
1

FPGA area allocation for parallel C applications
Vlad-Mihai Sima, Elena Moscu Panainte, Koen Bertels

Computer Engineering
Faculty of Electrical Engineering, Mathematics and Computer Science

Delft University of Technology
Mekelweg 4, 2628 CD Delft, The Netherlands
Phone: +31 15 2786249 Fax: +31 15 2784898

Abstract— In this paper we present an FPGA area al-
location algorithm for parallel OpenMP application that
aim to improve performance for a specific reconfiguration
area. The algorithm will be implemented in Delft Work-
bench, a toolchain developed at TU Delft with focus on
reconfigurable architectures. The hardware platform used
to gather the experimental results is a Xilinx Virtex II Pro
board with a PowerPC 405 processor and an FPGA. Using
profiling information and the structure of the application
we construct a mathematical model which is then used by
a modified ILP (Integer Linear Programming) solver to
choose the optimal mapping.

I. Introduction

With the growing need of faster, low price devices,
computer systems have grown to be significantly com-
plex and demanding for the system architects, hard-
ware designers and software engineers. New strate-
gies have been proposed to use efficiently the resources
while new problems have been introduced that have
to be solved with the given resources. Reconfigurable
computing is one of the approaches that allows a wider
range of problems to be solved, in a fast, but also eco-
nomic and efficient way. Parallelization is another key
concept, that becomes increasingly important as the
frequencies of the processor reach their physical lim-
its so the application are not speedup just by increas-
ing the frequency of the processor. In this paper we
present an algorithm that simplifies the development
process by selecting, based on execution traces,the ef-
ficient area allocation for the reconfigurable hardware
in context of parallel algorithms.

In the context of embedded devices one of the most
used languages remains C programming language. To
allow programmers to write parallel applications while
using most of their previous programming experience,
one of the common solution is to use shared memory
parallel programming paradigm. OpenMP is such an
API that allows simple, portable and scalable shared
memory programming, which is widely used by indus-
try and research community.

The paper is organized in seven sections. We
present the background and related work in the fol-
lowing section. The problem is outlined and a motiva-
tional example is presented. The allocation algorithm
is presented in detail in section 4. Finally we present
some results, the conclusion and future work.

II. Background and related work

The development of the algorithm presented is
based on the MOLEN programming paradigm [1],
which for Field-programmable Custom Computing
Machines (FCCMs). This paradigm addresses a gen-
eral purpose processor (GPP) and a reconfigurable
hardware (usually FPGA). The reconfigurable com-
ponent is controlled by special instructions for recon-
figuration and the execution of hardware components
of the application.

Previous work related to area allocation in recon-
figurable system has been done, but it was focused
on sequential code without parallel sections. The first
algorithm presented in [2] tries to determine the best
partitioning between a fixed and a reconfigurable part
using ILP, while the second algorithm presents a par-
titioning between fixed, reconfigurable and software
execution.

Other research has focused on determining the op-
timal number of kernels that have to be configured
considering the memory bandwidth [3].

III. Motivational example

As a motivational example we use a simple appli-
cation which was constructed to capture the patterns
from an application used for audio processing. The
real application uses a microphone array to amplify
the signal from one source while suppressing signals
from others - process called beamforming. Assuming
the reduced C application:

proc_A();

#pragma openmp parallel

2

for(i=0;i<8;i++) {
kernel_1();

}

proc_B();

#pragma openmp parallel
for(i=0;i<4;i++) {
kernel_2();

}

We notice that there are several possibilities of exe-
cution. Let’s suppose we have the area and execution
times as in table 1.

TABLE I
Values for area and execution for sample code

Function Area Execution time Reconf time

SW HW

proc A - 60 - -

kernel 1 20% 14 2 30

proc B - 20 - -

kernel 2 30% 8 3 45

For the software and hardware features of the ap-
plication presented in Table I we describe two basic
scenarios. Our algorithm will try to determine auto-
matically the best scenario.

Scenario A
The first kernel is configured 4 times in hardware,

so the execution is the one depicted in Figure 1. With
this configuration kerneli kernels are executed in par-
allel thus the total execution time is 176 cycles.

Scenario B
The first kernel is configured 2 times in hardware

and the second kernel is configured 2 times in hard-
ware, so the execution is the one depicted in Figure
2. In this scenario the total execution time is 128.
Fro the multitude of possible scenarios our algorithm
selects the efficient solution using ILP.

IV. Problem overview

We will denote by kernel any function that is exe-
cuted inside of a parallel loop and consumes a signif-
icant part of execution time from the sequential pro-
gram execution.

The kernel can be implemented in hardware (us-
ing manual or automated VHDL generation) usually
resulting in improved execution times. However, the

proc_A

kernel_1 kernel_1kernel_1 kernel_1

kernel_1 kernel_1kernel_1 kernel_1

proc_B

kernel_2

kernel_2

kernel_2

kernel_2

Fig. 1. Execution of sample in scenario A

proc_A

kernel_1 kernel_1

kernel_1 kernel_1

proc_B

kernel_2

kernel_2kernel_2

kernel_2

kernel_1 kernel_1

kernel_1 kernel_1

Fig. 2. Execution of sample in scenario B

area of the FPGA is limited and also the reconfigu-
ration time is considerable compared with the execu-

3

tion time. The problem is to determine the number
of kernels for the reconfiguration, and the points in
the program such that the overall execution time is
improved.

The known factors that are taken into consideration
are:
• area of the kernels
• execution time of one kernel in software and hard-
ware
• configuration time of a kernel
• an execution trace (or static profiling execution
trace, in which case the results will not be as good)

V. Algorithm

For the kernels executed on the reconfigurable hard-
ware, the software execution times is usually orders
of magnitude ? than the hardware execution time.
Based on this feature, in order to reduce the algorithm
complexity. we consider that the hardware execution
in parallel with the software execution does not sig-
nificantly increase the application speedup when com-
pared with exclusive parallel execution in hardware.
A motivation for this is presented in thefollowingg.

Let’s consider a kernel that can be executed in hard-
ware in time h and in software in time s and is exe-
cuted in the application in a loop with n iterations,
without data dependencies. Let x be the number of
execution in software, y the number of executions in
hardware, and p the number of instances configured
then we have the following equations:

x + y ∗ p = n (1)

x ∗ s− y ∗ h < h (2)

The second equation states that the difference be-
tween the software execution time performed in par-
allel with the hardware and the hardware execution
time should not exceed one hardware execution. Oth-
erwise more tasks should be executed in hardware.
From the above equations we can compute the follow-
ing equation for the number of hardware executions:

y >
n ∗ s− h

s ∗ p + h
(3)

In order to achieve parallel software and hardware
execution the number of hardware executions is:

y = dn ∗ s− h

s ∗ p + h
e (4)

For the purposes of the computations we can ap-
proximate y to be:

y ' n ∗ s− h

s ∗ p + h
(5)

If we approximate the total execution time of the
kernel with the time needed for the hardware execu-
tions and compute the speedup compared to the case
where all executions are in hardware we obtain:

speedup =
dn

p e ∗ h

y ∗ h
'

n
p

n∗s−h
s∗p+h

=
n ∗ (s ∗ p + h)
p ∗ (n ∗ s− h)

(6)

We are interested in the significant gain that could
be obtained in the software-hardware scenario. This
is obvious for the case where the parallelism p is mini-
mum so we consider p = 1. We also must make an es-
timation regarding the speedups of kernels. From pre-
vious work [4] we conclude that the range of speedups
for kernels that will be candidates for kernel imple-
mentations is between 2 and 10. We summarize the
gain that could be obtained for some speedup values
using the following formula:

speedup '
n ∗ (s

h + 1)
(n ∗ s

h − 1)
(7)

TABLE II
Possible speedup considering software/hardware

parallel execution for a specific kernel

kernel speedup n speedup

3 32 1.35

3 64 1.34

6 32 1.17

6 64 1.17

10 32 1.1

10 64 1.1

For Table II, we notice that the speedup due to
parallel execution between hardware and software is
not significant. moreover is we consider p = 2, the
speedup becomes even lower in the range of 1.05 to
1.17. In conclusion we consider that the parallel ex-
ecution between software and hardware is not a key
issue for our study.

In order to solve the problem presented in Section 3
we use Integer Linear Programming (ILP) to find an
efficient solution to the above problem.

4

An ILP problem represents a mathematical model
composed of: variables, constraints and objective
function. To be able to map our problem to the above
mathematical model, we use as a starting point a sim-
plified control flow graph. The simplified control flow
graph is constructed as follows:

• start from the call graph of the application
• replace each function with it’s control flow graph (in
case of recursive functions or loops in the call graph
eliminate those functions). Keep special nodes for:
– OpenMP parallel pragma-s
– kernel function calls
• collapse all nodes of the graph that do not contain
parallel nodes, or hardware nodes, while accumulating
the profile information

All the reconfigurations for the hardware functions
must be done at the start of software or hardware
nodes. The decision that has to be taken is in which
nodes and in what numbers the hardware kernels must
be configured.

For multiple level of parallelism (i.e. imbricated
OpenMP parallel pragma-s) the inner levels must be
’transformed’ to by multiplying their loop counts with
the outer level loop count.

For each kernel we construct multiple webs - collec-
tions of nodes in the graph. Webs are constructed in
the following way: for each node in which there is a
kernel execution (which we will call from now the root
kernel of the web) we apply the following steps:

• start from the analyzed node
• if there is a path from the node to another kernel
of the same type, then the current web and that path
generates another web
• for each dominator node of the analyzed node, the
current web and all the nodes from the dominator
node to the analyzed node generate another web
• make all the graph another web

A web has the following properties:

• there is at least one node that dominates the kernel
execution
• one of the predecessors of the dominator node is a
kernel execution or the beginning of the program
• one of the successors of a node that belongs to the
web a kernel execution or the end of the program
• the web includes all the nodes that do not use the
hardware differently - ie if there is another kernel ex-
ecution of the analyzed kernel this will be included in
the web

A. Variables

For each identified web i in a parallel section with
n executions we will have the following variables:
• SWi - if 1 this means that all kernels of the type of
the root kernel contained in that web will be executed
in software
• HWi - represents the number of implementations in
hardware of the root kernel contained in that web i
(in the entry point)

B. Constraints

The constrains of our ILP problems address:
• area constraints
• hardware/software execution
• time constraints

The area constraints should guarantee that the so-
lution obtained from the ILP will be implementable
on the board, ie. at any given node in the SCFG the
area used by the kernels configured is not greater than
the area of the reconfigurable fabric. Let p be a node
where the hardware configuration can be changed (the
reunion of the dominator nodes for all the webs). We
will have the set of webs of interest defined as:

X = {∀w ∈ W/p ∈ w} (8)

where W is the set of all webs
With this definitions we can express the constraint

as:

∑
i∈X

(HWi ∗Ai) <= A (9)

Where Ai represents the area occupied by one root
kernel of web i. The hardware/software execution
constraints ensures that if the algorithm decides for
software execution there will be no hardware execu-
tions and viceversa. Let p be a node that contains a
kernel execution. The set of webs of interest is defined
as:

Y = {∀w ∈ W/p ∈ w ∧ p is root kernel of W} (10)

With this definition we can express the constraint
as:

∑
i∈Y

(SWi +
HWi

np
) <= 1 (11)

∑
i∈Y

(SWi + HWi) > 0 (12)

5

where np represents the number of iterations for the
kernel execution.

The time constraints guarantee that the reconfig-
uration overhead does notnegativelyy affect the total
execution time. For this purpose, we first determine
the unfeasible webs - the reconfiguration done in the
first node and the execution overcomes the software
execution time. There are webs and values for which
this can’t be determined as there can be other hard-
ware or software executions. For all the paths in the
web i from the dominator to the execution we write
the following equations (one for each of the iterations
that could be implemented)

Thw ≤ Tpath + ni ∗ tswi (13)

In both Thw and Tpath we have to include the time
of the execution in hardware. For the current FPGA,
Thw can be safely approximated to the hardware con-
figuration time.

The total time on the path Tpath is defined next:

SWp∑
s

(tsws)+
Ep∑
e

(
X∑
x

(SWx ∗ tswx + tconfx ∗HWx)) (14)

where SWp is the set of software nodes along the
path, Ep is the set of executions along the path and
X is the set of webs containing execution exec.

C. Objective function

The objective is to minimize the time in which the
application is executed, but we must take into account
the fact that several execution paths will be taken. So
the function represents the sum of all execution times
(hardware or software) scaled by a factor fi which
represents the percent from the total execution time
spent in the kernel associated with web i.

min(
N∑

i=1

(tswi ∗ SWi − thwi
∗HWi)) ∗ fi) (15)

VI. Results

The web-s constructed for the example from Section
2 are depicted in Figure 3. Web 2 is considered to be
the web for the execution of kernel 1 and containing
the whole control flow graph, while web 5 is consid-
ered to be the web for the execution of kernel 2 and
containing the whole graph. Applying the algorithm
we obtain the following constraints:

proc_A

parallel 8
kernel_1

proc_B

parallel 4
kernel_2

web
1

web
3

web
4

Fig. 3. An example SCFG with web-s

20 ∗HW1 + 20 ∗HW2 + 30 ∗HW4 + 30 ∗HW5 ≤ 100
30 ∗HW3 + 30 ∗HW4 + 30 ∗HW5 + 20 ∗HW2 ≤ 100

SW1 + HW1 + HW2 > 0
SW2 + HW3 + HW4 + HW5 > 0

SW1 + 0.125 ∗HW1 + 0.125 ∗HW2 ≤ 1
SW2 + 0.25 ∗HW3 + 0.25 ∗HW4 + 0.25 ∗HW5 ≤ 1

30 ∗HW1 − 60− 112 ∗ SW1 ≤ 0
45 ∗HW3 − 20− 112 ∗ SW1−

32 ∗ SW2 − 30 ∗HW1 ≤ 0
45 ∗HW4 − 80− 14 ∗ SW1−

32 ∗ SW2 − 30 ∗HW1 ≤ 0

The objective function (we have computed f1 = 0.5
and f2 = 0.14) is:

min(56 ∗ SW1 − 1 ∗HW1 − 1 ∗HW2

+4.48 ∗ SW2 − 0.42 ∗HW3

−0.42 ∗HW4 − 0.42 ∗HW5)

Solving the equations with a ILP solver we obtain
the following solution:

6

SW1 = 0 HW1 = 0 HW2 = 3
SW2 = 0 HW3 = 0 HW4 = 1

HW5 = 0

The interpretation of the solution is the following:
kernel 1 will be implemented in the FPGA 3 times,
before the application start, while kernel 2 will be im-
plemented in the first node of web1. The total execu-
tion time for this solution is 98.

VII. Conclusion and future work

Parallel algorithms pose a new challenge to com-
pilers and optimizers because of the exploding search
space for mapping, scheduling and allocation. Our al-
gorithm, while making some conservative assumptions
at cost of performance, does provide a solution to the
scheduling and allocation problem, that takes into ac-
count the most important factors involved - area and
execution time.

The limitations of the current algorithm can be
eliminated by considering multiple levels of paral-
lelism in the control flow graph and the memory band-
width impact of executing in parallel several instances
of the same kernel. The reconfiguration capabilities of
the device should also be taken into consideration, for
example parallel configuration or configuration of het-
erogeneous fabric.

References

[1] S. Vassiliadis, S. Wong, G. N. Gaydadjiev, K. Bertels,
G. Kuzmanov, and E. M. Panainte, “The molen poly-
morphic processor,” IEEE Transactions on Computers, pp.
1363– 1375, November 2004.

[2] E. M. Panainte, K. Bertels, and S. Vassiliadis, “Compiler-
driven fpga-area allocation for reconfigurable computing,”
in Proceedings of Design, Automation and Test in Europe
2006 (DATE 06), March 2006, pp. 369–374.

[3] S. Banerjee, E. Bozorgzadeh, and N. Dutt, “Parlgran: par-
allelism granularity selection for scheduling task chains on
dynamically reconfigurable architectures,” in ASP-DAC ’06:
Proceedings of the 2006 conference on Asia South Pacific de-
sign automation. New York, NY, USA: ACM Press, 2006,
pp. 491–496.

[4] Y. D. Yankova, G. Kuzmanov, K. Bertels, G. N. Gaydadjiev,
J. Lu, and S. Vassiliadis, “Dwarv: Delftworkbench auto-
mated reconfigurable vhdl generator,” in In Proceedings of
the 17th International Conference on Field Programmable
Logic and Applications (FPL07), August 2007, pp. 697–701.

