
 

 

Abstract. Many algorithms have been proposed for 

scheduling real-time tasks to guarantee the timing 

requirements of such a system. Each of those algorithms is 

based on a decision parameter with which the algorithm 

determines the order of the tasks to be executed. Among 

those parameters, deadline and laxity are the most 

important ones which have been employed in the Earliest 

Deadline First (EDF) and the Least Laxity First (LLF) 

algorithms respectively [1]. Furthermore, to include the 

implicit constraints imposed by real world, such as 

uncertainty and lack of complete knowledge about the 

environment, dynamicity in the world, bounded validity 

time of information and other resource constraints, a few 

fuzzy approaches have been proposed [2, 3]. It was shown 

that the fuzzy approaches outperform the non-fuzzy 

approaches. The main purpose of this paper is to study and 

compare the behavior of a real-time system when the fuzzy 

scheduler is based on deadline and when it is based on 

laxity. The obtained results show that deadline is a better 

parameter to be considered in fuzzy real-time scheduling. 

 

Keywords: Real-time Scheduling, Fuzzy Logic, EDF, LLF 

 

I. INTRODUCTION 

Scheduling real time systems involves allocation of 

resources and CPU-time to tasks in such a way that certain 

performance requirements are met. In real-time systems 

scheduling plays a more critical role than non-real-time 

systems because in these systems having the right answer too 

late is as bad as not having it at all [1]. Such a system must 

react to the requests within a fixed amount of time which is 

called deadline.  

Real-time tasks can be classified as periodic or aperiodic. A 

periodic task is a kind of task that occurs at regular intervals, 

and aperiodic task occurs unpredictably. The length of the time 

interval between the arrivals of two consecutive requests in a 

periodic task is called period. 

There are a plenty of real-time scheduling algorithms that 

are proposed in the literature. Each of these algorithms bases 

its decision on certain parameter while attempting to schedule 

 
 

tasks to satisfy their time requirements. Some algorithms use 

parameters that are determined statically such as the Rate 

Monotonic algorithm that uses the request interval of each task 

as its priority [4, 7]. Others use parameters that are calculated 

at run time. Laxity and deadline are among those parameters 

that are the most considered. Laxity says the task execution 

must begin within a certain amount of time while deadline 

implies the time instant at which its execution must be 

completed [2, 5, 6]. 

The main purpose of this paper is to study and compare the 

behavior of a real-time system when the fuzzy scheduler is 

based on deadline and when it is based on laxity. The rest of 

the paper is organized as follows. In Part II we will give an 

introduction to fuzzy inference process. Part III covers the 

algorithms and part IV presents the experimental results. 

Conclusion and future works are debated in Sections V. 

 

II. 2. FUZZY INFERENCE SYSTEMS 

A general fuzzy inference system consists of three parts. A 

crisp input is fuzzified by input membership functions and 

processed by a fuzzy logic interpretation of a set of fuzzy 

rules. This is followed by the defuzzification stage resulting in 

a crisp output [8]. 

There are a number of different ways to implement the 

fuzzy inference engine. Among the very first such proposed 

techniques is that due to Mamdani [10], which describes the 

inference engine in terms of a fuzzy relation matrix and uses 

the compositional rule of inference to arrive at the output 

fuzzy set for a given input fuzzy set. The output fuzzy set is 

subsequently defuzzified to arrive at a crisp control action. 

 
Fig 1. Block diagram of fuzzy inference process 

 

The inference engine is based on a collection of logic rules 

in the form of IF-THEN statements, where the IF part is called 

the "antecedent" and the THEN part is called the 

Deadline vs. Laxity as a Decision Parameter in  

Fuzzy Real-Time Scheduling 

                    Mojtaba Sabeghi, Koen Bertels                     Mahmoud Naghibzadeh 

           {sabeghi, k.l.m.bertels}@ce.et.tudelft.nl                  naghib@um.ac.ir 

                  Delft University of Technology              Ferdowsi University of Mashhad 

                        Delft, the Netherlands                                    Mashhad, Iran 



 

"consequent". An example of fuzzy IF-THEN rules is: IF 

frequency is high then priority is low, which frequency and 

priority are linguistics variables and high and low are 

linguistics terms. Typical fuzzy inference systems have dozens 

of rules. These rules are stored in a knowledgebase. 

There are two common inference processes [8]. First is 

called Mamdani's fuzzy inference method proposed in 1975 by 

Ebrahim Mamdani [10] and the other is Takagi-Sugeno-Kang, 

or simply Sugeno, method of fuzzy inference Introduced in 

1985 [11]. The main difference between Mamdani and Sugeno 

is that the Sugeno output membership functions are either 

linear or constant but Mamdani’s inference expects the output 

membership functions to be fuzzy sets. 

 

III. FUZZY ALGORITHMS 

MFDF, MFLF, FGEDF, FPEDF, FGMLF and FPMLF 

algorithms has been considered here. Each of the algorithms is 

as follows: 

 

  
The algorithm for the MFDF is similar to the MFLF with 

laxity replaced by deadline. 

 

 

 
FGMLF is much the same with FGEDF just by replacing the 

word deadline by laxity. 

 

 
 

Algorithm FGMLF 

Loop              

For each CPU in the system do the followings: 

1. for each ready task T (a task which is not 

running), feed its external priority and laxity 

into the inference engine. Consider the output 

of inference module as priority of task T. 

2. Execute the task with highest priority until 

an scheduling event occurs (a running task 

finishes, a new task arrives) 

3. Update the system states (deadline, etc) 

      End 

End loop 

 

Algorithm MFLF 

Loop 

1. For each task T, feed its external priority 

and laxity into the inference engine. Consider 

the output of inference module as priority of 

task T. 

2. Execute the task with highest priority until 

an scheduling event occurs (a running task 

finishes, a new task arrives) 

    3. Update the system states (laxity, deadline, 

etc) 

End loop 

Algorithm FPEDF for each CPU 

Loop 

1. For each ready task T (a task which have not been 

run on another CPU), feed its external priority and 

deadline into the inference engine. Consider the 

output of inference module as priority of task T. 

2. Execute the task with highest priority until an 

scheduling event occurs (a running task finishes, a 

new task arrives) 

    3. Update the system states (deadline, etc) 

End loop 

 

Algorithm FGEDF 

Loop              

For each CPU in the system do the followings: 

1. for each ready task T (a task which is not 

running), feed its external priority and 

deadline into the inference engine. Consider 

the output of inference module as priority of 

task T. 

2. Execute the task with highest priority until 

an scheduling event occurs (a running task 

finishes, a new task arrives) 

3. Update the system states (deadline, etc) 

      End 

End loop 

 

Algorithm MFDF 

Loop 

1. For each task T, feed its external priority 

and deadline into the inference engine. 

Consider the output of inference module as 

priority of task T. 

2. Execute the task with highest priority until 

an scheduling event occurs (a running task 

finishes, a new task arrives) 

    3. Update the system states (laxity, deadline, 

etc) 

End loop 



 

 
FPMLF is much the same with FPEDF just by replacing the 

word deadline by laxity. 

For a detail explanation of each algorithm refer to 

[2,3,9,12]. 

 

IV. SIMULATION RESULTS 

Performance metrics, which are used to compare different 

algorithms, must be carefully chosen to reflect the real 

characteristics of a system. These metrics are as follows. 

Response time, which is defined as the amount of time a 

system takes to react to a given input, is one of the most 

important factors in most scheduling algorithms.  Number of 

missed deadlines is an influential metric in scheduling 

algorithms for soft real-time systems. When task preemption is 

allowed, another prominent metric comes into existence and 

that is the number of preemptions. Each of preemptions 

requires the system to perform a context switching which is a 

time consuming action. CPU utilization is also an important 

metric because the main goal of a scheduling algorithm is to 

assign and manage system resources so that a good utilization 

is achieved. Yet another metric, which is considered in our 

study, is the number of missed deadlines from the class of 

highest priority tasks. This corresponds to the external priority 

being very high. 

0 0.5 1 1.5 2 2.5 3
0

2

4

6

8

10

12

14

16

18

20

 

MFLF

MFDF

EDF

LLF

MFDF 

MFLF 

LLF 

EDF 

R
e

s
p

o
n

s
e

 T
im

e

Load Factor  

Fig.2. Response time in overloaded conditions 

0 0.5 1 1.5 2 2.5 3
0

10

20

30

40

50

60

70

80

90

100

    

MFLF

MFDF

EDF 

LLF 

LLF 

EDF 

MFLF 

MFDF 

M
is

s
e

s
 

Load Factor 
  

Fig.3. Number of Misses 

0 0.5 1 1.5 2 2.5 3
0

10

20

30

40

50

60

    

MFLF

MFDF

EDF 

LLF 

MFDF 

MFLF 

LLF 

EDF 

P
re

e
m

p
ti

o
n

s
 

Load Factor 
 

Fig.4. Number of Preemptions 

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

    

MFLF

MFDF

EDF 

LLF 

LLF 

EDF 

MFLF 

MFDF 

Load Factor 

C
P

U
 U

ti
li
z

a
ti

o
n

 

Fig.5. CPU Utilization 

Algorithm FPMLF for each CPU 

Loop 

1. For each ready task T (a task which have not been 

run on another CPU), feed its external priority and 

laxity into the inference engine. Consider the output 

of inference module as priority of task T. 

2. Execute the task with highest priority until an 

scheduling event occurs (a running task finishes, a 

new task arrives) 

    3. Update the system states (deadline, etc) 

End loop 

 



 

0 20 40 60 80 100 120 140 160
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

FGEDF

FGMLF

FPEDF

FPMLF

Load Factor   

Fig.6. Number of misses for 128 CPUs 

0 20 40 60 80 100 120 140 160
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

FGEDF

FGMLF

FPEDF

FPMLF

Load Factor

  

Fig.7. Number of preemptions for 128 CPUs 

0 20 40 60 80 100 120 140 160

2

4

6

8

10

12

14

16

FGEDF

FGMLF

FPEDF

FPMLF

Load Factor

  

Fig.8. Average response time for 128 CPUs 

0 20 40 60 80 100 120 140 160
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FGEDF

FGMLF

FPEDF

FPMLF

Load Factor

  

Fig.9. Average CPU utilization for 128 CPUs 

As it is shown in the figures 2 to 9, algorithms based on 

laxity have a better CPU utilization both for multi processor 

and single processors.  But it misses more tasks than deadline 

based algorithms. 

Among the four algorithms FGEDF and FGMLF nearly 

achieve the same performance in all situations and all metrics. 

FPMLF performs poorly in number of misses and also average 

response time, but its performance on CPU utilization and also 

number of preemption is much better than the others especially 

when the number of CPUs increase. 

 

V. CONCLUSION 

This paper compared fuzzy algorithms based on deadline 

and laxity. As it was shown, using deadline as a fuzzy 

parameter in real-time scheduling is more promising than 

laxity.  Also, it seems that partitioning approach almost 

outperforms global approach for multiprocessor real-time 

scheduling. 

 

REFERENCES 

[1] Liu C. L., Layland J. W., Scheduling Algorithms for 

Multiprogramming in a Hard Real-Time Environment. 

Journal of the ACM, 20(1):46-61, 1973.  
 

[2] Sabeghi M., Naghibzadeh M., Taghavi T., "Scheduling 

Non-Preemptive Periodic Tasks in Soft Real-Time 

Systems using Fuzzy Inference", 9th IEEE International 

Symposium on Object and component-oriented Real-time 

distributed Computing (ISORC), April 2006 
 

[3] Sabeghi M., Deldari H., "A Fuzzy Algorithm for 

Scheduling Periodic Tasks on Multiprocessor Soft Real-

Time Systems", IASTED International Conference on 

Modeling and Simulation, May 2006  

 

[4] Ramamritham K., Stankovic J. A., Scheduling algorithms 

and operating systems support for real-time systems, 



 

Proceedings of the IEEE, Vol. 82(1), pp55-67, January 

1994. 

[5]  Goossens J., Richard P., Overview of real-time 

scheduling problems, Euro Workshop on Project 

Management and Scheduling, 2004 

[6] Hong J., Tan X., Towsley D., A Performance Analysis of 

Minimum Laxity and Earliest Deadline Scheduling in a 

Real-Time System, IEEE Trans. on Comp., Vol. 38, No. 

12, Dec. 1989 

[7] Sha, L. and Goodenough, J. B., Real-Time Scheduling 

Theory and Ada, IEEE Computer, Vol. 23, No. 4, pp. 53-

62 (April 1990). 

[8]  Wang Lie-Xin, A course in fuzzy systems and control, 

Prentice Hall, Paperback, Published August 1996.  

[9]   Andersson B., Jonsson J. Fixed-priority preemptive 

multiprocessor scheduling: to partition or not to partition, 

Seventh International Conference on Real-Time 

Computing Systems and Applications (RTCSA'00),  2000 

[10]  Mamdani E.H., Assilian S., An experiment in linguistic 

synthesis with a fuzzy logic controller, International 

Journal of Man-Machine Studies, Vol. 7, No. 1, pp. 1-13, 

1975. 

[11]   Sugeno, M., Industrial applications of fuzzy control, 

Elsevier Science Inc., New York, NY, 1985. 

[12] Sabeghi M., Naghibzadeh M., Taghavi T., A Fuzzy 

Algorithm for Scheduling Soft Periodic Tasks in 

Preemptive Real-Time Systems, International Joint 

Conferences on Computer, Information, and Systems 

Sciences, and Engineering (CISSE), 2005 

 

 

 


