
2007 IEEE International Conference on Signal Processing and Communications (ICSPC 2007), 24-27 November 2007, Dubai, United Arab Emirates

HYBRID SCHEDULING IN HIGH-SPEED PACKET SWITCHES

Lotfi Mhamdi Stamatis Vassiliadis

TU Delft
Computer Engineering Lab

Delft, The Netherlands

ABSTRACT

The crossbar fabric switching architecture is popular due
to its low cost and scalability. However, crossbar fabric
switches require centralized and highly complex schedul-
ing. Fully buffered crossbars overcome the scheduling
complexity, by means of distributed scheduling. How-
ever, the scheduling simplicity comes at the expense of
a complex fabric, where internal buffering is required in
each crosspoint. This article proposes a novel architecture,
namely the Hybrid Buffered Crossbar (HBC) switching ar-
chitecture, where only few internal buffers are maintained
per output. Our goal is to design a HBC switch having
the performance of buffered crossbars and the cost of un-
buffered crossbars. We propose a round robin schedul-
ing algorithm for the HBC switching architecture. Our al-
gorithm is a combination of unbuffered as well buffered
crossbar scheduling. Simulation results show interesting
trade offs in choosing the optimal number of internal buffers
when designing a hybrid crossbar switch.

Index Terms- Scheduling, Buffered Crossbar Fabric.

1. INTRODUCTION

The crossbar-based architecture is the dominant architec-
ture for today's high-performance packet switches (IP routers,
ATM switches, Ethernet switches) for at least three rea-
sons. First, they are more scalable than their direct com-
petitors, shared-bus and shared memory. This is due to the
limitation in bus transfer bandwidth and/or the limitation
in the memory access bandwidth. Second, they provide
simple point-to-point connections, which means they can
operate at very high-speed (up to 4OGb/s). Third, they can
support multiple I/O transactions simultaneously. This can
increase the aggregate bandwidth of the system, which can
be in the hundreds of Gbps. There are two main variants
of the crossbar fabric: unbuffered and internally buffered.

Generally, unbuffered crossbar switches use input queues
at the inputs, known as Input Queued (IQ) switches. The
most popular input queuing architecture is the Virtual Out-
put Queuing (VOQ), as depicted Figure 1-(a). The VOQs
are employed to avoid the Head of Line (HoL) blocking
phenomenon [1]. However, the sophisticated VOQ archi-
tecture requires a scheduler to arbitrate packet transfer across
the crossbar fabric. Because the inputs, the crossbar fabric

core and the outputs run at the same speed as the exter-
nal line, the scheduler must resolve input and output port
contentions. In every time slot, every input can send at
most one packet and every output can receive at most one
packet. This is similar to bipartite graph matching. Op-
timal solutions existed, such as Maximum Weight Match-
ing algorithms [2]. Practical algorithms have also been
proposed such as [3] [4]. For high-bandwidth IQ switches,
almost all scheduling algorithms are either too complex
to run at high speed or fail to exhibit satisfactory perfor-
mance. This is mainly attributed to the centralized design
of these schedulers and the nature of the unbuffered cross-
bar switching architecture.

1 N

b

Figure 1. Crossbar Fabric Variants: (a) Unbuffered Cross-
bar Fabric. (b) Buffered Crossbar Fabric, with N2 Internal
Buffers.

As IQ unbuffered crossbar switches reach their practi-
cal limitations due to higher port numbers and data rates,
buffered crossbar switches (CICQ) are gaining a lot of in-
terest due to their great potential in solving the schedul-
ing complexity and scalability issues faced by their buffer-
less predecessors [5]. The CICQ switching architecture is
identical to an IQ switch, where small buffers are added
inside the crossbar fabric as depicted in Figure 1-(b). The
existence of internal buffers avoids the need for a syn-
chronized contention free transfer of packets between in-
puts and outputs, as in IQ switches, by allowing conflict-
ing packets to enter the crossbar core simultaneously [6].
Buffered crossbars use distributed and independent sched-
ulers (one per input/output port) to switch packets from the
input to the output ports of the switch. One major draw-
back of CICQ switches is their expensive crossbar fabric.
A CICQ is required to maintain up to N2 internal buffers,
where N is the number of input/output port of the switch.
This high number of internal buffers grows quadratically
with the switch size and linearly with round trip delays
(RTT), limiting the CICQ scalability.

1-4244-1236-6/07/$25.00 © 2007 IEEE 1343
Authorized licensed use limited to: IEEE Xplore. Downloaded on February 22, 2009 at 10:48 from IEEE Xplore. Restrictions apply.

In this article, we propose a new architecture where
a small number of internal buffers is maintained per each
output of the crossbar fabric. We refer to our novel ar-
chitecture as the Hybrid Crossbar Switching architecture
(HBC), as depicted in Figure 2. Our goal is to design
a HBC with a fixed small number of internal buffers ir-
respective of the switch size, N. The envisioned HBC
is required to exhibit the performance of buffered cross-
bars while having a cost comparable to unbuffered cross-
bars. We also proposed an appropriate scheduling algo-
rithm for the HBC architecture. Our proposed scheduling
scheme is based on round robin policy and termed, Partial
Round Robin (PRR). The scheduling is a combination of
unbuffered scheduling as well as buffered scheduling. We
conducted an extensive simulation study and showed that
a HBC architecture with only 4 internal buffers per out-
put can replace an unbuffered crossbar employing iSlip [3]
with 4 iterations. On the other hand, using a HBC with
only 8 internal buffers per output can replace a fully buffered
crossbar irrespective of its port count, N.

The remainder of this article is structured as follows:
Section 2 presents the HBC architecture and its schedul-
ing. We introduce our PRR algorithm and its properties in
Section 3. We also discuss the requirement for an output
scheduling policy that ensures in-order cell delivery. Sec-
tion 4 presents a detailed simulation study under various
settings and illustrates different trade offs. Finally, Sec-
tion 5 concludes the paper.

2. THE HYBRID BUFFERED CROSSBAR
ARCHITECTURE (HBC)

This section introduces the Hybrid Buffered Crossbar switch-
ing architectural organization along with its scheduling.
We consider the Hybrid Buffered Crossbar switching ar-
chitecture (HBC) depicted in Figure 2. The switch oper-
ates on fixed size packets (cells). Variable size packets are
segmented into fixed size cells while inside the switch and
reassembled back into packets upon their exit. The HBC
has N input and N output ports. When a cell, destined
to output j, arrives at input i, it gets queued in VOQi,j
while waiting its turn to be selected by the input scheduler
(ISj). There are N input schedulers, one per input port
that control the transfer of cells from the input line cards
to the internal fabric buffers. The input scheduler decision
is coordinated with a grant scheduler that manages the in-
ternal buffers availability for each output. The input and
grant schedulers communicate throughout a request grant
accept (RGA) handshaking protocol, as in iSlip [3]. The
only, yet significant, difference in our architecture is that
each grant scheduler is permitted to send more than one
(up to B) grants every time slot.

The crossbar fabric contains a small number of internal
buffers. These internal buffers are maintained per output
port and there are B << N separate internal buffers per
output port. Each output port contains an output sched-
uler (OS) that arbitrates cell departures from the internal
buffers to the output queues. There are N credit queues

IS: Input Scheduler
GS: Grant Scheduler
OS: Output Scheduler N
CQ: Credit Queue

Figure 2. The Hybrid Buffered Crossbar (HBC) Switch-
ing Architecture.

(CQ), one per output, to avoid internal buffers overflow.
Each CQ contains B entries and CQj records the avail-
ability of the internal buffers belonging to output j. A CQ
is decremented whenever a grant is sent to the input, and
incremented during output scheduling.

3. THE PARTIAL ROUND ROBIN ALGORITHM

The scheduling process in the HBC switch is a combina-
tion of unbuffered as well as buffered crossbar schedul-
ing. A scheduling cycle consists of input scheduling and
output scheduling phases as in buffered crossbars. The in-
put scheduling phase resembles a scheduling cycle in un-
buffered crossbars, as it is based on request-grant-accept
handshaking protocol. The input scheduling in HBC is
similar to the iterative matching performed by unbuffered
crossbar scheduling. However, maintaining a small num-
ber of internal buffers makes a significant difference. The
absence of internal buffers in an unbuffered crossbar switch
meant that a grant arbiter can grant at most one input, to
avoid output contention. Similarly, an input accept arbiter
has to accept at most one grant, to avoid input contention
(see Figure 3). Unbuffered crossbar schedulers resort to
multiple iterations to improve the match size.

Request

4: 44

Grant 91 V

2 2

3 \ 3 4

4@ \4 A,
4'

Accept

%x, a, 1 ,1

2 21

4 S 4

Figure 3. The iSlip Scheduling Algorithm.

Request Grant 9, CQ,

2 S 2 2 2c

4 4 4 4, C4
2f cQ

Accept

1 14

2 2

Qa33,
40), 4

Figure 4. The PRR Scheduling Algorithm.

1344
Authorized licensed use limited to: IEEE Xplore. Downloaded on February 22, 2009 at 10:48 from IEEE Xplore. Restrictions apply.

The HBC input scheduling, while enforcing the input
contention constraint, relaxes the output contention con-
straint by allowing conflicting cells (up to B) to be ad-
mitted to the internal buffers for the same output. This is
equivalent to unbuffered crossbars schedulers granting to
B inputs instead of just one. Figure 4 depicts a PRR in-
put scheduling cycle. As we can see, the grant scheduler
at output 1, gl, sends two grants (to input 2 and 3) be-
cause its credit queue, CQ1, has two available credits. The
same process applies to 93 and g4. However, 92 sends only
one grant because its associated output buffers have only
one location free (CQ2 = 1). Increasing the number of
grants per output results in a higher acceptance rate. If we
consider an unbuffered crossbar-based random scheduling
policy such as PIM [7] with one iteration, the probability
that an input will remain ungranted is (NN)N, where N
is the switch port count [3]. As N increases, this proba-
bility tends to 1. If we use the same random scheduling
policy in the HBC with B internal buffers per output and
assuming that cells are flushed every time slot (memory-
less Markov process), the probability that an input remains
ungranted is (NNB)N. With increasing N, this probability
tends to + (almost 0 for B > 4). Hence, higher accep-
tance rate and throughput. The PRR algorithm uses fully
unsynchronized grant pointers settings, similar to [8]. The
Specification the PRR input scheduling is as follows:

PRR:
Grant Phase:
All output pointers, gj, are initialized to different posi-
tions.
For each output, j, do

While there are credits in CQj do
- Starting from gj index, send a grant to the first

input, i, that requested this output.
- Decrement CQj by one.

Move the pointer gj to location (i + 1) (mod N).

Input Scheduling Phase:
All input pointers, ai, are initialized to different positions.
For each input, i, do

Starting from ai index, select the first received grant,
gj, and send the HoL cell of VOQjj to the internal
buffer.
Move the pointer ai to location (ai + 1) (mod N).

Since the number of internal buffers, B, per output is
much smaller than the number of competing inputs, N,
one has to be careful on how to service cells during out-
put scheduling. The internal buffers are separate and cells
from the same VOQ may arrive, to different internal buffers,
during consecutive time slots. In this case, we have to
maintain in-sequence cell delivery. To address this, we
employed a First-Come-First-Serve (FCFS) output schedul-
ing to ensure in-order cell delivery [9]. A cell departure
from the internal buffers at output j, causes CQj to incre-
ment by one. When a grant scheduler, GSj, sends a grant
to a requesting input, a credit must first be reserved and,
consequently, CQj is decremented by one.

4. PERFORMANCE ANALYSIS

In this section, we analyze the performance of the HBC
switching architecture. The study is aimed at comparing
our proposed architecture to both the unbuffered and the
buffered crossbar fabric architectures as well as an ideal
Output Queued (OQ) switch. The experiments are carried
out under three input traffic patterns: Bernoulli uniform,
Bursty uniform and Unbalanced traffic [10]. Simulations
run for 1 million time slots and statistics are gathered when
fourth of the total simulation length had elapsed. We tested
different HBC switch sizes, each with different internal
buffer sizes 1. However, due to space limitation, we lim-
ited the results to switch sizes of 16 x 16, 32 x 32 and
64 x 64.

We compared the average cell latency of the PRR al-
gorithm for 32 x 32 HBC switch to that of an unbuffered
crossbar switch, a fully buffered crossbar switch and an
ideal OQ switch. The iSlip algorithm is used for the un-
buffered crossbar architecture. The fully buffered crossbar
switch uses input round robin (RR) scheduling and Old-
est Cell First (OCF) output scheduling. The comparison
is done under uniform Bernoulli and Bursty arrivals. Fig-
ure 5-(a) depicts the performance ofPRR with different in-
ternal buffers, iSlip (with 1 and 4 iterations), RR-OCF and
OQ. Irrespective of whether the input traffic is Bernoulli or
Bursty, PRR(1) (1 refers to B = 1) exhibits similar behav-
ior to 1 Slip. The slight better performance of PRR comes
from its pointers update mechanism, where they are fully
unsynchronized. As B increases, the delay of PRR signif-
icantly decreases. It approaches that of an ideal OQ with
just 8 internal buffers per output (B = 8). Similar perfor-
mance is observed under bursty arrivals (Figure 5-(b)).

Figure 5-(c) depicts the delay performance ofPRR with
different numbers of internal buffers (B) and compares
it to the iSlip unbuffered algorithm as well as the fully
buffered crossbar algorithm (RR-OCF). We can see that,
irrespective of the switch size, PRR(4) has the same de-
lay as 4Slip. On the other hand, PRR(8) has a similar de-
lay to that of a fully buffered crossbar. These results sug-
gest that an HBC switch can replace a buffered crossbar, or
even an ideal OQ switch with as few as 8 internal buffers
per output. These results can also afford a switch de-
signer the choice depending on the constraints and needs.
For example, if the delay-cost product is the main target,
one may replace an unbuffered crossbar switch employing
4Slip with an HBC switch with just 4 internal buffers per
output. However, if performance is the main target with
little flexibility in cost, one may employ an HBC switch
with 8 internal buffers per output, for its high performance.

We studied the stability of a 32 x 32 HBC switch un-
der unbalanced traffic arrivals. We employed the unbal-
anced traffic proposed in [10]. Figure 6 depicts the per-
formance of the HBC switch with PRR algorithm and dif-
ferent internal buffer settings and compares it to that of a

'Extensive simulations were conducted out for switch sizes of 8 x 8,
16 x 16, 32 x 32 and 64 x 64. Depending on each HBC switch size,
different internal buffer sizes, B, were used (1,2,3,4,5,6,8,10,12,16,32).

1345
Authorized licensed use limited to: IEEE Xplore. Downloaded on February 22, 2009 at 10:48 from IEEE Xplore. Restrictions apply.

32x32 Switch under Bernoulli Uniform Traffic

(a)

32x32 Switch under Bursty Uniform Traffic
II

104 1SLIP ,

4S maIP

0. 06 07 0.Q.
RR mlie InptCoa

PRRbl

Figure 5. Average Cell Delay Performance under Uniform Arrivals. (a): Bernoulli uniform traffic (b) Bursty uniform
traffic (c): Bernoulli uniform with different switch sizes of 16 x 16 and 64 x 64.

fully buffered crossbar (RR-OCF). We can see that, with
B = 4 internal buffers per output, we can achieve com-

parable throughput to a fully buffered crossbar when the
unbalanced coefficient, w, is higher than 0.4. The ideal
throughput of the HBC is reached when using 8 internal
buffers per output.

32x32 Switch under Unbalanced Traffic

Figure 6. Switch throughput under Unbalanced Traffic

5. CONCLUSIONS

This article proposes a novel switching architecture, namely
the Hybrid Buffered Crossbar (HBC). The HBC switch is
designed to be a good compromise between unbuffered
crossbars and fully buffered crossbars. From one hand,
it overcomes the high cost of fully buffered crossbars that
use N2 internal buffers, by using just a small number of
internal buffers per output irrespective of N. On the other
hand, it overcomes the multiple iterations required by un-

buffered crossbar scheduling algorithms. We proposed a

round robin algorithm for the HBC architecture, named
the Partial Round Robin (PRR). Simulation results showed
that, using 4 internal buffers per output (B = 4), the HBC
can behave as an unbuffered crossbar scheduling with 4 it-
erations. Setting B to 8 internal buffers per output results
in the HBC approaching the performance of fully buffered
crossbars, irrespective of the switch size, N.

6. REFERENCES

[1] McKeown. N., Scheduling algorithms for input-
queued cell switches, Ph.D. thesis, University of Cal-
ifornia at Berkeley, May 1995.

[2] A. Mekkittikul, Scheduling Non-Uniform Traffic In
High Speed Packet Switches and Routers, Ph.D. the-
sis, Stanford University, Nov 1998.

[3] N. McKeown, "islip scheduling algorithm for input-
queued switches," IEEE Trans. On Networking, vol.
07, no. 02, pp. 188-201, Apr. 1999.

[4] D.N. Serpanos and P. I. Antoniadis, "Firm: A class
of distributed scheduling algorithms for high-speed
atm switches with input queues," IEEE INFOCOM,
March 2000.

[5] S. Chuang, S. lyer, and N. McKeown, "Practical
algorithms for performance guarantees in buffered
crossbars," IEEE INFOCOM, March 2005.

[6] L. Mhamdi and M. Hamdi, "MCBF: A High-
Performance Scheduling Algorithm for Buffered
Crossbar Switches," IEEE Communications Letters,
vol. 07, no. 09, pp. 451-453, Spet. 2003.

[7] T. Anderson, S. Owicki, J. Saxe, and C. Thacker,
"High speed switch scheduling for local area net-
works," ACM Transactions on Computer Systems,
pp. 319-352, Nov. 1993.

[8] Y. Jiang and M. Hamdi, "A fully desyncronized
round-robin matching scheduler for a voq packet
switch architecture," IEEE HPSR, pp. 407-411,
2001.

[9] Roberto Rojas-Cessa and Ziqian Dong, "Combined
Input-Crosspoint Buffered Packet Switch with Flex-
ible Access to Crosspoint Buffers," IEEE ICCDCS,
Apr. 2006.

[10] R. Rojas-Cessa, Z. Jing E. Oki, and H. J.
Chao, "Cixb- 1: Combined input one-cell-crosspoint
buffered switch," IEEE HPSR, pp. 324-329, 2001.

1346

Normalized Input Load

(C)

C)

C)

2

0.5 0.6 0.7 0.8 0.9
Normalized Input Load

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 22, 2009 at 10:48 from IEEE Xplore. Restrictions apply.

