vector access when conflict-free access is not 
achieved, it was proposed to use dedicated buffers to smooth 
out transient non-uniformities in module reference 
distribution. Block access supported only restricted set of 
blocks sizes equal to power of two. Finally, in order to 
improve a radix-2 FFT algorithm, authors proposed non-
interleaved storage scheme and a constant geometry 
algorithm for which they identified three data patterns. For all 
three types of address transformations, the same hardware 
was used.
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CPMA from [6] supports generate, crumbled rectangle, 
chessboard, vector, and free data patterns. Virtual address is 
used to read appropriate row address and access function 
from the page table which are further transformed into row 
and module addresses. The authors presented complexity, 
timing and area evaluations for their architecture.

A buffer memory system for a fast and high-resolution 
graphical display system was proposed in [8]. It provides 
parallel access to a block, horizontal, vertical, forward-
diagonal, and backward-diagonal data pattern in a two-
dimensional image array. All pattern sizes are limited to 
power of two. The address differences of those patterns are 
specifically prearranged and saved in two SRAMs so that 
later they can be added to the base address in order to obtain 
memory module addresses.

Other researches explore memory scheduling of DRAM 
chips by addressing locality characteristics within the 3D 
(bank, row, column) memory structure [11]. The solution 
consists of reordering memory operations in such a way that 
allows saving clock cycles on precharging banks and 
accessing successive rows and columns.

In this paper, we propose a solution, which is a substantial
extension of the basic rectangularly addressable memory 
presented in [3] where a scalable data alignment scheme for 
parallel access of randomly aligned rectangular blocks of data
is described. Hardware and critical path complexity were 
reduced by implicit integration of the module assignment 
function into the row address function. We propose 
implementation of the two-dimensional interleaved parallel 
memory organization with dynamically configurable regular 
data patterns. We consider an extended set of pattern 
definition parameters for discontinuous rectangular block
access. Our method is to split the problem into six trivial sub-
problems, which would require hardware implementation 
with rather low complexity and short critical path. More 
specifically, the main contributions of the current proposal 
are as follows:
 Support for an extended set of two-dimensional pattern 

parameters, including vertical and horizontal group 
lengths in addition to the respective strides;

 Efficient design implementation (six trivial subtasks, 
parallel module address generation, explicit row address, 
low overheads, design scalability).

Theoretical estimations of the design complexity provide
that it is linearly proportional to the number of memory 
modules along one dimension. This is also confirmed by 
synthesis results made for ASIC 90 nm CMOS technology.
Namely, a 32-bit 2×2 organization requires 26 Kgates (14.5% 
overheads) and a 64-bit 8×8 one – 212 Kgates (3.8% 
overheads). The operating frequencies vary from 377 MHz 
for 2x2 32-bit modules down to 310 MHz for 8x8 64-bit 
modules. A maximum throughput of 1182 Gbit/s was 
achieved for 8x8 64-bit design.

The reminder of the paper is organized as follows: in
Section II, the target data pattern is described. The proposed 
design implementation and theoretical complexity evaluation 
is described in Section III. The synthesis results are reported
in Section IV. Finally, Section V concludes the paper.

II. TARGET DATA PATTERN DESCRIBTION

Our research mainly targets highly data-parallel 
applications with regular data patterns, such as various types 
of audio/video compression (ADPCM, G721, GSM, H.263, 
MPEG4, JPEG), image processing, pattern analysis or vector
calculations. Basic kernels from the above applications very 
often require data organized in discontinuous rectangular 
patterns [13].

Fig. 1 illustrates the data pattern parameters we consider

for the implementation, namely: W∈ℕ - data word width in 
bytes; 

Aw ∈ℕ - row address  width in bits; b′(vb,hb)∈[0,ℕ] -

linear base address of the accessed block with 2D 

constituents vb and hb; VS,HS∈ℕ - vertical and horizontal 

strides (in words); VGL,HGL∈ℕ - respective group lengths

(in words); VBL,HBL∈ℕ - respective block lengths (in 

groups); M×N∈ℕ - the memory dimensions; VD×HD∈ℕ -
size of the matrix of memory modules; (i,j) -
vertical/horizontal group indices; (k,l) - respective indices of 
the elements inside a group. Fig. 1 depicts an example of a 
data pattern of six groups of size VGL×HGL=2×4 and strides 
(VS,HS)=(4,5).

Fig. 1. Considered memory access pattern.

In interleaved memory organizations, the data distribution 
among the parallel memory modules is determined by a 
module assignment function m. A data element with a linear 
address a is assigned to a memory module according to m(a). 
A row address function A determines the physical address of 
a data element inside a memory module.

Any data element inside an accessed data block has the 
following 2D address (va,ha):
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




(1)

where i∈[0,VBL-1], k∈[0,VGL-1]; j∈[0,HBL-1], l∈[0,HGL-
1]. Equation (1) suggests that the 2D address is completely 
separable, i.e. its vertical and horizontal constituents are not 
correlated. Moreover, they are identical. Therefore, in the 
following discussion we shall skip the direction prefixes ‘V’ 
and ‘H’ in the parameters notations.

The stride parameter, being a natural number, can be 
represented by:
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sS 2 ∈ℕ,

where GCD(σ,2)=1 and s∈[0,ℕ] (GCD - greatest common 
divisor). Consequently, S is odd when s=0, and even for 

s∈ℕ.

III. PROPOSED DESIGN IMPLEMENTATION

We target an implementation of a memory hierarchy with 
dynamically adjustable data patterns, to improve the data
throughput to the processing units. The considered memory 
organization contains a memory controller, interleaved 
memory modules organized in a two-dimensional matrix, 
special purpose registers (SPRs), and interfaces to the main 
linearly addressable memory and to the processing units (Fig. 
2). The modules are loaded with data from the main memory 
using conventional mechanisms, such as DMA.

Fig. 2. Interleaved memory organization.

Since no single scheme exists for all strides and group 
lengths, we propose to partition the problem in a number of 
cases. This reduces the task to a set of trivial sub-problems
(see Fig. 3) that can be implemented with smaller design 
overheads. The division was performed in a way to ensure 
minimum memory access latency. The initial problem 
partitioning is done based on the stride oddness. Odd strides 
can be accessed conflict-free using a basic skewing scheme 
[1], [3]. Furthermore, all odd and even strides are divided 
into six subgroups.

Fig. 3. Problem partition.

The module assignment function for each of the six 
different cases is presented in Table I. The row address 
function determines the linear address inside a memory 
module. Instead of having six different representations of the 
module assignment function, there is only one. This is 
another feature helping to reduce complexity of our design. 

The row address function is separable and it is described as 
follows:






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


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


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
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Table I. Module assignment function.

Case # Module assignment function

Cases I-II. Daam mod)(2,1 

Case III.   D
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


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Structurally, the interleaved memory consists of an 
address generation part, a data routing part, and a matrix of 
memory modules (see Fig. 4). The pattern parameters are 
stored in Special Purpose Registers (SPRs). The address part 
is split in identical vertical and horizontal sides and includes 
the following blocks: mode select unit, address generator, set 
of row address generators, module assignment unit and 
address shuffle units. The data routing part consists of a 
number of shuffle and de-shuffle units. The critical path
(highlighted on Fig. 4) comprises the address generator, the 
module assignment unit, and the decoding part of the shuffle
block.

Fig. 4. Parallel memory controller block diagram.

A. Mode select unit

The mode select unit sets the address generation logic to a 
mode, corresponding to the six cases of the problem 
partitioning (Fig. 3). The pattern parameters S, GL and BL are 
loaded from the programmable SPRs. The block implements 
stride oddness check and resolving of two inequalities: 
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BL
D
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GL

D

BL








  and ds   (see Fig. 5). The 

Counter* includes logic for power of two equality check, i.e. 
it counts number of logic ‘1’ in the input signal: if there is 
only single ‘1’, then the input is equal to power of two and 
the output is set to ‘1’, otherwise the output is set to ‘0’. The 
Coder block performs coding of four 1-bit signals according 
to the problem partition diagram (Fig. 3) in order to create 3-
bit Mode signal.

Fig. 5. Mode select unit.

The hardware complexity does not depend neither on the 
number of memory modules, nor on the data word length.

B. Address generator

The address generator produces the vertical and horizontal 
constituents of the 2D addresses according to (1). Data 
pattern parameters are loaded from the SPRs and an address 
mode is loaded from the mode select unit. The address 
generator consists of two double parallel counters and one 
simple parallel counter (Fig. 6), that generate sequences of 
paired indices (i, k) or (j, l). The double counters generate 
group and element indices separately (for cases I-IV), and the 
single counter generates group and element indices on the 
base of a common index by implementing respectively 
division and modulo by group length (for cases V-VI). Note 
that the group length is equal to power of two for cases V-VI 
therefore division and modulo operations do not require 
complex hardware. One side of a parallel double counter is
shown on Fig. 7.

Fig. 6. Address generator.

Fig. 7. Parallel counter.

The complexity of this block is O(wA·D). The critical path 
comprises a double counter, a multiplexer, a multiplier and 
an adder. The critical path complexity is O(log D).

C. Row address generator

The row address generator translates vertical/horizontal 
constituents of 2D addresses into physical linear addresses 
inside the memory modules (called row address) according to
(2). Since (2) is separable, vertical blocks are connected to
upper address bits, and horizontal blocks - to lower bits. No 
additional logic is needed to implement this block.

D. Module assignment unit

The module assignment unit translates vertical/horizontal 
constituents of 2D addresses into memory module addresses
inside the memory modules matrix according to equations
from Table I. Data pattern parameters are read from SPRs 
and an address mode is loaded from the mode select block.
The equations are implemented in parallel and their outputs 
are multiplexed according to the address mode as depicted on
Fig. 8.

Fig. 8. Module assignment unit.
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Complexity of the module assignment function for all 
cases is presented in Table II. The notation 

lsmsx :
 represents 

the bit interval from the least significant bit ls  to the most 
significant bit ms . The complexity of the complete block is 
proportional to O(logD) because of the adders with input 
signals of the maximum width equal to d=logD.

Table II. Complexity of the module assignment function.

Case # Complexity

Cases I-II. 0:1)(  daam

Case III.   0:1:10:1)(   dsdsd aaam

Case IV.   0:1:10:1)(   dddsd aaam

Case V.   0:1:10:1 2)(   d
gl

sdsd aaam

Case VI.   
0:10:1:180:1 2)(

 
ds

gl
dWd aaam

The critical path comprises a masking unit, two shifters,
an adder, and a multiplexer. It is mostly influenced by the 
adder of width logD and its complexity is O(log(logD)).

E. Shuffle unit

The shuffle unit is used to reorder data according to the 
module assignment function. It consists of a parallel set of 
de-multiplexers and output OR-gates.

Fig. 9. Shuffle unit.

The complexity of the shuffle unit is O(wA·D) and the
critical path does not depend on D or wA.

F. De-shuffle unit

The de-shuffle unit reorders data back to the initial 
sequence. It consists of a set of multiplexers and its 
complexity is O(wA·D).

Fig. 10. De-shuffle unit.

As a result, the total complexity of the design forms from 
the mode select units, address generators, row address 
generators, module assignment units, shuffles and de-shuffles 
complexities:

).()(

)()(log0)()(

DwODwO

DwODODwOconstO

AA

AA




(3)

The complete critical path (highlighted on Fig. 4) consists 
of the address generator, the module assignment unit, and the 
decoding part of the shuffle block. Thus, it is equal to:

  )(log)()log(log)(log DOconstODODO  . (4)

IV. SYNTHESIS RESULTS AND ANALYSIS

Our technology independent complexity estimations from 
(3) and (4) indicate that the critical path complexity is weakly 
sensitive to the size of the memory matrix and thus the design 
is well scalable to any matrix size. In fact, the throughput is 
directly proportional to the matrix size VD×HD, and 
inversely proportional to the critical path, i.e.

DDWthroughput log2 .

The synthesis was performed for an ASIC 90 nm CMOS 
technology. The results for six different matrix sizes, word 
widths W to 32 and 64 bits, and 12-bit addresses are 
presented in Fig. 11. In fact, data word width of 8 Bytes 
corresponds to utilization of two concurrently coupled 32-bit 
wide memory modules. Generally speaking, the address 
width ranging from 8 till 16 bits is enough for the most of 
practical applications, which would give the complexity 
range of 45.5-53.9 Kgates for 4×4 matrix with W = 32 bits. 
Considering that the memory modules used in the design 
have 4096×32bits size and occupy 43.8 Kgates, the logic
complexity overheads vary from 14.5% for 2×2 32-bits 
matrix to 3.8% for 8×8 64-bits matrix with respect to the total 
hardware complexity. The presented synthesis results 
confirm the linear increase of the design complexity and the 
quadratic increase of the throughput, derived from our
theoretical estimations. As it was expected, the critical path is 
proportional to the logarithm of the matrix size along one 
dimension and the design complexity depends linearly on it.
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Fig. 11. Synthesis results: design complexity, frequency and 
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V. CONCLUSIONS

We implemented an interleaved two-dimensional memory 
organization with dynamically reconfigurable data pattern. 
Our solution targets highly parallel computing systems such 
as SIMD machines, vector processors and media accelerators.
Our proposal supports an extended set of data pattern 
parameters enabling parallel access to discontinuous 
rectangular and, as a particular case, vector data patterns. We 
made additional efforts at relaxation of all restrictions of 
pattern parameters even though it led to some design 
complexity increase comparing to other related solutions with 
limited applications. More specifically, compared to related 
art, our design proposal introduced the following new 
features: support of an extended set of 2D access pattern 
parameters; programmability of the access patterns via SPRs; 
arbitrary values of the pattern parameters; minimal memory 
latency; as well as design scalability. We proved theoretically 
that the design complexity scales proportionally to O(wA·D)
and the critical path is proportional to O(log D). Our 

theoretical conclusions were confirmed by hardware 
synthesis for 90 nm CMOS technology. 
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