
1

Abstract—In this paper, we propose an implementation of a
two-dimensional interleaved memory organization with
dynamically reconfigurable access patterns. Our solution targets
computing devices with high demands on memory bandwidth,
such as multimedia-specific DSPs, scientific vector processors,
and SIMD machines. The approach extends prior art by
introducing advanced two-dimensional strided accesses
augmented with additional parameters for arbitrary
rectangular data patterns support. Our scheme provides run-
time dynamical reconfiguration and guarantees minimum
memory latency and efficient bandwidth utilization for
arbitrary chosen pattern parameter combinations. We have
implemented in VHDL an architecture independent memory
organization and synthesized a set of configurations with 2x2 up
to 8x8 memory modules for 90 nm CMOS technology. Synthesis
results support our claim on high performance of the memory
organization together with high system scalability. More
specifically, our estimations suggest that a throughput of up to
1182 Gbit/s can be obtained at the cost of only 212 Kgates.

Index Terms—Conflict-free access, high bandwidth, parallel
memories.

I. INTRODUCTION

With modern increase of technology development, the
performance of memory subsystems lags more and more
behind the processing units. This trend becomes increasingly
evident for architectures with massively parallel data
processing, such as multimedia accelerators, vector
processors, SIMD-based machines, etc. There are several
techniques developed to reduce the processor versus memory
performance gap, including various caching mechanisms,
memories advanced with extra wide data word or multiple
ports. But most of all, the parallelism phenomenon is utilized
in parallel memory organizations, where the storage
subsystem consists of a set of memory modules working in
parallel. The main advantages of this organization are:
relatively small overheads, low latency, efficient
interconnection usage and possibility of accessing specific
data patterns. The data patterns depend very much on the
target application and might have various shapes, sizes and
strides (distances between the successive elements).

The design challenge is to ensure conflict-free parallel
data access to all (or maximum possible number of) memory
modules for a set of different data patterns. This is obtained
by means of a module assignment function. According to the
data pattern format (in other words template), various module
assignments can be implemented, such as linear functions [1],
XOR-schemes [2], rectangular addressable memories [3],
periodic schemes [4] and others. Row address function
specifies physical address inside a memory module.
Together, module assignment and row address functions form
the class of skewing schemes. However, there is no single
skewing scheme which would support conflict-free access for
all possible data patterns [5]. Two solutions that deal with
such limitation are: Configurable Parallel Memory
Architecture (CPMA) [6], [8] and Dynamic Storage Scheme
(DSS) [5], [7], [9], [12]. CPMA provides access to a number
of data templates using a single relatively complex hardware
when the number of memory modules is arbitrary. A more
dedicated DSS unifies multiple storage schemes within one
system. The appropriate scheme is chosen dynamically
according to the specific data pattern in use. DSS restricts the
amount of memory modules to the power of two and
considers only interleaved memory system [7], [9].

More precisely, DSS for a strided vector access was
presented in [7]. The stride value is detected by the compiler
and sent directly to the pipelined address transformation
hardware. In such a way, the scheme supports conflict-free
accesses for non-restricted vectors with constant arbitrary
stride.

In [9] the authors extended their scheme with block,
multistride and FFT accesses. To decrease the latency of
multistride vector access when conflict-free access is not
achieved, it was proposed to use dedicated buffers to smooth
out transient non-uniformities in module reference
distribution. Block access supported only restricted set of
blocks sizes equal to power of two. Finally, in order to
improve a radix-2 FFT algorithm, authors proposed non-
interleaved storage scheme and a constant geometry
algorithm for which they identified three data patterns. For all
three types of address transformations, the same hardware
was used.

Two-Dimensional Memory Implementation with
Multiple Data Patterns

Arseni Vitkovski Georgi Kuzmanov, Georgi Gaydadjiev

ARCES,
University of Bologna,

Viale Pepoli 3/2, 40123 Bologna,
Italy

avitkovski@arces.unibo.it

Computer Engineering, EEMCS,
Delft University of Technology,

Mekelweg 4, 2600 GA Delft,
the Netherlands

{G.K.Kuzmanov, G.N.Gaydadjiev}@tudelft.nl

185

2

CPMA from [6] supports generate, crumbled rectangle,
chessboard, vector, and free data patterns. Virtual address is
used to read appropriate row address and access function
from the page table which are further transformed into row
and module addresses. The authors presented complexity,
timing and area evaluations for their architecture.

A buffer memory system for a fast and high-resolution
graphical display system was proposed in [8]. It provides
parallel access to a block, horizontal, vertical, forward-
diagonal, and backward-diagonal data pattern in a two-
dimensional image array. All pattern sizes are limited to
power of two. The address differences of those patterns are
specifically prearranged and saved in two SRAMs so that
later they can be added to the base address in order to obtain
memory module addresses.

Other researches explore memory scheduling of DRAM
chips by addressing locality characteristics within the 3D
(bank, row, column) memory structure [11]. The solution
consists of reordering memory operations in such a way that
allows saving clock cycles on precharging banks and
accessing successive rows and columns.

In this paper, we propose a solution, which is a substantial
extension of the basic rectangularly addressable memory
presented in [3] where a scalable data alignment scheme for
parallel access of randomly aligned rectangular blocks of data
is described. Hardware and critical path complexity were
reduced by implicit integration of the module assignment
function into the row address function. We propose
implementation of the two-dimensional interleaved parallel
memory organization with dynamically configurable regular
data patterns. We consider an extended set of pattern
definition parameters for discontinuous rectangular block
access. Our method is to split the problem into six trivial sub-
problems, which would require hardware implementation
with rather low complexity and short critical path. More
specifically, the main contributions of the current proposal
are as follows:
 Support for an extended set of two-dimensional pattern

parameters, including vertical and horizontal group
lengths in addition to the respective strides;

 Efficient design implementation (six trivial subtasks,
parallel module address generation, explicit row address,
low overheads, design scalability).

Theoretical estimations of the design complexity provide
that it is linearly proportional to the number of memory
modules along one dimension. This is also confirmed by
synthesis results made for ASIC 90 nm CMOS technology.
Namely, a 32-bit 2×2 organization requires 26 Kgates (14.5%
overheads) and a 64-bit 8×8 one – 212 Kgates (3.8%
overheads). The operating frequencies vary from 377 MHz
for 2x2 32-bit modules down to 310 MHz for 8x8 64-bit
modules. A maximum throughput of 1182 Gbit/s was
achieved for 8x8 64-bit design.

The reminder of the paper is organized as follows: in
Section II, the target data pattern is described. The proposed
design implementation and theoretical complexity evaluation
is described in Section III. The synthesis results are reported
in Section IV. Finally, Section V concludes the paper.

II. TARGET DATA PATTERN DESCRIBTION

Our research mainly targets highly data-parallel
applications with regular data patterns, such as various types
of audio/video compression (ADPCM, G721, GSM, H.263,
MPEG4, JPEG), image processing, pattern analysis or vector
calculations. Basic kernels from the above applications very
often require data organized in discontinuous rectangular
patterns [13].

Fig. 1 illustrates the data pattern parameters we consider

for the implementation, namely: W∈ℕ - data word width in
bytes;

Aw ∈ℕ - row address width in bits; b′(vb,hb)∈[0,ℕ] -

linear base address of the accessed block with 2D

constituents vb and hb; VS,HS∈ℕ - vertical and horizontal

strides (in words); VGL,HGL∈ℕ - respective group lengths

(in words); VBL,HBL∈ℕ - respective block lengths (in

groups); M×N∈ℕ - the memory dimensions; VD×HD∈ℕ -
size of the matrix of memory modules; (i,j) -
vertical/horizontal group indices; (k,l) - respective indices of
the elements inside a group. Fig. 1 depicts an example of a
data pattern of six groups of size VGL×HGL=2×4 and strides
(VS,HS)=(4,5).

Fig. 1. Considered memory access pattern.

In interleaved memory organizations, the data distribution
among the parallel memory modules is determined by a
module assignment function m. A data element with a linear
address a is assigned to a memory module according to m(a).
A row address function A determines the physical address of
a data element inside a memory module.

Any data element inside an accessed data block has the
following 2D address (va,ha):

,

,

,

,

,

lj

ki

alHSjhbha

akVSivbva

haNvaa






(1)

where i∈[0,VBL-1], k∈[0,VGL-1]; j∈[0,HBL-1], l∈[0,HGL-
1]. Equation (1) suggests that the 2D address is completely
separable, i.e. its vertical and horizontal constituents are not
correlated. Moreover, they are identical. Therefore, in the
following discussion we shall skip the direction prefixes ‘V’
and ‘H’ in the parameters notations.

The stride parameter, being a natural number, can be
represented by:

186

3

sS 2 ∈ℕ,

where GCD(σ,2)=1 and s∈[0,ℕ] (GCD - greatest common
divisor). Consequently, S is odd when s=0, and even for

s∈ℕ.

III. PROPOSED DESIGN IMPLEMENTATION

We target an implementation of a memory hierarchy with
dynamically adjustable data patterns, to improve the data
throughput to the processing units. The considered memory
organization contains a memory controller, interleaved
memory modules organized in a two-dimensional matrix,
special purpose registers (SPRs), and interfaces to the main
linearly addressable memory and to the processing units (Fig.
2). The modules are loaded with data from the main memory
using conventional mechanisms, such as DMA.

Fig. 2. Interleaved memory organization.

Since no single scheme exists for all strides and group
lengths, we propose to partition the problem in a number of
cases. This reduces the task to a set of trivial sub-problems
(see Fig. 3) that can be implemented with smaller design
overheads. The division was performed in a way to ensure
minimum memory access latency. The initial problem
partitioning is done based on the stride oddness. Odd strides
can be accessed conflict-free using a basic skewing scheme
[1], [3]. Furthermore, all odd and even strides are divided
into six subgroups.

Fig. 3. Problem partition.

The module assignment function for each of the six
different cases is presented in Table I. The row address
function determines the linear address inside a memory
module. Instead of having six different representations of the
module assignment function, there is only one. This is
another feature helping to reduce complexity of our design.

The row address function is separable and it is described as
follows:


















HD

ha

HD

N

VD

va
havaA),(. (2)

Table I. Module assignment function.

Case # Module assignment function

Cases I-II. Daam mod)(2,1 

Case III.   D
Da

aam
ds

mod
2

)(3 











 

Case IV. DS
D

a
aam modmod)(4 







 





Case V.   D
Da

GLaam
ds

mod
2

)(5 











 

Case VI. DS
D

a
GLaam mod)mod()(6 














Structurally, the interleaved memory consists of an
address generation part, a data routing part, and a matrix of
memory modules (see Fig. 4). The pattern parameters are
stored in Special Purpose Registers (SPRs). The address part
is split in identical vertical and horizontal sides and includes
the following blocks: mode select unit, address generator, set
of row address generators, module assignment unit and
address shuffle units. The data routing part consists of a
number of shuffle and de-shuffle units. The critical path
(highlighted on Fig. 4) comprises the address generator, the
module assignment unit, and the decoding part of the shuffle
block.

Fig. 4. Parallel memory controller block diagram.

A. Mode select unit

The mode select unit sets the address generation logic to a
mode, corresponding to the six cases of the problem
partitioning (Fig. 3). The pattern parameters S, GL and BL are
loaded from the programmable SPRs. The block implements
stride oddness check and resolving of two inequalities:

187

4

BL
D

GL
GL

D

BL








 and ds  (see Fig. 5). The

Counter* includes logic for power of two equality check, i.e.
it counts number of logic ‘1’ in the input signal: if there is
only single ‘1’, then the input is equal to power of two and
the output is set to ‘1’, otherwise the output is set to ‘0’. The
Coder block performs coding of four 1-bit signals according
to the problem partition diagram (Fig. 3) in order to create 3-
bit Mode signal.

Fig. 5. Mode select unit.

The hardware complexity does not depend neither on the
number of memory modules, nor on the data word length.

B. Address generator

The address generator produces the vertical and horizontal
constituents of the 2D addresses according to (1). Data
pattern parameters are loaded from the SPRs and an address
mode is loaded from the mode select unit. The address
generator consists of two double parallel counters and one
simple parallel counter (Fig. 6), that generate sequences of
paired indices (i, k) or (j, l). The double counters generate
group and element indices separately (for cases I-IV), and the
single counter generates group and element indices on the
base of a common index by implementing respectively
division and modulo by group length (for cases V-VI). Note
that the group length is equal to power of two for cases V-VI
therefore division and modulo operations do not require
complex hardware. One side of a parallel double counter is
shown on Fig. 7.

Fig. 6. Address generator.

Fig. 7. Parallel counter.

The complexity of this block is O(wA·D). The critical path
comprises a double counter, a multiplexer, a multiplier and
an adder. The critical path complexity is O(log D).

C. Row address generator

The row address generator translates vertical/horizontal
constituents of 2D addresses into physical linear addresses
inside the memory modules (called row address) according to
(2). Since (2) is separable, vertical blocks are connected to
upper address bits, and horizontal blocks - to lower bits. No
additional logic is needed to implement this block.

D. Module assignment unit

The module assignment unit translates vertical/horizontal
constituents of 2D addresses into memory module addresses
inside the memory modules matrix according to equations
from Table I. Data pattern parameters are read from SPRs
and an address mode is loaded from the mode select block.
The equations are implemented in parallel and their outputs
are multiplexed according to the address mode as depicted on
Fig. 8.

Fig. 8. Module assignment unit.

188

5

Complexity of the module assignment function for all
cases is presented in Table II. The notation

lsmsx :
 represents

the bit interval from the least significant bit ls to the most
significant bit ms . The complexity of the complete block is
proportional to O(logD) because of the adders with input
signals of the maximum width equal to d=logD.

Table II. Complexity of the module assignment function.

Case # Complexity

Cases I-II. 0:1)( daam

Case III.   0:1:10:1)(  dsdsd aaam

Case IV.   0:1:10:1)(  dddsd aaam

Case V.   0:1:10:1 2)(  d
gl

sdsd aaam

Case VI.   
0:10:1:180:1 2)(

 
ds

gl
dWd aaam

The critical path comprises a masking unit, two shifters,
an adder, and a multiplexer. It is mostly influenced by the
adder of width logD and its complexity is O(log(logD)).

E. Shuffle unit

The shuffle unit is used to reorder data according to the
module assignment function. It consists of a parallel set of
de-multiplexers and output OR-gates.

Fig. 9. Shuffle unit.

The complexity of the shuffle unit is O(wA·D) and the
critical path does not depend on D or wA.

F. De-shuffle unit

The de-shuffle unit reorders data back to the initial
sequence. It consists of a set of multiplexers and its
complexity is O(wA·D).

Fig. 10. De-shuffle unit.

As a result, the total complexity of the design forms from
the mode select units, address generators, row address
generators, module assignment units, shuffles and de-shuffles
complexities:

).()(

)()(log0)()(

DwODwO

DwODODwOconstO

AA

AA




(3)

The complete critical path (highlighted on Fig. 4) consists
of the address generator, the module assignment unit, and the
decoding part of the shuffle block. Thus, it is equal to:

 )(log)()log(log)(log DOconstODODO  . (4)

IV. SYNTHESIS RESULTS AND ANALYSIS

Our technology independent complexity estimations from
(3) and (4) indicate that the critical path complexity is weakly
sensitive to the size of the memory matrix and thus the design
is well scalable to any matrix size. In fact, the throughput is
directly proportional to the matrix size VD×HD, and
inversely proportional to the critical path, i.e.

DDWthroughput log2 .

The synthesis was performed for an ASIC 90 nm CMOS
technology. The results for six different matrix sizes, word
widths W to 32 and 64 bits, and 12-bit addresses are
presented in Fig. 11. In fact, data word width of 8 Bytes
corresponds to utilization of two concurrently coupled 32-bit
wide memory modules. Generally speaking, the address
width ranging from 8 till 16 bits is enough for the most of
practical applications, which would give the complexity
range of 45.5-53.9 Kgates for 4×4 matrix with W = 32 bits.
Considering that the memory modules used in the design
have 4096×32bits size and occupy 43.8 Kgates, the logic
complexity overheads vary from 14.5% for 2×2 32-bits
matrix to 3.8% for 8×8 64-bits matrix with respect to the total
hardware complexity. The presented synthesis results
confirm the linear increase of the design complexity and the
quadratic increase of the throughput, derived from our
theoretical estimations. As it was expected, the critical path is
proportional to the logarithm of the matrix size along one
dimension and the design complexity depends linearly on it.

189

6

Design complexity

0

100

200

300

Matrix of memory modules

C
o

m
p

le
xi

ty
 (

K
g

at
es

)

W=32b 25,34 33,81 58,48 46,6 88,07 176,83

W=64b 26,73 39,11 70,19 53,27 101,57 211,06

2×2 2×4 2×8 4×4 4×8 8×8

Operating frequency

0

100

200

300

400

Matrix of memory modules

F
re

q
u

en
cy

 (
M

H
z)

W=32b 377 341 314 336 321 313

W=64b 371 336 321 333 314 310

2×2 2×4 2×8 4×4 4×8 8×8

Throughput

0

500

1000

1500

Matrix of memory modules

T
h

ro
u

g
h

p
u

t
(G

b
it

s/
se

c)

W=32b 44,94 81,3 149,72 160,21 306,12 597

W=64b 88,45 160,21 306,12 317,57 598,9 1182,55

2×2 2×4 2×8 4×4 4×8 8×8

Fig. 11. Synthesis results: design complexity, frequency and
throughput.

V. CONCLUSIONS

We implemented an interleaved two-dimensional memory
organization with dynamically reconfigurable data pattern.
Our solution targets highly parallel computing systems such
as SIMD machines, vector processors and media accelerators.
Our proposal supports an extended set of data pattern
parameters enabling parallel access to discontinuous
rectangular and, as a particular case, vector data patterns. We
made additional efforts at relaxation of all restrictions of
pattern parameters even though it led to some design
complexity increase comparing to other related solutions with
limited applications. More specifically, compared to related
art, our design proposal introduced the following new
features: support of an extended set of 2D access pattern
parameters; programmability of the access patterns via SPRs;
arbitrary values of the pattern parameters; minimal memory
latency; as well as design scalability. We proved theoretically
that the design complexity scales proportionally to O(wA·D)
and the critical path is proportional to O(log D). Our

theoretical conclusions were confirmed by hardware
synthesis for 90 nm CMOS technology.

Acknowledgements

This research was partially supported by the Dutch
Technology Foundation STW; applied science division of
NWO and the Technology Program of the Ministry of
Economic Affairs (project DCS.7533); European
Commission FP6 (projects SARC and MORPHEUS); and
European Doctorate in Information Technology (EDITH).

References

[1] P. Budnik and P.J. Kuck, “The organization and use of
parallel memories,” IEEE Trans. on Comp., vol. 20, no. 12,
pp. 1566-1569, 1971.

[2] J. Frailong, W. Jalby, and J. Lenfant, “XOR-schemes: A
flexible memory organization in parallel memories,” Int.
Conf. Parallel Processing, pp. 276-283, 1985.

[3] G. Kuzmanov, G. Gaydadjiev, and S. Vassiliadis,
“Multimedia rectangular addressable memory,” IEEE Trans.
on Multimedia, vol. 8, no. 2, pp. 315-322, 2006.

[4] H. Shapiro, “Theoretical limitations on the efficient use of
parallel memories,” IEEE Trans. Comput., vol. C-27, no. 5,
pp. 421-428, 1978.

[5] E. Aho, J. Vanne, and T.D. Hamalainen, “Parallel Memory
Architecture for Arbitrary Stride Accesses,” Design and
Diagnostics of Elect. Circ. and Syst., pp. 63 – 68, April 18-21,
2006.

[6] K. Kuusilinna, J. Tanskanen, T. Hamalainen, J. Niittylahty,
and J. Saarinen, “Configurable parallel memory architecture
for multimedia computers,” Journal of Systems Architecture,
vol. 47, no. 14-15, pp. 1089-1115, August 2002.

[7] D.T. Harper III, D.A. Linebarger, “Conflict-Free Vector
Access Using a Dynamic Storage Scheme,” IEEE Trans. on
Comp., vol. 40, no. 3, pp. 276-283, March 1991.

[8] J.W. Park, “An efficient buffer memory system for subarray
access,” IEEE Trans. on Parallel and Distrib. Syst., vol. 12,
no. 3, pp. 316-335, 2001.

[9] D.T. Harper III, “Block, multistride vector, and FFT access in
parallel memory systems,” IEEE Trans. on Parallel and
Distrib. Syst., vol. 2, no. 1, pp. 43-51, 1991.

[10] J. Lee, C. Park, and S. Ha, “Memory access pattern analysis
and stream cache design for multimedia applications,” Proc.
of the ASP-DAC 2003 – Design Automation Conf., pp. 22-
27, 2003.

[11] S. Rixner, W.J. Dally, U.J. Kapasi, P. Mattson, and J.D.
Owens, “Memory access scheduling,” Proc. of the 27th Int.
Symp. on Comp. Arch., pp. 128-138, 2000.

[12] M. Valero, T. Lang, M. Peiron, E. Ayguade, “Conflict-free
access for streams in multimodule memories,” IEEE Trans on
Comp., vol. 44, no. 5, pp. 634-646, 1995.

[13] E. Aho, J. Vanne, K. Kuusilinna, and T. Hamalainen,
“Address computation in configurable parallel memory
architecture,” IEICE Trans. Inf. and Syst., vol. E87-D, no. 7,
July 2004.

190

