Design Considerations for a Domain Specific Vector
Microarchitecture

Bogdan Spinean, Catalin Ciobanu, Georgi Kuzmanov, Georgi Gaydadjiev
{bogdan, catalin}Qce.et.tudelft.nl, {g.k.kuzmanov, g.n.gaydadjievg}@Qtudelft.nl
Computer Engineering Laboratory, Electrical Engineering Department,
Delft University of Technology,

Postbus 5031, 2600 GA Delft, The Netherlands
Tel (4+31) 15 27 82 226, Fax (+31) 15 27 84 898

Abstract— In this article, we analyze the speedup po-
tentials of media and signal processing software on vector
processors. We evaluate the impact on performance of
several design decisions such as the vector register length,
memory latency, memory bandwidth and the number of
parallel lanes in the datapath. To quantify the influence
of the aforementioned design parameters, we modify Sim-
pleScalar 3.0 by adding new vector instructions, a vector
register file, and vector functional units and simulate sev-
eral media and signal processing applications. Simulation
results indicate that through vectorization we can obtain
kernel speedups ranging from 5.36x to 17.34x and applica-
tion speedups of 1.82x and 1.37x for the MPEG2 encoder
and decoder respectively.

Keywords— Vector processors, microarchitecture, sim-
ulation

I. INTRODUCTION

The high amount of data level parallelism in current
applications indicates vector architectures as strong
candidates for increasing performance beyond the cur-
rent limits of instruction level and thread level paral-
lelism. In this article, we analyze the speedup po-
tentials of media and signal processing software on
vector processors. We evaluate the impact on perfor-
mance of several architectural and microarchitectural
design decisions. As presented in [3], the front end
of a vector machine (decode and issue logic) is not a
bottleneck for vector processors. Therefore, we focus
on aspects concerning the datapath such as the vector
register length, memory latency, memory bandwidth
and the number of parallel lanes. We have chosen to
focus on the MPEG2 encoder and decoder, we profile
these applications, find the most computationally in-
tensive kernels and vectorize their code. To quantify
the influence of the aforementioned design parame-
ters, we modify SimpleScalar 3.0 by adding new vec-
tor instructions, a vector register file, and vector func-
tional units. After a preliminary design space explo-

ration, we find a set of feasible ranges of configura-
tions. We then thoroughly simulate the architecture
in search of the best parameter values. Results indi-
cate that through vectorization and properly set de-
sign parameters, we can obtain kernel speedups rang-
ing from 5.36x to 17.34x and application speedups of
1.82x and 1.37x for the MPEG2 encoder and decoder
respectively. Based on our experiments and analy-
sis, we argue that the optimal vector processor orga-
nization for the considered application domains is a
multi-lane vector unit tailored to short vectors and
low memory latencies.

The remainder of this paper is organized as follows:
Section IT provides the necessary background and mo-
tivation for our work. Section III presents the frame-
work we have developed and section IV describes the
experiments we have performed as well as the results
we have obtained. Section V presents our conclusions
and future work.

II. BACKGROUND

General purpose processors are designed to pro-
vide implementability for a wide range of applica-
Whether these applications are computation
intensive, memory intensive or control intensive, they
can all be executed on a general purpose processor but
in many cases with serious performance degradations.
However, computationally intensive applications, such
as multimedia and scientific applications can execute
significantly faster on processors that have support for
vector operations.

tions.

A vector processor is able to run logic or arithmetic
operations on multiple data elements simultaneously.
For a scalar processor, instructions are issued for pro-
cessing every single piece of data (data element). In,
contrast, vector processor’s instructions operate on
entire arrays of data elements. For instance, the addi-
tion of two vectors, element by element, can be done

by a vector processor using a single instruction.

Vector processors mainly exploit data level paral-
lelism, multiple similar operations are packed in a sin-
gle instruction greatly simplifying control by reducing
instruction dependency checks. Thus, the focus of the
design process shifts from the control part of the pro-
cessor to the datapath.

The concept of vector processing through the years
has undergone several transformations. It was the
core principle behind the supercomputers of the 80’s
and mid 90’s when these supercomputers and their
applications were built specifically for vector process-
ing. Starting from the 90’s, vector processing was
used in the form of multimedia instruction extensions
of superscalar processors [5]. These provided good
speedups for certain computation intensive applica-
tions at a reduced implementation cost.

Nowadays, we are facing a new paradigm shift, ar-
chitects are looking towards heterogeneous systems
containing various processors, each specialized in dif-
ferent operations and classes of operations. A good
example is the Cell processor with its general pur-
pose processor aided by 8 synergistic cores which are
in fact a form of vector units [6]. This motivates the
need to study further and better understand the inner
workings of vector processors.

Figure 1 shows a block diagram of a vector pro-
cessor that consists of a conventional scalar unit and
a vector unit both working in parallel. The fetch
unit distributes the program instructions to the cor-
responding scalar or vector unit. The segments of the
program rich in branches and conditional statements
are executed by the scalar processor. On the other
hand, uniform, computation intensive, data parallel
segments of code are executed by the vector unit.

W ector processor

Instruction cache

Fetch unit

fimretional
urats

1egister

t control unit o
Bealar data
cache oty
- i urits
erctof e i
3+
A 4

Scalar unit v
Rkl Wector

)

h 4

‘ Memory Jystem |

Fig. 1. Block diagram of a vector processor

From Figure 1, we can identify the key components
of the vector unit. Data is loaded into the vector

register file and each vector register contains multiple
elements, typically 64 or 128, each element being 32
or 64 bits wide. Vector functional units usually are
fully pipelined and can start a new operation on ev-
ery clock cycle. Since an instruction generates tens of
operations back to back, throughput is more impor-
tant than latency. The parallel semantics of a vector
instruction allows an implementation using either a
deeply pipelined functional unit or an array of paral-
lel functional units, or a combination of parallel and
pipelined functional units. FEach parallel functional
unit is called a lane. Note that while the vector regis-
ter length is an architectural parameter and fixed by
the ISA, the number of lanes is a microarchitectural
decision allowing a great flexibility when tackling the
tradeoff between cost and performance.

Another very important particularity of the vector
processors is the memory system. In order for the dat-
apath to work at full speed, it requires support from
an equally fast memory system to transfer data be-
tween main memory and registers. The memory must
provide a very fast flowing stream of data in and out
of the processor. The bandwidth is the most impor-
tant aspect, large latencies can be tolerated because
the startup time is mitigated over a large number of
elements transferred.

The following section describes the simulation
framework we have developed in order to evaluate
the influence of the major design parameters involved
when designing a vector processor.

III. SIMULATION FRAMEWORK
A. Simulation Model

We have modified the out of order processor model
of the SimpleScalar 3.0 simulator suite. Sim-outorder
is a cycle accurate simulator that models an out of or-
der superscalar processor. To the original superscalar
processor simulated by sim-outorder, we have added
a vector register file with the corresponding bit vec-
tors, vector functional units, memory units and vector
instructions.

The vector instruction set we have implemented is
very similar to the instruction of the Cray-1 [7] and
the VMIPS [4]. The vector instructions take as their
input either a pair of vector registers (v.add) or a vec-
tor register and a scalar register (v.sadd). For the
latter instruction, the value in the scalar register is
used as the input for all operations. Most vector op-
erations have a vector destination register, although
few, such as population count, produce a scalar value

which is stored in a scalar register. Load instructions
have as destination a vector register while Store in-
structions have the vector register as source. Support
for conditional execution is provided through the use
of mask registers which are Boolean vectors that con-
trol the execution of a vector instruction just as scalar
predicated (conditionally executed) instructions use a
Boolean condition to determine whether an instruc-
tion writes back its result. When the vector mask
mode is enabled, vector instructions operate only on
the vector elements whose corresponding entries in the
mask register are logic ‘1° . If the vector mask regis-
ter is set by the result of a condition, only elements
satisfying the condition will be affected.

We have added two types of computational units
and two types of memory access units. The vector
ALU can perform additions and subtractions between
two vector registers or between a vector register and a
scalar register. Also, the vector ALU assigns bit vec-
tor values as results of comparisons. As in the case of
computations, the comparisons can be between two
vector registers or between the elements of a vector
register and a scalar register. The vector multiplica-
tion unit can perform multiplications and divisions,
both between two vector registers or between a vector
register and a scalar register. These functional units
have the same execution latency for all of the opera-
tions they can execute and is of the following form:

SectionSi
Execution latency = Startup latency + _ DCCHonolEe (1)
Number of lanes

All of these values are simulator parameters:
o Startup latency depends on the operation and in
our experiments we have decided to use 2 cycles for
addition and 4 cycles for multiplication.
o Section size is equal to the number of elements each
vector register can store
o The number of lanes is the number of physical units
inside a functional unit that work in parallel to per-
form the operations on the elements of a vector regis-
ter. For instance in a two lane implementation there
are two physical functional units, one performing op-
erations on the odd elements of the vector register, the
other one on the even elements of the vector register.
The vector memory units have very similar param-
eters. For the load we have:

SectionSi
Load latency = Memory latency + _pecnonoze ()
Words per cycle

These parameters are:
¢ Memory latency is the number of cycles it takes for
the first word to come from memory after a read has
been requested

¢ Section Size is the number of elements contained in
a vector register

o Words per cycle is the number of elements that can
be transferred each cycle, it is the memory bandwidth
expressed in words.

The vector memory accesses are bypassing the
cache, accessing main memory directly. The timing
of these accesses (the vector memory latency) is mod-
eled into the functional unit latency. This has reduced
the complexity of our simulator eliminating the need
to model a vector memory system.

For the store unit, the memory latency is not visible
to the processor. Thus, a store instruction completes
in at most section size cycles after it starts.

SectionSi
Store latency = _ DCCHOnoNEe (3)
Words per cycle

B. Simulation Statistics

In addition to the functionality of our simulator, we
have also added simulation statistics to better evalu-
ate performance and to aid us in the process of deci-
sion making and in refining our tests. There are two
major types of statistics that will be described in the
following subsections:

o Instruction related statistics
o Functional unit related statistics

The instructions statistics count the number of vec-
tor instructions that are issued. Statistics have been
implemented for:
¢ The total number of vector instructions issued
e The percentage of the total amount of instructions
occupied by the vector instructions
e The total number of vector computation instruction

— The number of instructions that use the vector
ALU

— The number of instructions that use the vector
multiply unit
o The total number of vector memory instructions

— The number of vector stores

— The number of vector loads
e The number of vector control instructions (like those
used for turning mask operation on or off, auto-
sectioning instructions)

The functional unit related statistics track the us-
age of the vector functional units on a cycle basis. We
count the number of cycles each of the functional unit
is busy and we gather the following statistics for each:
o A total number of cycles that each functional unit
was busy
e An occupancy rate meaning the percent of all exe-
cution cycles that each functional unit was busy

Another class of statistics is the history of occu-
pancy rate for each of the functional units. For in-
stance, we can calculate the occupancy rate of a func-
tional unit over each thousand cycles.

Using the history of the occupancy rates for any of
the functional units or memory units, we can visually
follow the evolution of the simulation. Also, these
statistics can be a very valuable tool for debugging
both the simulator and the process of vectorizing the
applications.

C. Experimental Procedure

SimpleScalar supports multiple instruction set ar-
chitectures. We have used the default one: PISA
(Portable ISA), a MIPS based instruction set. The
simulator also comes with a compiler, a linker and a
loader for this particular architecture. The compiler is
gee-2.7.2.3 with a modified back-end to generate code
for PISA.

For every selected application, we performed the
following experimental procedure:

1. Profile the application in search of computation in-
tensive kernels

2. Inspect the kernels for their vectorization potential
3. Compile the application for the PISA architecture,
the architecture used by our simulator

4. Run the application on the simulator to assess the
initial performance, before vectorization

5. Manually Vectorize the computation intensive ker-
nels previously identified

6. Simulate the vectorized applications by varying pa-
rameters

7. Analyze results

For profiling the selected applications, we have used
the Linux application callgrind. The output can be
graphically visualized using kcachegrind.

An important tool for our experiments was SSIAT
[2] which is an application that automatically mod-
ifies the source code of SimpleScalar by adding new
instructions, functional units and register files to the
base architecture. SSIAT has a configuration file that
contains all of the parameters of the new instructions,
functional units and register files. This file contains
most of the architectural configuration data needed
by our simulator.

Most of the micro-architectural details of the sim-
ulation parameters are passed to the SimpleScalar by
directly editing the simulator’s source code through a
bash script. Each simulation iteration consists of the
following phases:

e Run SSTAT to modify architectural parameters of
SimpleScalar

o Update the micro-architectural parameters

o Recompile the simulator

« Run the application through the simulator

o Log results

IV. EXPERIMENTAL RESULTS

To evaluate the impact of the memory bandwidth,
the memory latency, the length of the vector regis-
ters and the number of lanes in the datapath, we
have analyzed a free version of the MPEG2 encoder
and decoder [1]. Through profiling, we have identified
the computation intensive kernels and after inspecting
the code for vectorization potentials, we have decided
which functions to vectorize. After the design param-
eters have been determined and evaluated, we explore
their impact on the actual kernel performance, and
the overall application speedup.

A. Design Parameters Evaluation

We start by exploring the possible configurations of
our customizable vector unit by focusing on four pa-
rameters: the number of lanes in the datapath, the
vector memory bandwidth, the section size (vector
register length) and the vector memory latency.

16.00

14.00 = e —

1200 //H—'
10.00 //‘_——-“_.__’-__.

Speedup
-
=] =3
& a

1 2 4 8 16 32 64

—4#— Mem BW =1 word/cycle 5.44 763 955 1048 1081 10.97 11.08

——Mem BW =2 words/cycle 5.68 810 1029 1180 12.77 13.08 13.24
g

‘ 10.70' 12.44 13.40 1391 14.14

Mem BW =8 words/cycle 5.87 848 1093 1273 13.74 14.28 14.52

—#—Mem BW = 16 words/cycle 590 B56 11.04 1288 1391 14.47 1471

Mem BW =4 words/cycle 5.79 8.34

Number of Lanes

Fig. 2. Speedup vs. the memory bandwidth and the num-
ber of lanes

Number of lanes: Figure 2 plots the speedup of
kernel gna for fixed values of the section size (16 el-
ements) and memory latency (20 cycles) and various
values of the memory bandwidth and the number of
lanes in the datapath.

Discussion: The number of lanes influences the
number of cycles required to complete computation
instructions. Multiple lanes improve performance

over the single lane organization in a similar way
as processing vectors over processing scalars. By
adding more lanes the computation time is reduced
linearly with the number of lanes, but the instruction
and functional unit startup latencies remain constant.
However, for two, four or eight lanes the computation
time is significantly larger than the startup latency
and we can consider that performance increases by a
factor of 2, 4 and 8 respectively.

Memory bandwidth: Dictates the number of cycles
required to complete memory transfer instructions. A
multi-lane datapath needs a fast memory system to
transfer data in and out of the processor. Our results
suggest that the memory bandwidth must be coher-
ent with the processing speed of the datapath. There
has to be a balance between these the number of lanes
and the memory bandwidth since in the average case
there is no use in having a memory system that can
transfer data much faster than it is processed or hav-
ing a datapath processing data much faster than the
memory system can transfer.

Discussion: For a fixed memory bandwidth, once
there are enough lanes (enough processing speed) to
take advantage of the full potential of the memory
bandwidth, further increasing the number of lanes
does not bring any noticeable improvements in exe-
cution time. By looking at the problem the other way
around, by fixing the number of lanes and varying
the memory bandwidth, we obtain a similar behavior.
Memory bandwidth and the number of lanes in the
datapath have similar impact on vector performance:
the former influencing memory transfer instructions,
see (2) and (3), the latter affects the computation in-
structions, see (1).

Having more lanes and higher memory bandwidth
increases performance. However, there is a break-even
point when performance gains are outweighed by the
increase in area and design complexity. From Fig-
ure 2 we can observe that the best cost per perfor-
mance is achieved using a configuration with 4 lanes
and a memory bandwidth of 4 words/cycle/memory
unit. From this point on, all our simulations have
these parameters fixed to the previously mentioned
values.

Section size (vector register lengt): Consider Fig-
ure 3 that shows the speedup obtained for kernel
component_prediction for various section sizes and
memory latencies (kernel component_prediction per-
forms computations on vectors 16 elements long).

Discussion: By increasing the section size, the
speedup also increases but only up to a certain point.

12.00

10.00 4

8.00
o
=
3 6.00
j=3
7]

4.00 4

0.00 | J]]] [T ewrm

4 8 | 16 | 32 | 64 | 128 | 256 | 512 | 1024

OLatency = 0 cycles | 5.63 | 8.76 | 10.91| 7.60 | 4.74 | 270 | 145 | 0.75 | 0.38
W Latency = 10 cycles | 4.40 | 7.19 | 9.60 | 6.95 | 4.47 | 261 | 1.43 | 0.75 | 0.38
OlLatency = 20 cycles | 361 | 6.10 | 8.58 | 639 | 424 | 253 | 1.40 | 0.74 | 0.38
DOlLatency = 30 cycles | 3.06 | 529 | 7.75 | 5.92 | 402 | 245 | 138 | 073 | 038

Section size

Fig. 3. Speedup vs. the memory latency and the section
size

If the vector register length is larger than the applica-
tion vector length, the performance actually degrades
because the execution time of a vector instruction lin-
early depends on the section size, and by increasing
the section size, we actually increase the execution
time by processing unneeded elements. This degra-
dation in performance can be alleviated through mi-
croarchitectural support to end instructions after all
the useful elements have been processed. It is impor-
tant to note that increasing the section size beyond
a certain limit does not bring any benefits. This is
because only the vectorized part of the application
runs faster, there is a break even point after which
the scalar instructions dominate the execution time.
Thus, even for infinite vector lengths, there is this
point when doubling the section size increases chip
area much more then it increases performance.

Memory latency: Figure 3 also illustrates the rela-
tion between the memory latency and speedup.

Discussiton: It can be observed that the larger the
section size, the fewer vector instructions we execute.
By reducing the number of vector instructions, we re-
duce the amount of times that instruction startup la-
tency is encountered and so, we reduce the total ex-
ecution time. Looking again at Figure 3, we can see
that memory latency can significantly degrade vector
performance especially for short section sizes. As the
section size grows, the impact of memory latency is
becoming less of an issue. This explains why vector
processors typically have best performance for long
vectors.

B. Speedups

After profiling and inspecting the code for vector-
ization potentials, for the MPEG2 encoder we have

selected functions distl, fdct and quant_non_intra
that occupy more than 85% of the execution time.
For the decoder, the functions component_prediction
and Clear_Block account for almost 30% of the com-
putation. These kernels contain loops that are regular
enough to have potential for high vectorization rates.

Kernel speedup: Table I shows the aggregated
information for the vectorized kernels of both the
MPEG2 encoder and decoder. The second column
contains the kernel name, the third column contains
the percentage of the total computation time spent
inside the function. Columns four to seven show the
kernel speedups for the vector register length of 8, 16,
32 and 64 elements respectively.

TABLE I
MPEG2: COMPARATIVE KERNEL SPEEDUPS FOR
SECTION SIZE OF 8, 16, 32 AND 64 ELEMENTS

kernel time Speedup
Elements 8 16 32 64
dist1 73.0% 2.13 3.06 2.27 1.50
Encoder fdct 7.84% 2.42 2.22 1.90 1.48
qna 4.8% 7.26 10.20 12,56 14.84
Decoder comp_pred 20.75% | 6.10 8.58 6.39 4.24
clr_blk 8.01% 6.03 9.14 11.29 10.58

From this Table we can estimate the influence of
each kernel over the entire application. Each ker-
nel has different vector lengths and for a fixed sec-
tion size, some perform better than others. For in-
stance, the MPEG2 Encoder contains kernels distl,
fdet and gna that have vector lengths of 16, 8 and
64 elements respectively. Thus, distl will perform
best for vector registers of 16 elements while for vector
registers of 64 elements will perform poorly, fdct per-
forms best for vector registers of 8 elements. On the
other hand, kernels have varying degrees of parallelism
and amount of computation which result in wide spec-
trum of speedups. For instance, kernel dist1 performs
computation on vectors that have a small degree of
dependencies and through vectorization we could ob-
tain speedups of only 3x. In contrast, for kernel gna
we have obtained speedups of almost 15x. This is be-
cause kernel gna performers heavy computations and
has a high degree of parallelism. The overall appli-
cation speedup is dictated by the individual kernel
speedups weighted by the percent of time spent inside
each kernel.

Overall application speedup: Table II presents the
overall application speedup for various vector regis-
ter lengths (section size). Vectorization level does not
mean the percent of vector instructions from all exe-
cuted instructions but instead, is the cumulative ex-

TABLE II
MPEG2: OVERALL APPLICATION SPEEDUP

Maximum theoretical
speedup (for kernel

Vectorization level
(relative to

Obtained speedup
for section size of

execution time) speedup of infinity) 16 32 64
Encoder 85.64% 6.9 1.82 1.63 1.33
Decoder 28.76% 1.40 1.25 1.37 1.23

ecution time of the considered scalar kernels of the
scalar application execution time. Note that the num-
ber of vector instruction is dependent on the sec-
tion size. For instance, for the scalar version of the
MPEG2 Encoder, functions distl, fdct and gna ac-
count for 85.64% of the execution time. Only these
three functions could be efficiently vectorized. The
maximum theoretical speedup is considered for infi-
nite kernel speedup. Of course this value can never
be reached but is presented here as the upper bound
of the achievable speedup. We can estimate the effi-
ciency of our work by comparing our results to this
upper bound.

Aside from simulating each kernel independently,
we have also simulated the whole vectorized applica-
tions consisting of both the vectorized kernels and the
scalar part that could not be vectorized. The speedup
for the MPEG2 Encoder is determined mostly by the
behavior of the distl kernel since it takes 73.0% of
all the scalar execution time. This kernel has vector
lengths of 16 elements therefore, the whole application
performs best for section size of 16 elements. Unfor-
tunately, distl can offer only a speedup of 3x which
explain the overall application low speedup compared
to the maximum theoretical achievable speedup. Even
though kernel gna reaches speedups of up to almost
15x, it only accounts for less than 5% of the com-
putation time thus, it hardly influences the overall
application speedup.

For the MPEG2 Decoder, the kernels that could be
vectorized take only 28.76% of the execution time thus
the highest possible speedup is 1.40x. The considered
kernels, comp_prediction and clear_block offer good
speedups, on average 8x and 10x respectively and have
vector lengths of 64 and 16 respectively. Also in this
case when one of the kernels has best performance
with respect to the section size, the other kernel of-
fers poor speedups. However, because the two kernels
take less than 30% of all the application execution
time the speedup obtained through vectorization is
not spectacular but still is quite close to the theoreti-
cal upper bound.

V. CONCLUSIONS

We evaluated the impact on performance of the vec-

tor register length, memory latency, memory band-
width and the number of parallel lanes in the datap-
ath. For this purpose we modified SimpleScalar 3.0d
by adding new vector instructions, a vector register
file and simulated the MPEG2 encoder and decoder.
Our experiments suggest that vector memory latency
can seriously degrade performance especially for short
vector registers. Long vector registers amortize the la-
tency over many elements. However, the section size
should be smaller than the average application vec-
tor lengths. We derived theoretically and verified ex-
perimentally the relations among the section size, the
memory latency, memory bandwidth and the number
of parallel lanes in the datapath. Based on our experi-
ments and analysis, we conclude that the optimal vec-
tor processor organization is a multi-lane vector unit
tailored for short vectors and low memory latencies.

In future research, we plan to develop a more accu-

rate vector processor simulator that can model more
precisely the architectural and microarchitectural pa-
rameters. More specifically, we wish to test a new
architecture of the vector register file that will allow
a significant increase in flexibility through reconfig-
urability. Another important future goal is to exten-
sively investigate the vector memory system and ways
to adapt caches to vector memory access patterns.

VI. ACKNOWLEDGEMENTS

This work was partially supported by the Dutch

Ministry of Education, Culture and Science through
the HSP Huygens Programme; the Dutch Technology
Foundation STW, applied science division of NWO,

the Technology Program of the Dutch Ministry of

Economic Affairs (project DCS.7533); and the Eu-
ropean Commission in the context of the Scalable
computer ARChitectures (SARC) integrated project
#27648 (FP6).

[1] Mpeg org webpage http://www.mpeg.org/mpeg/video/mssg-

2]

8]

REFERENCES

free-mpeg-software.html.

Roel J. Meeuws Gerard Th. Aalbers B.H.H. (Ben) Juurlink,
Demid Borodin and Hugo Leisink. The simples-calar in-
struction tool (ssit) and the simplescalar architecture tool
(ssat).

Roger Espasa and Mateo Valero. Multithreaded vector ar-
chitectures. Proceedings of the 3rd International Conference
on High Performance Computing, 1997.

David A. Patterson John L. Hennessy. Computer Architec-
ture - A Quantitative Approach. Morgan Kaufman Publish-
ers, 2002.

[5]

(6]

R.B. Lee. Multimedia extensions for general-purpose pro-
cessors. Signal Processing Systems, 1997. SIPS 97 - Design
and Implementation., 1997 IEEE Workshop on, 1997.

S. Bolliger M. Day M.N. Pham, D. Asano. The design and
implementation of a first-generation cell processor. Solid-
State Clircuits Conference, 2005. Digest of Technical Papers.
ISSCC. 2005 IEEE International, 2005.

Richard M. Russell. Readings in computer architecture. Mor-
gan Kaufman Publishers, 2000.

