
1

A hardware implementation of the UniSim pipeline

model

Radu Andrei Stefan and Koen Bertels

Computer Engineering Laboratory

Electrical Engineering, Mathematics and Computer Science Department

Delft University of Technology

Mekelweg 4, 2628 CD, Delft, The Netherlands

{R.A.Stefan, K.L.M.Bertels}@tudelft.nl

Abstract—

Design space exploration is a component of the product

optimization process that confronts the architect with the

task of evaluating a large number of design choices. In

order to achieve this goal software tools are used to au-

tomatically determine the benefits and drawbacks of each

proposed implementation. In the field of processor archi-

tecture one such tool is UNISIM. The UNISIM environ-

ment provides a framework for design space exploration

in the form of libraries and tools for evaluating designs

through cycle-accurate simulation. UNISIM emphasizes

modularity and reusability of modules, by defining a stan-

dard interface for inter-module communication.

The simulator is capable of providing accurate results

in terms of number of cycles required for the execution

of a specific program, however it does not offer any in-

formation regarding the power consumption, the occupied

silicon area or the clock rate the design is capable of. In or-

der to overcome these limitations, we attempt to produce

in this study a hardware implementation that closely fol-

lows the structure of the simulator at source code level. In

large part, this translation process involved only a change

in syntax from the C code to Verilog.

Our study shows that our objective can be achieved

at moderate implementation cost while preserving all the

features of the original software simulation. We empha-

size modularity and a standardized control flow for inter-

module communication, which are also the defining char-

acteristics of the software implementation.

Keywords— Design Space Exploration, UNISIM Simu-

lator, Hardware Description Language, Verilog, FPGA.

I. Introduction

When developing processor architectures, engineers
often use simulators to determine the efficiency the
designed processors have in executing benchmark pro-
grams. Most often, the accuracy required for these
simulations is very high, in particular, in order to cor-
rectly determine the scheduling of instructions within
the execution pipeline, a cycle-accurate simulator is
needed.

Traditionally, simulators were developed in-house
by the research groups that were also developing the
simulated architectures, but implementing those sim-
ulators led to the unnecessary duplication of a large
amount of work. The solution to this problem was to
develop libraries, frameworks or even new languages
that can be used across multiple simulators.

The libraries and frameworks often evolved to cover
a broader range of scenarios and circuits they can de-
scribe. This has inevitably forced simulators to resem-
ble more closely in structure the designs they model,
sometimes to the extent of providing a description
that is equivalent to the hardware description, effec-
tively eliminating the boundary between the two, as
it is the case with SystemC [6].

The simulation platforms often emphasize modu-
larity and reusability among the advantages they pro-
vide. Indeed, thanks to well defined, carefully de-
signed interfaces, it was shown it is possible to com-
bine in a single design, modules developed by differ-
ent research groups in different parts of the world
[1]. Although modularity is not a concept foreign
to hardware design, a further step taken by simula-
tion platforms like Liberty [11], further developed into
UNISIM [1], was to distribute the logic controlling the
flow of data into the modules themselves. This ap-
proach would allow modules to perform their function
without the need of an external, centralized control,
which is highly dependent on the specific architecture,
and hence non-reusable.

In our study, we attempt to use this concept of de-
centralized control in an actual hardware implemen-
tation, however, we do not attempt to synthesize the
simulation code directly. We acknowledge the fact
that having a common source base for both synthesis
and efficient simulation would provide an advantage
by reducing the development effort involved, however
the tools necessary for this automatic translation of C



2

code to hardware are still immature. Hence, our ap-
proach consists of manually creating a separate hard-
ware implementation that preserves the features of its
software counterpart with regard to modularity and
reusability, but more importantly, it preserves the dis-
tributed control mechanism of UNISIM.

II. Related work

Over time, numerous simulation platforms have
been developed, many of them targeted at microar-
chitectural development [2], [5], [7], [11], [1]. Of these
we have chosen UNISIM, a recently developed emerg-
ing simulation platform as a starting point in our re-
search. We found UNISIM to be an suitable choice
because of the way it closely mimics the hardware im-
plementation.

The origins of the UNISIM framework are found in
the Liberty Simulation Environment [11] developed at
the Princeton University, and its main characteristics,
in particular the three way handshake that we will
describe later on in this study is inherited from LSE.

UNISIM, as well as Liberty are platforms for cre-
ating cycle-accurate simulations of devices, but by
themselves do not provide any information about the
power consumption or the clock rate of the devices
being modeled. The problem has been addressed by
using extensions to the platform and external power
estimators [3], [4], [13]. In all these cases, the power
is only estimated, based on existing models and mea-
surements on similar circuits. Timing is also esti-
mated in Justice [3] by taking into account the wire
lengths generated by a simple floorplanner.

Our approach is a radically different one. We aim to
produce a synthesizable model, from which the infor-
mation on power consumption can be extracted either
by physical simulation or using the power models of
the logic blocks used in the design. Performance fig-
ures can also be obtained directly from the synthesis
tools.

The advantage we seek is that of obtaining in the
hardware implementation the same capability that the
software simulator has, that of combining modules
without the need of rewriting control code.

III. The UNISIM Environment

Pipelines are a ubiquitous feature of modern archi-
tectures, and UNISIM offers a powerful mechanism
for modeling them. Under normal operation, data is
partially processed in each stage of the pipeline, and
then forwarded to the next stage for further process-
ing. A stall can occur when one of the stages is not

able to accept incoming data for one or more cycles.
As the buffers of previous stages also become full, the
stall will propagate upstream.

An effect that occurs simultaneously is that the
stage producing the stall, probably being in a busy
state due to a longer operation, is also incapable of
producing the data required by the following stage.
As data is propagated in the pipeline on each stage,
this ‘lack of data’ is also propagated and is called a
bubble.

In UNISIM, modules are required to produce a
value into each output port, each cycle. When a mod-
ule is not able to produce any useful data, the output
can be marked as ‘nothing’. If the module is part of
a pipeline, producing ‘nothing’ on its output is equiv-
alent to inserting a bubble.

In practice, the ‘nothing’ flag can be modeled as an
additional one-bit signal in the interface between mod-
ules. Alternatively, the negated ‘something’ signal has
been used in the hardware implementation. Another
signal, named ‘accept’, is transmitted the opposite di-
rection, for the purpose of modeling stalls. It allows
receiver to inform the source whether it accepts data
during the current cycle or not.

A third signal called ‘enable’ may be used by mod-
ules having multiple outputs. Consider the case of
a sender that can provide data to multiple receivers,
but to no more than one during a single cycle. The
‘enable’ signal provides the sender module with the
means of informing receivers whether to use or not
the data it has provided during the current cycle.

Together, the three signals form a three-way-
handshake mechanism, commonly found in asyn-
chronous systems or communication networks.

The distributed control produces an overhead in
terms of implementation effort as the control has to
be replicated in each module, however, the negotia-
tion scheme is simple and can be reused in multiple
designs.

Consider the pipeline stage in figure 1. The module
produces useful data on its output if it has data, re-
ceived during previous stages, that it has not delivered
yet.

The module accepts incoming data if either it has
a free buffer to store the data, or it can free a slot in
its buffers by delivering data to the next module. As
a protocol convention, incoming data is not accepted,
unless the ‘something’ signal is asserted. Because the
module is a simple pipeline stage with a single output,
data is always delivered when accepted.

Let us consider the cost of implementing the de-



3

Fig. 1. One pipeline stage

scribed model in hardware. In figure 2 can be ob-
served that the distributed control logic forms a com-
binational chain that spans the entire pipeline, adding
two logic levels for each stage.

Fig. 2. Combinational logic chain through the pipeline
control logic

However, in practice this does not represent a prob-
lem because, when taken separately the control logic
has a small number of inputs, one for each pipeline
stage in addition to the external signals received by
the first and last stage as shown in figure 3. Functions
with few inputs can be easily optimized by synthesizer
tools, or they can be implemented in look-up tables.
Techniques exist for breaking the combinational chain
in very long pipelines but their discussion is beyond
the scope of this article.

IV. Migration toward hardware

In large part, our approach consists of manually
translating the simulation code into the Verilog hard-
ware description language. Wherever possible, we pre-
serve module and signal names as well as the con-
structs used in the simulation code. In the future, we
may consider partially automating this process.

Fig. 3. Isolated control logic

A. Programming language constructs

Although obviously the Verilog language does not
provide the same diversity of constructs that are avail-
able in the C++ language, in which the software sim-
ulator is written, most of the constructs that were ac-
tually used have their equivalents. Conditional state-
ments and loops can be found in similar forms in
both languages. As an observation, the actual usage
of those constructs requires more discipline when de-
scribing hardware, and a better understanding of the
way the compiler operates.

A notable feature that was absent in Verilog was
the ability to define complex data types like struc-
tures. A work-around for this issue was found in
declaring the data types as simple arrays of bits and
using preprocessor directives to assign names to ad-
dress ranges within these arrays of bits in a similar
way member names are used to address the particu-
lar fields within the structure. Preprocessor directives
were also used to define constants. The disadvantage
of this approach is that all member names and con-
stants use the same global namespace.

A comparison of the two languages is exemplified
in figure 4 and 5.

B. Combinational logic

One feature inherited from previous generations of
HDLs as well as SystemC is the sensitivity list. The
programmer is thus required to specify which are the
inputs of the combinational blocks.

In UNISIM, the sensitivity list is less strict than
in an HDL. It is not necessary to add to the list all
signals the output depends on, as long as the pro-
grammer ensures the signals are known when they
are needed. The ‘known()’ function is provided for
checking whether a specific signal has been generated
during the current clock cycle.

By comparison, in the current version of Verilog,
the need for sensitivity lists has been entirely elimi-



4

const unsigned int OP_ADD=0x01;

const unsigned int OP_SUB=0x01;

struct instruction

{

unsigned int adr;

unsigned int opcode;

};

...

instruction i1;

i1.adr=OP_ADD;

...

if (i1.adr==OP_ADD)

{

c=a+b;

}

Fig. 4. C++ code for structure definition and usage

‘define OP_ADD 32’h01

‘define OP_SUB 32’h02

‘define INSTRUCTION [63:0]

‘define OPCODE [31:0]

‘define ADR [63:32]

...

reg ‘INSTRUCTION i1;

i1‘ADR=OP_ADD;

...

if (i1‘ADR==OP_ADD)

{

c=a+b;

}

Fig. 5. Verilog code equivalent to the C structure defini-
tions

nated, as the simulator and synthesizer tools are able
to automatically determine which are the signals the
output depends on.

C. Registers and clock cycle

For convenience, in the UNISIM model, the clock
cycle has been split in two phases, which have been
formally associated to the two edges of the clock. Dur-
ing the first phase, the rising edge of the clock, sig-
nals are propagated between modules, while during
the second phase the internal state of modules is up-
dated.

This separation, although useful for a better struc-
turing of the simulation code, is entirely artificial and
has been eliminated in the hardware implementation.

Between modules, the signals are propagated through
combinational logic, while the internal state is up-
dated on the rising edge of the clock.

D. The great wall of memory abstraction

One of the weak points of hardware synthesizers
has been the ability to deal with memory abstrac-
tions. In time, the tools have evolved, and in our
experiments, they have been able to correctly recog-
nize all architecture elements, including the register
bank, memories and related logic without any human
intervention. We have still to determine whether the
design requires further optimization for the compo-
nents where the synthesizer tool may not have made
the best choices.

V. Experimental results

For our experiments we have used a model of the
DLX processor described by Patterson and Hennessy
[9]. The software simulator for the described architec-
ture is already part of UNISIM.

We have implemented our design using the Verilog
hardware description language, and tested the design
using the open-source Icarus Verilog [12] simulation
software. For verification, we ran several programs
written in assembly language, programs that use the
entire range of operations offered by the architecture:
memory read and write operations, arithmetic opera-
tions, conditional jumps, as well as features like reg-
ister dependency checking.

Despite extensive verification, the results in this
study shall be regarded as preliminary, especially the
performance figures generated by the synthesis tools.

We have synthesized the design using the freely-
available Xilinx ISE [8], version 9.2i, for the Virtex-4
platform, obtaining running frequencies of the synthe-
sized circuit of up to 166.8 MHz, which corresponds to
a propagation delay of 5.9 ns. For comparison, a sin-
gle 32 bit adder-subtracter like the one found in the
execution stage of the DLX pipeline, when synthe-
sized on the same platform and with the same speed
grade, presents a propagation delay of 2.36 ns, while
a memory module, like the one found in two pipeline
stages has a delay of 2.876 ns.

The area occupied by the design was 690 slices,
which amounts to 6% of the total number of slices
available on the device. However, no attempt was
made so far to optimize the area, and the synthesis
tools were in fact configured to improve speed in the
detriment of the amount of hardware resources used.



5

Another interesting point of comparison is the speed
of simulating the hardware implementation compared
to the speed of the original software simulation. Using
Icarus Verilog the simulation speed was unfortunately
very low, more than three orders of magnitude below
the speed of the software simulation, however, accord-
ing to [10] the Icarus Verilog simulator is not known as
one of the fastest simulators available. In the future,
we plan to evaluate other simulators as well.

The advantage of producing a synthesizable imple-
mentation is that instead of using a software simula-
tor, the design can be uploaded on a reconfigurable de-
vice and tested directly, with greatly improved speed.
So far, we have not tested our design on a real FPGA
board, as we did not have one available with the same
model that was used for synthesis, and problems were
encountered when trying to synthesize for a Virtex-2
target.

VI. Future directions of research

Our work so far consists of a proof-of-concept trans-
lation to hardware of simple simulator written in the
UNISIM environment. This translation preserves the
features that would help provide module reusability,
thus enforcing a discipline in the way the hardware
modules are described.

Although our goal is achieved in terms of preserving
the interface between modules that is found in the
software simulation, but the impact of this choice on
the quality of the designed hardware has yet to be
analyzed.

We intend to further advance our study by modeling
more complex architectures, in order to determine the
new challenges imposed by larger designs and give a
more clear view of the advantages and disadvantages
our approach may have on the design process, and on
the final result of the design process.

Ultimately, we can only consider our goal attained
when a diversity of modules, possibly developed by
third parties, can be seamlessly integrated into an ex-
isting design, and new designs can be created using
the library of existing modules.

Acknowledgements

This work was supported by the European Commis-
sion in the context of the Scalable computer ARChi-
tectures (SARC) integrated project #27648 (FP6).

References

[1] David August, Jonathan Chang, Sylvain Girbal, Daniel
Garcia-Perez, Gilles Mouchard, David Penry, Olivier

Temam, and Neil Vachharajani. Unisim: An open sim-
ulation environment and library for complex architecture
design and collaborative development. IEEE Computer Ar-

chitecture Letters, PP:1–1, 2007.
[2] Doug Burger and Todd M. Austin. The simplescalar

tool set, version 2.0. SIGARCH Comput. Archit. News,
25(3):13–25, 1997.

[3] N. P. Carter and A. Hussain. Modeling wire delay, area,
power, and performance in a simulation infrastructure.
IBM J. Res. Dev., 50(2/3):311–319, 2006.

[4] Ashutosh Dhodapkar, Chee How Lim, George Cai, and
W. Robert Daasch. Tem2p2est: A thermal enabled multi-
model power/performance estimator. In PACS ’00: Pro-

ceedings of the First International Workshop on Power-

Aware Computer Systems-Revised Papers, pages 112–125,
London, UK, 2001. Springer-Verlag.

[5] Joel Emer, Pritpal Ahuja, Eric Borch, Artur Klauser, Chi-
Keung Luk, Srilatha Manne, Shubhendu S. Mukherjee,
Harish Patil, Steven Wallace, Nathan Binkert, Roger Es-
pasa, and Toni Juan. Asim: A performance model frame-
work. Computer, 35(2):68–76, 2002.

[6] Thorsten Grotker. System Design with SystemC. Kluwer
Academic Publishers, Norwell, MA, USA, 2002.

[7] Christopher J. Hughes, Vijay S. Pai, Parthasarathy Ran-
ganathan, and Sarita V. Adve. Rsim: Simulating shared-
memory multiprocessors with ilp processors. Computer,
35(2):40–49, 2002.

[8] Xilinx Inc. Synthesis and Simulation Design Guide, 2007.
[9] David A. Patterson and John L. Hennessy. Computer archi-

tecture: a quantitative approach. Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA, 1990.

[10] Wilson Snyder. Verilog simulation benchmarks.
http://www.veripool.com/verilog sim benchmarks.html.

[11] Manish Vachharajani, Neil Vachharajani, David A. Penry,
Jason A. Blome, and David I. August. The liberty simu-
lation environment, version 1.0. SIGMETRICS Perform.

Eval. Rev., 31(4):19–24, 2004.
[12] Stephen Williams. Icarus verilog.

http://www.icarus.com/eda/verilog/.
[13] S. Wilton and N. Jouppi. Cacti: An enhanced cache ac-

cess and cycle time model. IEEE Journal of Solid-State

Circuits, 31(5):677–688, 1996.


