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Abstract— This paper presents a methodology for syn-
thesizing customized vector ISAs for various application
domains targeting high performance execution. A num-
ber of applications from the telecommunication and linear
algebra domains have been studied, and custom vector in-
structions sets have been synthesized. Three algorithms
that compute the shortest paths in a directed graph (Dijk-
stra, Floyd and Bellman-Ford) have been analyzed, along
with the widely used Linpack floating point benchmark.
The framework used to customize the ISAs included the
use of the Gnu C Compiler versions 4.1.2 and 2.7.2.3 and
the SimpleScalar-3.0d tool set extended to simulate cus-
tomized vector units. The modifications applied to the
simulator include the addition of a vector register file, vec-
tor functional units and specific vector instructions. The
main results can be summarized as follows: overall appli-
cations speedups of 24.88X for Dijkstra (after both code
optimization and vectorization), 4.99X for Floyd, 9.27X for
Bellman-Ford and 4.33X for the C version of Linpack. The
above results suggest a consistent improvement in execu-
tion times due to the customized vector instruction sets.

Keywords—Vector processors, DLP, ISA, Vector Archi-
tecture, Performance

I. Introduction

Processors that use vector instruction sets operate
upon multiple elements with a single instruction . The
order in which individual elements are processed is not
explicit, and this allows the processor to choose an
arbitrary processing sequence in order to obtain max-
imum performance. The key to high performance of
this type of ISA is exploiting the data level parallelism
(DLP) present in the application. Applications with
inherent DLP range from manipulating large matrixes
(scientific software or telecommunication algorithms
that process large graph structures) to streaming ap-
plications.

In streaming applications (such as video encod-
ing/decoding), no dependencies exist between the
loop iterations. This was the reason for creating the
multimedia SIMD (Single Instruction, Multiple Data)

extensions [14], [15], [10], [8], [6], [16], [7], [3]. The in-
structions are designed taking into consideration two
main characteristics of the multimedia applications:
the usage of mainly integer numbers, usually 8 or 16
bits wide and very short vector lengths (mostly un-
der 16 elements). The Multimedia SIMD extensions
have been extensively studied and are actually imple-
mented in a range of general purpose processors. How-
ever, having a vector unit that operates with medium
and long registers (hundreds of elements) has the po-
tential to provide performance improvements in other
applications that require full floating point precision
or 32 and 64 bit integer values. In scientific applica-
tions, classic vector computers such as IBM/370 [12],
[13], [2] provided Vector instructions sets long before
the wide adoption of multimedia extensions. Adding
instructions to the ISA has some disadvantages. Com-
pilers have to be adapted in order to utilize the new
operations, and for increased performance gains, the
data structures used in the programs have to be care-
fully chosen.

We experimented with SimpleScalar 3.0d, which
was modified in order to support a set of vector in-
structions. The speedups obtained are due to the
24 vector instructions introduced (13 for Dijkstra, 11
for Floyd, 18 Bellman-Ford and 6 for Linpack). The
targeted applications are three shortest paths in a
directed weighted graph algorithms (Dijkstra, Floyd
and Bellman-Ford) and the Linpack floating point
benchmark. The application level speedups measured
can be summarized as follows:

• A peak speedup of 24.88X for Dijkstra compared
to the original version implemented with linked lists
and pointers, and a speedup of 4.31X compared to the
optimized (but still scalar) version;
• A maximum speedup of 4.99X for Floyd;
• Speedups of up to 9.27X for Bellman-Ford;
• After vectorization, Linpack was up to 4.33X times
faster.

The paper is organized as follows: in Section II the
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ISA customization framework is presented. The tar-
geted applications are described in Section III. Sec-
tion IV contains details regarding the experimental
results, and Section V presents the conclusions.

II. Design framework

The process of obtaining the custom instruction set
for a set of applications is composed of several steps.
First, the applications have to be profiled in order
to identify the most time consuming operations and
loops in the code. The next step is to decide on the
portion of code that will be vectorized. The best ap-
proach is to understand the algorithm behind that
code, in order to produce a replacement sequence of
instructions that performs the same job but using dif-
ferent (possibly custom) instructions. After several
applications are processed this way, the new ISA can
be produced.

A. Considered architecture

Figure 1 presents the block diagram of the consid-
ered Vector architecture. The Vector unit is composed
of four main blocks: the vector control unit, the vec-
tor functional units, the vector registers and the vector
memory units. The Fetch unit decides if the current
instruction is scalar or it should be executed by the
vector unit based on the decoded opcode. Note that
the Vector unit is not modeled as a co-processor but it
is tightly integrated along the Scalar unit. The main
memory system is shared between the scalar and the
vector units, but the Vector memory units have larger
memory bandwidth. The Vector unit doesn’t include
any data caches.

The modeled architecture is of register to register
type, so all the data has to be loaded from memory
first, and the final results have to be written to the
memory. Figure 2 presents the architecture of the reg-
ister file. Separate Integer and Floating point vector
register files are modeled. For each Vector Register,
we provide a Bit Vector register, of the same length,
used for implementing masked execution. One rea-
son for choosing this implicit usage of the Bit Vectors
was the fact that SimpleScalar [1] doesn’t allow more
than three operands for each instruction. A special
configuration register file is used to store the Vector
Length, the Vector Index, and a flag used for enabling
or disabling the use of vector masks.

B. Simulation environment

In order to evaluate the performance improvement
due to the vector operations for the targeted applica-

Fig. 1. General Vector architecture

Fig. 2. Vector Register File architecture
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tions, a simulation environment was created. The OS
used was Ubuntu Linux 6.10, kernel 2.6.17-10. The
Simplescalar toolset included a specially modified ver-
sion of GCC-2.7.2.3, capable of producing Portable
Instruction Set Architecture (PISA) binaries for Sim-
plescalar. The Sim-outorder simulator has been com-
piled with gcc-4.1.2.

We chose sim-outorder from the Simplescalar 3.0
tool set as a starting point. This is the most de-
tailed simulator in the SimpleScalar distribution. In
order to simulate vector instructions, support for new
instructions and functional units was added to sim-
outorder. The SimpleScalar Instruction and Archi-
tecture Tool(SSIAT) [9] was used in order to auto-
matically modify the Simplescalar source files. The
vector instructions were introduced in the C code by
using the inline assembly features of GCC.

C. Simulator extensions

The simulator is extended by using SSIAT. This al-
lows the addition of new instructions, functional units
and register files. However, most micro architectural
details had to be manually added to SimpleScalar.

C.1 The vector register file

Separate integer and floating point vector register
banks have been simulated. Each integer or floating
point register is linked to an implicit bit vector reg-
ister. This means that all the instructions that sup-
port the usage of masks will test the values of the
corresponding bit vector of destination register of the
instruction.

The proposed architecture includes 3 special con-
figuration registers, declared in the “vconf” register
bank. These registers are the Vector Length , Index
register and Vmasks registers. Before the execution
of vector instructions can proceed, initialization of the
vconf registers is necessary. The Vector Length regis-
ter stores the number of elements that need to be pro-
cessed in the current array. If the Vector Length is 0,
the vector instruction won’t process any data from the
vector registers. The Index register stores the index of
the current section of the processed array. The Vmask
register controls whether vector masks are used in the
computation or not.

Each vector register stores a fixed number of ele-
ments. This micro-architectural parameter is called
the section size of the vector processor. In order to
increase the portability of the vectorized code, we are
using auto sectioning: special instructions update the
Vector Length and Index registers, without having to

know the section size of the target processor at com-
pile time.

C.2 The vector functional units

In order to simulate the latency of vector instruc-
tions, several new functional units have been added to
the sim-outorder configuration. Two latencies are de-
fined for each functional unit: the operation latency
is the number of cycles before the results are ready
to use, while the issue latency refers to the number
of cycles that must pass before another operation can
use this FU. Four vector functional units have been
defined:

VALU, VMUL - the arithmetic units
VLD, VST - memory access units.
The latency of each unit has been computed tak-

ing into consideration the following parameters: the
section size of the vector machine, the memory access
latency for the vector operations, the number of par-
allel vector lanes and a constant additive latency of
the arithmetic units (this latency will be referred as
basic latency from now on). We assumed those units
to be pipelined. The formulas used to compute the
latency and the issue latency are the following:
• For the arithmetic units:
Operation latency = section size

number of lanes + basic latency

Issue latency = section size
number of lanes

• For the memory units:
– Loads:

Operation latency = section size
memory bandwidth(inelements) +

memory access latency
Issue latency = section size

memory bandwidth
– Stores:

Operation latency = section size
memory bandwidth

Issue latency = section size
memory bandwidth

C.3 The vector instructions

The way new instructions are added to Simplescalar
is the following: the opcode field of the instructions
defined with the original Simplescalar has a number
of bits that are used for created annotated instruc-
tions. This simplifies the whole process of adding new
instructions because the assembler used doesn’t have
to recognize new opcodes. Inside the simulation loop,
this field is checked and the semantics of the anno-
tated instruction can be implemented.

SSIAT operates in the following way: if new in-
structions are added, it will automatically annotate
some already defined instructions. This is transpar-
ent to the programmer, so while writing an application
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that uses the new operations the custom opcodes can
be used directly. SSIAT modifies the sources of Sim-
plescalar to add support for the annotated instruc-
tions. When compiling a new C program, assembly
(.s) code is generated. SSIAT then parses this .s file
and replaces the new opcodes with annotated instruc-
tion opcodes.

For example, the code

#APP
v.setvconf $10, $11, $12

#NO_APP

becomes

#APP
add/15:0(4) $10, $11, $12

#NO_APP

after runing SSIAT.
Simplescalar is limited to having only 3 input and 2

output dependencies. While this is not ideal in some
cases, it didn’t affect the accuracy of the simulations
performed. Simpler instructions have been defined in-
stead.

D. Default parameters for performance simulations

Unless specified otherwise for a specific test, the
default configuration for the tests was the following:
• The memory system for the Vector Unit features a
memory bandwidth of 4 elements / cycle, 2 Load and
2 Store units
• The vector data path is organized in 4 vector lanes,
also featuring 2 multipliers and 2 ALUs
• The Vector register file included 64 integer + 64
floating point vector registers and their corresponding
bit vectors
• Default optimizations used for GCC (O0)
• Default configuration for the Scalar Unit, as
provided with the public version of SimpleScalar
simplesim-3v0d, including a latency of 1 cycle for the
L1 cache, 6 cycles for the L2 cache and 18 cycles for
the main memory

III. Applications

Four applications have been chosen for vectoriza-
tion: three algorithms which compute the shortest
paths in a directed graph (Dijkstra, Floyd and Bell-
man Ford) and Linpack, the floating point benchmark.

A. Dijkstra

Graph algorithms are often used in networking. Di-
jkstra is a well known algorithm that computes the

shortest path from a source node to all the other
nodes inside a graph. Other popular shortest path
algorithms are Floyd and Bellman Ford. The Dijk-
stra and Floyd algorithms use the adjacency matrix
to store the input graph, while the input for Bellman-
Ford is the edge list of the graph.

The Dijkstra version present in the MIBENCH [5]
suite uses a linked list implemented with pointers to
store the Candidate nodes in the algorithm. This
makes the code virtually impossible to vectorize. In-
stead of trying to optimize this code and vectorize it,
a rewrite of the dijkstra() function was the chosen ap-
proach: arrays were used instead of linked lists, so the
optimized version doesn’t contain any pointers. The
chosen implementation has a complexity of O(V 2),
where V is the number of nodes in the graph. Profiling
information shows that 99% of the time is spent in the
main computation loop of this algorithm. The code
is composed of one exterior loop and two interior for-
loops. The first for loop computes the minimum path
cost and its position in the current solution, while the
second one tries to improve the current solution by
using the minimum value.

The custom vector ISA created for Dijkstra is com-
posed of 13 instructions (Table I). The following no-
tations have been used in the tables:
• The VR stands for Vector Register, and is followed
by I for Integer and D four Double precision floating
point;
• The R prefix is used when the operand is a scalar
register;
• The VB prefix is used when the operand is a Bit Vec-
tor, and it is followed by I for Integer and D for Double
to differentiate between the two bit vector banks;
• The D, S, and T suffixes are used to suggest the po-
sition of that register in the instruction format (sim-
ilar to the convention used in the SimpleScalar PISA
documentation).

B. Floyd

This algorithm computes all the minimum paths
inside a graph. If V is the number of nodes in the
graph, Floyd has a complexity of O(V 3). While it
can be used when only one minimum path is required,
its most efficient use is when the graph is very dense
and many minimum paths need to be computed. The
computation is done only once, and the simplicity of
the algorithm makes it a good example of vectorizable
code. Profiling shows that 98% of the execution time
is spent in the main kernel of this algorithm. The
main kernel is composed of three nested loops. Only
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TABLE I
Custom vector ISA used for Dijkstra

Instruction Synopsis Uses masks
v.compare.gt VBID, VRIS, VRIT VBID[i] ← VRIS[i] > VRIT[i] Y
v.getmin VRID, RS, RT RS ← MIN(VRID), RT ← pMIN(VRID) Y
v.init VRIS, RT VRIS[] ← RT Y
v.ld VRIS, RT VRIS[i] ← RT[i] Y
v.ld.bi VBIS, RT VBIS[i] ← RT[i] == 0 ? 0 : 1 N
v.masksoff vmask ← 0 N
v.maskson vmask ← 1 Y
v.mov.bi VBIS, VBIT VBIS ← VBIT N
v.sadd VRID, RS, VRIT VRID[i] ← RS + VRIT[i] Y
v.setvconf RD, RS, RT vl ← RD, vindex ← RS, vmask ← RT N
v.st RS, VRIT RS[i] ← VRIT[i] Y
v.updateindex RS vindex ← RS ← vindex + section size N
v.updatevl RS vl ← RS ← MAX(0, vl - section size) N

the most interior one can be vectorized. The custom
vector ISA synthesized for Floyd is listed in Table II
and is composed of 11 instructions.

C. Bellman-Ford

Bellman-Ford is an alternative to the well know
Dijkstra shortest paths algorithm, which stores the
graph as the list of edges and their corresponding
weights. Bellman-Ford has a complexity of O(V · E),
with E being the number of edges. When the graph is
very dense, Dijkstra proves to be much faster, while
in a sparse graph, the performance of Bellman-Ford
improves dramatically. However, there is another rea-
son why Bellman-Ford is used in some situations: Di-
jkstra’s algorithm requires the edges to have non-
negative weights, while with Bellman-Ford some of
the edges can be negative. It is also guaranteed that
after the Bellman-Ford algorithm completes, it can be
detected weather the graph contains negative weight
cycles. Applications of this algorithm include the use
in Routing Information Protocol (RIP).

The profiling information shows that the main ker-
nel consumes almost 100% of the execution time. The
main loop processes all the edges in the graph V times
(V is the number of nodes in the graph). Using each
edge, the relaxing operation is performed - testing if it
can improve the current best known solution. The in-
terior loop counts to the number of edges (E), which
for a very dense graph can be close to V 2. This is
the main reason this algorithm is slower than Dijk-
stra. The graph we used for benchmarking was very
dense, which meant that the simulation time for this

algorithm was an order of magnitude larger than for
Dijkstra and Floyd. This prevented us from complet-
ing the tests for configurations featuring section sizes
larger than 64 elements, as the time required to sim-
ulate vectorized version of Bellman increased propor-
tionally with the section size.

Because indirect addressing is used, extra care must
be taken because the indirect addressing is very sim-
ilar to pointers: a compiler cannot know at compile-
time what value is inside that pointer. It can be a
negative value for example, or two indirections done
in two iterations of the loop can provide a data depen-
dency that stops the compiler from performing auto-
matic vectorization of this loop. The custom vector
ISA for Bellman-Ford is presented in Table III and
contains 18 instructions.

D. Linpack

Linpack [4] is a well known floating point bench-
mark used to grade the performance of the su-
percomputers in the famous Top500 Supercomputer
Sites [11]. It uses single or double precision data to
perform some linear algebra operations on large ma-
trixes. The version used as a base for the tests was the
double precision one. Profiling shows that 75% of the
computation time is spent in the daxpy() kernel which
consists of a vector multiply-with-scalar-and-add op-
eration kernel and 25% is spent in the matgen() func-
tion which generates the input matrixes. The custom
vector ISA created for Linpack contains 6 instructions
(Table IV).
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TABLE II
Custom vector ISA used for Floyd

Instruction Synopsis Uses masks
v.compare.gt VBID, VRIS, VRIT VBID[i] ← VRIS[i] > VRIT[i] Y
v.init VRIS, RT VRIS[] ← RT Y
v.ld VRIS, RT VRIS[i] ← RT[i] Y
v.masksoff vmask ← 0 N
v.maskson vmask ← 1 Y
v.mov.bi VBIS, VBIT VBIS ← VBIT N
v.sadd VRID, RS, VRIT VRID[i] ← RS + VRIT[i] Y
v.setvconf RD, RS, RT vl ← RD, vindex ← RS, vmask ← RT N
v.st RS, VRIT RS[i] ← VRIT[i] Y
v.updateindex RS vindex ← RS ← vindex + section size N
v.updatevl RS vl ← RS ← MAX(0, vl - section size) N

TABLE III
Custom vector ISA used for Bellman Ford

Instruction Synopsis Uses masks
v.add VRID, VRIS, VRIT VRID[i] ← VRIS[i] + VRIT[i] Y
v.and.bi VBID, VBIS, VBIT VBID[i] ← VBIS[i] && VBIT[i] N
v.compare.gt VBID, VRIS, VRIT VBID[i] ← VRIS[i] > VRIT[i] Y
v.getss RS RS ← section size N
v.init VRIS, RT VRIS[] ← RT Y
v.ld VRIS, RT VRIS[i] ← RT[i] Y
v.ldindexed VRID, RS, VRIT VRID[i] ← RS[VRIT[i]] Y
v.masksoff vmask ← 0 N
v.maskson vmask ← 1 Y
v.mov.bi VBIS, VBIT VBIS ← VBIT N
v.priority RD, VBIS, VBIT RD ← position of first non-zero value of

VBIT, VBIS[i] = 1 ← if i < RD, 0 otherwise
N

v.scompare.eq VBID, VRIS, RT VBID[i] ← VRIS[i] == RT Y
v.setvconf RD, RS, RT vl ← RD, vindex ← RS, vmask ← RT N
v.st RS, VRIT RS[i] ← VRIT[i] Y
v.stindexed RD, VRIS, VRIT RD[VRIT[i]] ← VRIS[i] Y
v.sumup RS, VRIT RS ← 0, RS += VRIT[i] Y
v.updateindex RS vindex ← RS ← vindex + section size N
v.updatevl RS vl ← RS ← MAX(0, vl - section size) N

TABLE IV
Custom vector ISA used for Linpack

Instruction Synopsis Uses masks
v.ld.d VRDS, RT VRDS[i] ← RT[i] Y
v.msadd.d VRDD, FS, VRDT VRDD[i] += FS * VRDT[i] N
v.setvconf RD, RS, RT vl ← RD, vindex ← RS, vmask ← RT N
v.st.d RS, VRDT RS[i] ← VRDT[i] Y
v.updateindex RS vindex ← RS ← vindex + section size N
v.updatevl RS vl ← RS ← MAX(0, vl - section size) N
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IV. Experimental results

The 24 vector custom vector instructions in Table V
have been derived as a union of Tables I-IV. They
can be divided into general purpose and application
specific instructions. If complex operations are on the
critical path of the algorithm, a custom instruction
can accelerate the program execution by replacing a
number of general purpose instructions by the new,
application specific one.

We propose three application specific instructions:
v.getmin VRID, RS, RT(Compute the minimum from
an array) - used in Dijkstra, v.msadd VRDD, FS,
VRDT (Vector multiply with scalar and add) - used
in Linpack and v.priority RD, VBIS, VBIT (Detect
the first non-zero element of a bitvector) - used in
Bellman-Ford. We compare the performance of the
custom instruction sets against a standard scalar ISA.
Two micro-architectural parameters have been varied
in order to evaluate the performance characteristics of
the ISAs: the section size and the memory latency of
the vector memory unit.

After vectorization, the maximum speedup ob-
tained for Dijkstra compared to the original version is
24.88X for a Section Size of 128 (Figure 3). Because
the number of nodes in the graph tested is equal to
100, it was expected to get the best results for section
sizes of 64 and 128. If the section size is increased
beyond 128, the performance drops, showing the im-
portance of the relation between the Section Size and
the problem size. If the vector length is much lower
than the section size of the machine, the arrays will
be processed in a single pass, but performance is pe-
nalized because a large section size implies higher ex-
ecution latencies of the vector instructions. Having a
vector length much larger than the Section Size keeps
the vector units busy, but performance can be further
improved by implementing a larger Section Size. The-
oretically, the best performance is obtained when the
vector lengths are almost equal but not greater than
the Section Size. The speedup for Dijkstra almost
doubles by going from a Section Size of 8 to 128 for
a memory latency of 18 cycles, and drops from 4.14X
to 3.4X if the Section Size is 256.

By increasing the Section Size, the impact of in-
creased memory latency is much smaller. This sug-
gests that by using high bandwidth memory but with
slightly higher latency can lead to satisfactory results.
If the memory latency is fixed to 100 cycles, having
a Section Size of 8 is more than three times slower
compared to Section Size 128 and the same latency
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Fig. 3. Dijkstra speedup when varying the section size
compared to the original MIBENCH version

(Figure 3). For a memory latency of 1 cycle (equiv-
alent to a perfect Level1 data cache), the difference
is less than 50%. We observe that the performance
starts to drop sharply when the Memory Latency ex-
ceeds 18-20 cycles while the difference in execution
time between a memory latency of 1, 6 and 18 cy-
cles is relatively low, becoming insignificant for large
section sizes. For example, a configuration having a
Section Size of 128 finishes execution in 8.37 millions
of cycles of the Memory Latency set to 1 cycle, and
slows down to 8.47 millions cycles for latency equal to
6 cycles and 8.55 millions for 18 cycles latency. The
difference is 1.19% respectively 2.15%, within the er-
ror margin of the simulator.

Similar results were obtained for Floyd (Figure 4.
After vectorizing the code using the instructions listed
in Table II the maximum speedup achieved is 4.99X
for Section Size = 128, and a Memory Latency of
1 cycle. If Memory Latency is set to 18 cycles, re-
ported speedup is 4.86X, very close to the maximum
achieved. As the input graph used for Floyd is the
same one we have used also for Dijkstra, best perfor-
mance is obtained for a Section Size of 128. The drop
in performance for having slower memory (latency of
18 cycles instead of 1 cycle) for this Section Size is
2.65%. Performance drops sharply as the Memory
Latency increases above 20 cycles, especially for small
Section Sizes (8 and 16 elements).

The maximum speedup obtained by using the 18
vector instructions listed in Table III is 9.27X for Sec-
tion Size = 64 and Memory Latency = 1 cycle for
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TABLE V
Vector instructions sorted alphabetically

Instruction Synopsis Uses masks
v.add VRID, VRIS, VRIT VRID[i] ← VRIS[i] + VRIT[i] Y
v.and.bi VBID, VBIS, VBIT VBID[i] ← VBIS[i] && VBIT[i] N
v.compare.gt VBID, VRIS, VRIT VBID[i] ← VRIS[i] > VRIT[i] Y
v.getmin VRID, RS, RT RS ← MIN(VRID), RT ← pMIN(VRID) Y
v.getss RS RS ← section size N
v.init VRIS, RT VRIS[] ← RT Y
v.ld VRIS, RT VRIS[i] ← RT[i] Y
v.ldindexed VRID, RS, VRIT VRID[i] ← RS[VRIT[i]] Y
v.ld.bi VBIS, RT VBIS[i] ← RT[i] == 0 ? 0 : 1 N
v.ld.d VRDS, RT VRDS[i] ← RT[i] Y
v.masksoff vmask ← 0 N
v.maskson vmask ← 1 Y
v.mov.bi VBIS, VBIT VBIS ← VBIT N
v.msadd.d VRDD, FS, VRDT VRDD[i] += FS * VRDT[i] N
v.priority RD, VBIS, VBIT RD ← position of first non-zero value of

VBIT, VBIS[i] = 1 ← if i < RD, 0 otherwise
N

v.sadd VRID, RS, VRIT VRID[i] ← RS + VRIT[i] Y
v.scompare.eq VBID, VRIS, RT VBID[i] ← VRIS[i] == RT Y
v.setvconf RD, RS, RT vl ← RD, vindex ← RS, vmask ← RT N
v.st RS, VRIT RS[i] ← VRIT[i] Y
v.stindexed RD, VRIS, VRIT RD[VRIT[i]] ← VRIS[i] Y
v.st.d RS, VRDT RS[i] ← VRDT[i] Y
v.sumup RS, VRIT RS ← 0, RS += VRIT[i] Y
v.updateindex RS vindex ← RS ← vindex + section size N
v.updatevl RS vl ← RS ← MAX(0, vl - section size) N
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Fig. 4. Floyd speedup when varying the section size

Bellman-Ford. (Figure 5). For Memory Latency =
18 cycles, the speedup remains high (8.18X), almost
the double of the speedups seen for the other graph
algorithms.

This algorithm proves to be much more sensitive
to high memory latency than Dijkstra. The differ-
ence in execution time is 128.5% for the Section Size
set to 64 and 519.86% for the small Section Size of
8 when increasing the memory latency from 1 cycle
to 100 cycles(Figure 5). As a consequence, having a
large Section Size is really important. If the memory
latency is 18 cycles, the speedup increases from 2.34X
for a Section Size of 8 to 8.18X for the Section Size of
64. This is an almost linear increase in performance.
The reason for this is that the number of operations
inside the vectorized loop is larger compared to the
other two graph algorithms considered.

The customized instruction set for Dijkstra pro-
vided consistent improvements of the execution time
that justified the hardware and software support nec-
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Fig. 5. Bellman-Ford speedup when varying the section
size

essary to actually apply vectorization in a real sys-
tem. If the problem has be solved by having negative
weights present, the vectorized version of Bellman-
Ford is very fast. Otherwise, the other graph algo-
rithms perform the computation much faster.

Using 6 vector instructions (Table IV) Linpack ex-
ecutes 4.33 times faster(Figure 6) for a Section Size
of 32 and Memory Latency of 1 cycle. The vector
lengths in this version of Linpack varied from 99 to 1
for each pass. This is the reason for having the best
performance for small Section Sizes when the Mem-
ory latency is low (best performance for Memory La-
tency = 1 cycle is for Section Size = 32) and when
the Memory Latency increases, a Section Size of 128
is the fastest. For a memory latency of 18 cycles, the
smallest execution time is achieved by the configura-
tion featuring a Section Size of 64, and the difference
in execution time comparing Section Size of 64 with
the Section Size of 8 is 46% and 30.88% compared to
a Section Size of 256 elements.

Because the daxpy() loop is very simple(two loads,
one multiply-add and one store), increased memory
latency significantly slows down the execution. For
the Section Size of 8, the speedup drops from 3.74X
(1 cycle memory latency) to 1.07X (100 cycles mem-
ory latency). When comparing the times for Section
Size 128, the speedup drops from 4.02X to 3.07X. If
the Memory Latency is fixed to 18 cycles, the fastest
configuration is the one with the Section Size of 64,
with a speedup of 3.88X, close to the 4.33X speedup
for a Memory Latency of 1 and a Section Size of 8
elements.
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Fig. 6. Linpack speedup when varying the section size

Summary of the results We experimented with the
SimpleScalar 3.0d toolset, which was modified in or-
der to support a total of 24 vector instructions (13
for Dijkstra, 11 for Floyd, 18 Bellman-Ford and 6 for
Linpack).

The application level speedups can be summarized
as follows:
• A peak speedup of 24.88X for Dijkstra compared
to the original version implemented with linked lists
and pointers, and a speedup of 4.31X compared to the
rewritten (but still scalar) version
• A maximum speedup of 4.99X for Floyd
• Speedups of up to 9.27X for Bellman-Ford
• After vectorization, Linpack was up to 4.33X times
faster

We also provide the following general observations
about the factors that influence performance of the
vectorized code:
• Increased Memory Latency drastically reduces the
performance of small Section Sizes
• Having a vector length as close to the Section Size
as possible is desirable.
• Large Section Sizes compensate for the high startup
costs of large Memory Latencies
• The performance doesn’t decrease significantly for a
Memory Latency of 18 cycles compared to the fastest
latency of 1 cycle. Thus, an implementation without
caches for the vector unit can potentially deliver good
performance, as long as enough vector registers are
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present to store the intermediate results.

V. Conclusions

Three algorithms that compute the shortest paths
in a directed graph (Dijkstra, Floyd, and Bellman-
Ford) and the Linpack benchmark were analyzed and
a custom Vector ISA was synthesized for each ap-
plication, containing 21 general purpose and 3 appli-
cation specific vector instructions. Simulations were
used to compare the performance of the custom vec-
tor instruction sets against a scalar ISA. When bench-
marking, two critical parameters were considered: the
section size of the vector register file and the memory
latency of the vector memory unit. The experimental
results suggest that the customized Vector ISAs de-
liver substantial performance benefits in the targeted
application domains. The design framework created is
flexible and can be used for future analysis of a wider
range of applications.

Future research directions. We identify the fol-
lowing problems which can be addressed for a future
work: estimating the performance cost of using in-
line assembly, analyzing the efficiency of customized
vector instruction sets for a wider range of applica-
tion domains, and improving the vector architecture
we used. By investigating the micro architecture of
the Vector Register File, performance can be poten-
tially improved. The Vector Memory Unit is expected
to be the major bottleneck of the micro-architecture.
Therefore, a more thorough analysis of how to improve
the memory performance is needed.
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