
Loop Parallelization for Reconfigurable Architectures
Ozana Silvia Dragomir, Elena Moscu Panainte, Koen Bertels
{O.S.Dragomir, E.Moscu-Panainte, K.L.M.Bertels}@tudelft.nl

Computer Engineering, EEMCS,
Delft University of Technology,
Mekelweg 4, 2628 CD Delft,

The Netherlands

Abstract—Reconfigurable Computing (RC) is one of the
research directions that focuses on accelerating applica-
tions. In the presented approach we assume the Molen ma-
chine organization and the Molen programming paradigm
as our framework. Molen combines a general purpose
processor (GPP) and a Field Programmable Gate Array
(FPGA), having the advantages of both speed of hard-
ware and flexibility of software execution. In this paper we
present a method that allows complete automation of effi-
cient code generation with the Molen compiler for recon-
figurable architectures in Delft WorkBench project. The
proposed algorithm computes the optimal degree of paral-
lelism for a kernel K called from inside a loop or loop nest,
in order to achieve the maximum performance, taking into
consideration the resource constraints. The input data for
the algorithm consists of profiling information about the
execution times for running K in both hardware and soft-
ware, the memory transfers and the occupied area.

I. Introduction

Reconfigurable Computing (RC) is becoming in-
creasingly popular and the common solution for ob-
taining a significant performance increase is to iden-
tify the application kernels and accelerate them on
hardware. Usually these kernels consist of loop nests,
and there are a number of approaches that use differ-
ent loop optimizations (such as loop unrolling, soft-
ware pipelining, loop shifting, loop distribution, loop
merging, loop tiling, etc) in order to maximize the
parallelism inside the loop and to obtain in this way
a significant speedup ([1], [2], [3], [4], [5], [6], [7]).

In this paper we propose a method to determine the
optimal unroll factor that determines the parallelism
granularity. The paper is organized as follows. Sec-
tion II introduces the background and related work.
In Section III we give a general definition of the prob-
lem and present the target architecture and applica-
tion. We propose a method for solving the problem in
Section IV. Finally, concluding remarks are presented
in Section V.

II. Background and related work

One challenge for loop optimizations is the selec-
tion, parametrization and order of the applied trans-
formations. In the context of reconfigurable hardware,
additional decision factors such as area usage and par-
allel execution have to be taken into account. The
most popular loop optimizations that are used in re-
configurable computing are loop unrolling and soft-
ware pipelining.

Loop unrolling is a technique that expands the loop
body, so that a new iteration consists of 2 or more
of the initial iterations. The number of times that
the loop is expanded is called unroll factor (u) and
the iteration step will be u instead of 1. If there are
no dependencies between iterations, than the unrolled
body can be executed in parallel. A main problem in
the domain of loop optimizations is that of finding the
optimal unroll factor ([8], [5])

Software pipelining is used to achieve higher in-
struction level parallelism, by moving operations
across iteration boundaries. To be more specific, the
operations in a loop iteration are broken into s stages.
A single iteration executes stage 1 from iteration i,
stage 2 from iteration i − 1 and so on. The method
we propose for computing the optimal degree of par-
allelism uses only loop unrolling, but we take into ac-
count that when loop unrolling and software pipelin-
ing are used together, the performance gain may over-
come their separate contributions [9], [10].

The work presented in this paper is related to
Delft WorkBench project. DWB is a semi-automatic
toolchain platform for integrated hardware-software
co-design in the context of Custom Computing Ma-
chines (CCM) which targets the Molen polymorphic
machine organization [11] and supports the Molen
programming paradigm [12]. The general workflow
is shown in Fig. 1. The kernels are identified in the
first stage of profiling and cost estimation. Next, the
Molen compiler [13] generates the executable file, re-



placing function calls to the kernels implemented in
hardware with specific instructions for hardware re-
configuration and execution, according to the Molen
programming paradigm. An automatic tool for hard-
ware generation (DWARV [14]) is used to transform
the selected kernels into VHDL code targeting the
Molen platform.

Fig. 1. Delft WorkBench Workflow

Assuming the Molen machine organization [11] and
the Molen programming paradigm [12] as our frame-
work, we focus our research in the direction of paral-
lelizing a multimedia application by executing multi-
ple instances of the kernel in parallel on the reconfig-
urable hardware.

Several other research projects develop C to VHDL
frameworks, trying to exploit as much as possible the
advantages of reconfigurable systems by maximizing
the parallelism in targeted applications.

ROCCC is a C to hardware compilation project
whose objective is the FPGA-based acceleration of
frequently executed code segments (loop nests). The
compiler applies loop unrolling, fusion and strip min-
ing and creates pipelines for the unrolled loops in or-
der to efficiently use the available area and memory
bandwidth of the reconfigurable device [7].

Cardoso and Diniz [5] use unroll-and-jam (unrolling
one or more nested loops in the iteration space and
fusing inner loop bodies together) to expose operator
parallelism. The design space algorithm evaluates a
set of possible unroll factors for multiple loops in the
loop nest, searching for the one that leads to a high-
performance, balanced, efficient design.

Weinhardt and Luk [2] present pipeline vectoriza-
tion, a method for synthesizing hardware pipelines
based on software vectorizing compilers. In their ap-
proach, full loop unrolling is used to increase basic
block size and extend the scope of local optimizations.

Liao et al. [10] propose a model for hardware real-
ization of kernel loops. The compiler is used to extract
certain key parameters of the analyzed loop. From
these parameters, taken into account the resource con-
straints, the user is informed about the performance
that can be obtained by unrolling the loop or apply-
ing loop unrolling together with software pipelining.
The algorithm also suggests the optimal unroll to be
used, but the main difference between our approaches
is that their method does not consider parallel execu-
tions.

DRESC compiler performs software pipelining [4] in
order to parallelize the kernels identified in the pro-
filing/partitioning step, using the architecture repre-
sentation as input. Traditional ILP scheduling tech-
niques are applied to discover the available moderate
parallelism for the non-kernel code. The speed-up re-
ported for a MPEG2-decoder mapped over an 8-issue
VLIW is about 12 times for kernels and 5 times for
the entire application.

PARLGRAN [15] is to our knowledge the only ap-
proach that tries to maximize performance on re-
configurable architectures by selecting the parallelism
granularity for each individual data-parallel task.
However, this approach is different than ours by tak-
ing into consideration the physical (placement) con-
straints and reconfiguration overhead, without ad-
dressing the memory bottleneck problem.

III. Problem overview

We denote by kernel a function that represents more
than a threshold percentage of execution time from
the total sequential program execution time. The tar-
geted applications have kernels inside loops or nested
loops, without data dependencies between different
loop iterations.

The problem addressed in this paper is to find the
optimal unroll factor u of the loop (loop nest) with
a kernel K, so that u instances of K run in parallel
on the reconfigurable hardware, leading to the maxi-
mum possible speedup, taking into consideration the
total available area and the area requirements for the
kernel. More specifically, we do not aggressively opti-
mize the kernel implementation, but we focus on the
optimization of the application for any hardware im-
plementation of the kernel.



The factors taken into consideration are:
• area occupied by one kernel running on FPGA
• available area (it is possible that not all area is avail-
able, because other kernels may be configured in the
same time)
• execution time of the kernel in software and in hard-
ware (always in GPP cycles)
• number of memory transfer operations in one kernel
instance
• FPGA throughput (the amount of data - in bits -
that can be accessed in one cycle)

We assume there is no latency due to configuration
of the kernel on the hardware (it can be statically con-
figured in advance, so that it is hidden by the software
execution of the program).

A. Target architecture

We assume the Molen machine organization [11]
and the Molen programming paradigm [12] as our
framework. The Molen machine organization has been
implemented on Virtex-II Pro XC2VP30 device [16].
The memory design uses the available on-chip mem-
ory blocks of the FPGA, 64KB for program data and
64KB for program instructions. The communication
between the general purpose processor (GPP) and the
reconfigurable processor (passing of parameters and
result) is performed through the so-called exchange
registers (XREGs), which are implemented also in
BRAM. The total resources consumed by the Molen
implementation on the XC2VP30 chip are less than
2% [17] .

B. Target application

We chose as a case study a loop where the loop
body contains two functions: the first one (CPar)
computes the parameters for the second one, which is
the application kernel (K). The sample loop is shown
in Example 1.

Example 1 Loop containing a kernel call
for (i = 0; i < N ; i++ ) {

/* Compute parameters for K() */
CPar (i, blocks);
/* Kernel function */
K (blocks[i]);
}

Assumptions:

1. Access time for on-chip memory is 3 cycles for read-
ing and storing the value into a register and 1 cycle
for writing a value;

2. All on-chip memory transfers are performed se-
quentially (also because the VHDL code is not op-
timized);
3. All local variables/arrays are stored in the FPGA’s
local memory, so they can be accessed in parallel.

IV. Proposed method

In this section we present a method to determine
the optimal unroll factor having as input the profiling
information (execution time and number of memory
transfers) and area usage for one instance of the ker-
nel. We illustrate the method by unrolling with fac-
tor u the code from Example 1. Assuming that N div
u = 0, the result looks like in Example 2.

Example 2 Loop after unrolling with factor u

for (i = 0; i < N ; i += u) {
CPar (i + 0, blocks);
CPar (i + 1, blocks);
. . .

CPar (i + u− 1, blocks);

/* Execute u instances of K() in parallel */
#pragma parallel

K (blocks[i + 0]);
K (blocks[i + 1]);
. . .

K (blocks[i + u− 1]);
#end parallel
}

A. Memory bottleneck

Ideally, the degree of parallelism is bounded only by
the area availability. However, the FPGA throughput
is an important bottleneck in achieving the ideal par-
allelism. Considering Tr and Tw the times for memory
read and write accesses and Tc the computation time
on the hardware, the total time for running a kernel
K in hardware is Tr + Tw + Tc. Without losing the
generality of the problem, we assume that the mem-
ory reads are all done in the beginning and memory
writes in the end. Then, a new instance of K can start
only after a time Tr, as illustrated in Fig. 2.

One bound for the degree of parallelism on the re-
configurable hardware is set by the condition that
memory access requests from different kernel instances
do not overlap:

u× Tm ≤ Tm + Tc ⇒ u ≤ Um =
Tc

Tm
+ 1 (1)

where Tm = min(Tr, Tw).



Tr ≤ Tw < Tc; Tr + Tw ≤ Tc

Fig. 2. Parallelism on reconfigurable hardware

The time for running u instances of K() on the re-
configurable hardware is:

Tu =
{

Tc + u · Tr if u ≤ Tc/Tm + 1
u · (Tr + Tw) if u > Tc/Tm + 1 (2)

B. Algorithm

Each iteration in Example 2 consists of u sequen-
tial executions of the function CPar() followed by the
parallel execution of u kernel instances (there is an im-
plicit synchronization point at the end of the parallel
region).

We use the following notations:
• N = N1

iter - initial number of iterations (before un-
rolling)
• T 1

par - number of cycles for CPar() in software
• T 1

K(sw) / T 1
K(hw) - number of cycles for one instance

of K() running in software/hardware;
• T 1

iter(sw) / T 1
iter(hw) - number of cycles for one loop

iteration with K() running in software/hardware
• Tloop(sw) / Tloop(hw) - number of cycles for the loop
nest with K() running in software/hardware

Using these data, we compute the following:
• Nu

iter - number of iterations in the loop nest, de-
pending on the unrolling factor u:

Nu
iter = bN/uc , where bxc ≤ x < bxc+ 1 (3)

• T u
K(sw) - number of cycles for u calls (one iteration)

of K() in software:

Tu
K(sw) = T 1

K(sw) · u (4)

• T u
K(hw) - number of cycles for u kernel instances run-

ning in parallel on FPGA, computed using formula 2
(taking into consideration Assumption 3):

Tu
K(hw) = Tc + u · Tm (5)

The number of cycles for one iteration for unroll
factor u is:

Tu
iter(sw) = T 1

K(sw) · u + T 1
par · u (6)

Tu
iter(hw) = Tc + Tm · u + T 1

par · u (7)

For the general case (N div u may be different than
0), the formulas for computing the total number of
cycles for the loop nest are:

Tloop(sw) = T 1
iter(sw) ·N = constant (8)

Tu
loop(hw) = (T 1

par + T 1
m) ·N + Tc · dN/ue , (9)

where x ≤ dxe < x + 1

If u + 1 is not a divisor of N , then

dN/ue = dN/(u + 1)e (10)

meaning that T u
loop(hw) = T u+1

loop(hw). In this case, u + 1
is not a valid choice because it generates the same
execution time as the unroll factor u, but it occupies
more area. For this reason, we take into consideration
only the unroll factors which are divisors of N .

We can rewrite T u
loop(sw) and T u

loop(hw) as:

Tu
loop(sw) = Tu

iter(sw) ·N
u
iter (11)

Tu
loop(hw) = Tu

iter(hw) ·N
u
iter (12)

The speedups for the execution of kernels at itera-
tion level and at loop nest level are:

Su
K =

Tu
K(sw)

Tu
K(hw)

; Su
loop =

Tloop(sw)

Tloop(hw)
(13)

The optimal unroll factor from the speedup point of
view is the maximum value of u for which the differ-
ence between two consecutive speedup factors is less
than a certain threshold value F , chosen in the be-
ginning (it can depend on the area occupied by one
instance of the kernel or it can be just the value 1,
etc.). Using the notations above, the problem of find-
ing the optimal unroll factor becomes:

Find min(u) such that ∆S = Su+1
loop − Su

loop < F .

Su
loop =

Tloop(sw)

Tloop(hw)
=

T u
iter(sw) ·N

u
iter

T u
iter(hw) ·N

u
iter

⇒

Su
loop =

T u
iter(sw)

T u
iter(hw)

=
(T 1

iter(sw)) · u
Tc + (Tm + T 1

par) · u

Using the notations:

x =
Tc

Tm + T 1
par

and y =
T 1

iter(sw)

Tm + T 1
par

(14)



∆S becomes:

∆S =
(u + 1) · y
(u + 1) + x

− u · y
u + x

=
x · y

u2 + u · (2x + 1) + (x2 + x)

∆S < F ⇒ u2 + u · (2x + 1) + (x2 + x)− x · y/F > 0

The positive root of the equation is:

u+ =
−(1 + 2x) +

√
1 + 4xy/F

2
=

√
xy

F
+

1
4
−x− 1

2
(15)

Taking into account also the area constraints, an-
other upper bound for the parallelism degree is set
by

Ua =
Area(available)

Area(K)
.

where:
• Area(available) - is the available area, taking into ac-
count the resources occupied by Molen and by other
configurations;
• Area(K) - is the area occupied by one instance of K.

If u+ < min(Ua, Um), then the optimal unroll factor
is min(u) such that u is a divisor of N and u+ < u ≤
min(Ua, Um); else, we choose it as max(u) such that
u is a divisor of N and u ≤ min(Ua, Um).

V. Conclusion

In this paper we presented a method to automat-
ically compute the optimal number of instances of a
kernel K to be run in parallel on reconfigurable hard-
ware by applying loop unrolling. The algorithm uses
only the profiling information about memory transfers
and execution times in software and hardware and in-
formation about area usage for one kernel instance.
Its implementation in the compiler decreases the time
for design-space exploration and makes use efficiently
of the hardware resources.

Using the proposed method, we achieved a theoret-
ical speedup for an automatically generated VHDL
implementation of DCT with a factor of 10. As our
approach demonstrates the potential for significant
performance improvement, in future work we

References

[1] K. Kennedy and K. S. McKinley, “Maximizing loop par-
allelism and improving data locality via loop fusion and
distribution”, 1993 Workshop on Languages and Compil-
ers for Parallel Computing, vol. 768, pp. 301–320, 1993.

[2] M. Weinhardt and W. Luk, “Pipeline vectorization”, IEEE
Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems, 2001.

[3] A. Fraboulet, K. Kodary, and A. Mignotte, “Loop fusion
for memory space optimization”, ISSS ’01: Proceedings of

the 14th International Symposium on Systems Synthesis,
pp. 95–100, 2001.

[4] B. Mei, S. Vernalde, D. Verkest, H. D. Man, and R. Lauw-
ereins, “Exploiting loop-level parallelism on coarse-grained
reconfigurable architectures using modulo scheduling”,
DATE ’03: Proceedings of the conference on Design, Au-
tomation and Test in Europe, 2003.

[5] J. M. P. Cardoso and P. C. Diniz, “Modeling loop unrolling:
approaches and open issues”, the 4th International Work-
shop on Computer Systems: Architectures, Modelling, and
Simulation (SAMOS’04), pp. 224–233, 2004.

[6] S. Gupta, N. Dutt, R. Gupta, and A. Nicolau, “Loop shift-
ing and compaction for the high-level synthesis of designs
with complex control flow”, DATE ’04: Proceedings of
the conference on Design, Automation and Test in Europe,
2004.

[7] Z. Guo, B. Buyukkurt, W. Najjar, and K. Vissers, “Opti-
mized generation of data-path from C codes for FPGAs”,
DATE ’05: Proceedings of the conference on Design, Au-
tomation and Test in Europe, pp. 112–117, 2005.

[8] A. Koseki, H. Komastu, and Y. Fukazawa, “A method for
estimating optimal unrolling times for nested loops”, IS-
PAN ’97: Proceedings of the 1997 International Sympo-
sium on Parallel Architectures, Algorithms and Networks
(ISPAN ’97), p. 376, 1997.

[9] S. Novack and A. Nicolau, “Resource directed loop pipelin-
ing: exposing just enough parallelism”, The Computer
Journal, vol. 40, pp. 311–321, 1997.

[10] J. Liao, W.-F. Wong, and T. Mitra, “A model for hardware
realization of kernel loops”, 13th International Conference
on Field-Programmable Logic and Applications (FPL’03),
2003.

[11] S. Vassiliadis, S. Wong, G. N. Gaydadjiev, K. Bertels,
G. Kuzmanov, and E. M. Panainte, “The MOLEN poly-
morphic processor”, IEEE Transactions on computers,
November 2004.

[12] S. Vassiliadis, G. N. Gaydadjiev, K. Bertels, and E. M.
Panainte, “The Molen programming paradigm”, the 3rd
International Workshop on Systems, Architectures, Model-
ing, and Simulation (SAMOS’03), July 2003.

[13] E. M. Panainte, K. Bertels, and S. Vassiliadis, “The
PowerPC backend Molen compiler”, 14th International
Conference on Field-Programmable Logic and Applications
(FPL’04), 2004.

[14] Y. D. Yankova, G. Kuzmanov, K. Bertels, G. Gaydadjiev,
J. Lu, and S. Vassiliadis, “DWARV: DelftWorkbench auto-
mated reconfigurable VHDL generator”, the 17th Interna-
tional Conference on Field Programmable Logic and Appli-
cations (FPL’07), 2007.

[15] S. Banerjee, E. Bozorgzadeh, and N. Dutt, “PARLGRAN:
parallelism granularity selection for scheduling task chains
on dynamically reconfigurable architectures”, in Design
Automation, 2006. Asia and South Pacific Conference on,
p. 6pp., 24-27 Jan. 2006.

[16] http://www.xilinx.com/bvdocs/publications/ds083.pdf.
[17] G. Kuzmanov, G. Gaydadjiev, and S. Vassiliadis, “The Vir-

tex II Pro MOLEN processor”, the 4th International Work-
shop on Computer Systems: Architectures, Modelling, and
Simulation (SAMOS’04), 2004.


