
Automatic Analysis of Memory Faulty Behavior in Defective

Memories

Zaid Al-Ars Said Hamdioui

Delft University of Technology, Faculty of EE, Mathematics and CS

Laboratory of Computer Engineering, Mekelweg 4, 2628 CD Delft, The Netherlands

E-mail: z.al-ars@tudelft.nl

Abstract: As the complexity of memory faulty behav-

ior increases, it is becoming more difficult to precisely

identify the faults the memory exhibits. Knowledge of

the precise set of faults is essential for designing an opti-

mal set of memory tests with low test time and high fault

coverage. This paper presents an automatic method to

analyze the observed faulty behavior and to map it pre-

cisely into corresponding faults. The method is unique

in its generality, making it possible to identify both static

as well as dynamic faults in the behavior. Depending on

the complexity of the performed fault analysis, different

algorithms may be used, with increasing level of com-

putational complexity.

Keywords: functional fault models, systematic fault

analysis, precise faults, fault identification, test opti-

mization.

1 Introduction

In the memory market today, memory tests are required

to have an increasingly higher fault coverage to ensure

product quality. On the other hand, high test costs and

the stiff competition in the memory market make short

test times an economic necessity. In order to achieve

the short test times, it is important to construct an opti-

mal test set, which requires the precise knowledge of the

functional fault models (FFMs) exhibited by the mem-

ory behavior. Once the FFMs in the faulty behavior

are precisely identified, a corresponding set of optimal

memory tests can be automatically generated [1, 2].

Previous work on FFM identification used functional

information to identify a limited number of FFMs, such

as some single-cell and two-cell faults [3, 5], while as-

suming that read operations work correctly. However,

the applied algorithms cannot be extended to account

for other more complex types of FFMs. More recent

fault analysis methods do not apply standard algorithms

to identify the observed faulty behavior [7] and usually

refer to electrical information (voltages and currents) to

identify the presence of a given type of FFM [9, 4, 8].

Since each memory has a distinct electrical design, us-

ing electrical information leads to an unclear presenta-

tion of fault analysis findings, and makes it difficult to

compare published results.

This paper provides a general fault analysis method,

applicable to all FFMs. The method only uses func-

tional information (cell contents and memory outputs)

and does not refer to electrical data to carry out the iden-

tification. Since the general method has an exponential

complexity, three algorithms are provided with increas-

ing levels of complexity to be applied, depending on the

type of analysis performed. In addition, examples are

given for each algorithm to show how to apply it in prac-

tice.

Section 2 in this paper describes the basics of func-

tional fault modeling. Section 3 defines the concept

of precise fault models and how they lead to design-

ing optimum tests. Then, Section 4 presents the general

method used to perform the precise fault analysis. This

method employs three different algorithms, discussed in

Section 5. Finally, Section 6 ends with the conclusions.

2 Basics of FFMs

Functional faults are informally understood as the devi-

ation of the observed memory behavior from the func-

tionally specified one, under a sequence of performed

memory operations. Therefore, two basic ingredients

are needed to define any FFM: (1) a sequence of per-

formed memory operations, and (2) a list of correspond-

ing deviations in the observed behavior from the ex-

pected one.

Any sequence of performed memory operations (S)

can be represented by the following notation:

dc1 ... dci
... dcm

Odc1 ... Odcj
... Odcn

where cx: cell address used,

O: type of operation on c, O ∈ {w, r},

d: initialization or written data into c, d ∈ {0, 1},

m: number of initializations, and

n: number of operations.

The initialization part is applied to m cells (denoted

as ci), while the operation part is applied to n cells (de-

noted as cj). Note that the value of d in rdcj
of the

operation part represents the expected value of the read

operation, which may be different from the actual read

value detected on the output in case of a faulty memory.

As an example of the notation, if an operation sequence

is denoted by 0cw1cr1c then the sequence starts by ac-

cessing cell c (which contains a 0) and writing a 1 into

it, then reading the written 1.

Once the operation that causes the fault is known, any

difference between the observed and expected mem-

ory behavior can be denoted by the following notation

<S/F/R>, referred to as a fault primitive (FP) [6].

S describes the operation sequence that sensitizes the

fault, F describes the value of the faulty cell (F ∈
{0, 1}) and R describes the logic output level of a read

operation (R ∈ {0, 1,−}). R has a value of 0 or 1 when

the fault is sensitized by a read operation, while the − is

used when a write operation sensitizes the fault. For ex-

ample, in the FP <0cw1c/0/−>, which is a transition

fault 1 (TF1), S = 0cw1c means that cell c is assumed

to have the initial value 0, after which a 1 is written into

c. The fault effect F = 0 indicates that after perform-

ing a w1 to c, as indicated by S, c remains in state 0.

The output of the read operation R = − indicates that S
does not end with a read operation. The notation for the

FP <0cw1c/0/−> can be simplified to <0w1/0/−>c.

FPs can be classified into different classes, depend-

ing on S. Let #C be the number of different memory

cells initialized (ci) or accessed (cj) in S, and let #O be

the number of operations (w or r) performed in S. For

example, if S = 0c10c2w1c2 then #C = 2 since two

cells (c1 and c2) are present in S, while #O = 1 since

only one operation is performed (w1 to c2).

Depending on #C, FPs can be divided into the fol-

lowing classes:

• If #C = 1 then the sensitized FP is called a single-

cell FP.

• If #C > 1 then the sensitized FP is called a cou-

pling FP. If #C = 2 then it is described as a two-

coupling FP or a two-cell FP. If #C = 3 then it is

described as a 3-coupling FP, etc.

In case an FP is a coupling FP (#C > 1) then one

of the cells in the S should be considered as a victim (v)

while the other cells are considered as aggressors (a).

In any FP, the described faulty behavior is related to a

victim while the aggressors are considered to contribute

to the fault.

Depending on #O, FPs can be divided into the fol-

lowing classes:

• If #O ≤ 1 then the sensitized FP is called a static

FP.

• If #O > 1 then the sensitized FP is called a dy-

namic FP. If #O = 2 then it is described as a

2-operation dynamic FP. If #O = 3 then it is de-

scribed as a 3-operation dynamic FP, etc.

Definition 1 A functional fault model (FFM) is a

non-empty set of fault primitives (FPs).

For example, the transition fault (TF) FFM consists

of 2 FPs: TF = {<0w1/0/−>, <1w0/1/−>}.

3 Precise FPs and optimal tests

In this section, the concept of precise FPs is defined.

Then, imprecise FPs are classified into either overspeci-

fied or underspecified FPs.

3.1 Definition of precise FPs

Assume that S has been performed on a defective mem-

ory, which results in sensitizing a given FPk. The re-

sulting FP has the form <Sk/Fk/Rk>, where Sk is the

sequence that sensitizes the fault. The general represen-

tation of Sk has the form:

dc1 ... dci
... dcm

Odc1 ... Odcj
... Odcn

For any given Sk, it is desired that all initializations

and operations are necessary to sensitize the fault, so

that if any of them changes, then a different faulty be-

havior or no faulty behavior results. On the other hand,

it is desired that Sk provides a sufficient description of

the conditions resulting in the fault, so that if other ini-

tializations or operations are performed before Sk then

the fault would still take place. Therefore, precise FPs

can be defined as follows.

Definition 2 An FP = <S/F/R> is said to be precise

if

1. The FP is not overspecified: this means that all dci

and Odcj
in S are necessary to sensitize the fault.

Overspecification results in an increased test time.

2. The FP is not underspecified: this means that

the dci
and Odcj

in S are sufficient to sensitize

the fault. Underspecification results in incomplete

fault coverage.

3.2 Overspecified FPs

An FP is said to be overspecified if some of the initial-

izations dci
or the operations Odcj

of S are not neces-

sary to sensitize the fault. Consequently, if FPo is an

overspecified FP then there is always a precise FP (FPp)

with initializations and operations that are all necessary

to sensitize the fault. If FPo only has an overspecified

part (and no underspecified part) and it is characterized

by #Oo and #Co, and if FPp is characterized by #Op

and #Cp, then one of the following relations is true:

1. #Cp < #Co,

2. #Op < #Oo, or

3. #Cp < #Co and #Op < #Oo.

The following example shows how FPs can be over-

specified according to #C.

Example 1 (overspecified in #C) Assume that a de-

fective memory has a static two-coupling fault such that

a logic 1 in the aggressor a forces a logic 1 in the victim

v. The S causing this fault is 1a0v (aggressor in state

1 and victim in state 0) and therefore this fault can be

described as FP1 = <1a0v/1/−> (aggressor in state 1

flips the victim from 0 to 1). Now assume that, while

performing fault analysis on this defective memory, S
= 1a1a′0v has been performed where in addition to a a

second cell is considered as an aggressor a′. If we as-

sume that a′ has no influence on the faulty behavior, S
will still fail as a result of the state of a thereby sensi-

tizing FP2 = <1a1a′0v/1/−>. Yet, this FP does not

precisely describe the faulty memory since it sets more

conditions than necessary (requiring a′ to contain 1) to

sensitize the fault. 2

3.3 Underspecified FPs

An FP is said to be underspecified if some initializations

dci
or operations Odcj

, necessary to sensitize the fault,

are not included in S as conditions to sensitize the fault.

Consequently, if FPu is an underspecified FP then there

is always a precise FP (FPp) with initializations and op-

erations sufficient to sensitize the fault. If FPu only has

an underspecified part (and no overspecified part) and it

is characterized by #Ou and #Cu, and if FPp is char-

acterized by #Op and #Cp, then one of the following

relations is true:

1. #Cp > #Cu,

2. #Op > #Ou, or

3. #Cp > #Cu and #Op > #Ou.

FPs can be underspecified due to insufficient initial-

izations or operations in S. For example, note that all

cells in a memory do have a state, whether this state is

included in S or not. Therefore, an S that does not in-

clude all cell initializations needed to sensitize a fault

can still result in a fault, simply because the cells hap-

pen to be initialized to the states that sensitize the fault.

Example 2 Assume that a defective memory has a

static two-coupling fault such that a logic 1 in the ag-

gressor a forces a logic 1 in the victim v. The S casing

this fault is 1a0v and therefore this fault can be described

as FP1 = <1a0v/1/−>. Now assume that, while per-

forming fault analysis on this defective memory, S = 0v

has been performed in which a was not considered to

influence the faulty behavior. If we assume that c acci-

dentally contains a logic 1, S will still fail thereby sensi-

tizing FP2 = <0v/1/−>. Yet this FP does not precisely

describe the faulty memory since it sets fewer conditions

than necessary (not requiring a to contain 1) to sensitize

the fault. 2

4 Fault analysis method

This section discusses a method that enables performing

precise fault analysis (i.e., enable identification of pre-

cise FPs). Identification of precise FPs is important to

generate precise FFMs and, eventually, to derive opti-

mal memory tests. The method, shown in Figure 1, has

four steps.

First, all possible combinations of relevant operations

sequences (S) should be generated in Step 1. Since it

is typical for a memory to have millions of cells and

since there are infinitely many possible performed op-

erations, it is not practically feasible, nor realistic, to

perform all Ss. Instead, in Step 1, the fault analysis will

be performed for a given neighborhood consisting of k
relevant cells ({c1, ..., ck}) and for a given number of

operations (#O). This restriction is realistic because it

has been shown [7, 8] that a defect only influences a few

with full

initializations
precise FPs

Identify
Generate FPs

with reduced

initializations

Apply

Step 1 Step 2 Step 3 Step 4

Give #O
FPs

Reduced

FPs

Full

FPs

Precise

1{c , ..., c }
Give

k
Generate Ss

Ss Ss

Figure 1. Fault analysis method to generate precise FPs.

cells, and Ss with only a few initializations and opera-

tions are needed to sensitize the faults caused by a de-

fect. Ss generated in this step should be fully initialized

(i.e., all relevant cells should be initialized to a given

value). As an example, assume that only one cell v is

considered relevant and that we limit #O to 1, then the

possible Ss are: 0v, 0vr0v , 0vw0v , 0vw1v , 1v, 1vr1v ,

1vw0v and 1vw1v .

In Step 2, the total faulty behavior of the memory

should be analyzed by applying all Ss generated in Step

1 to the memory. Each failing S is used to identify an

FP = <S/F/R>, a process that results in a number of

FPs where S has a full initialization of all relevant cells

(such FPs are referred to as full FPs). As an example,

applying the fully initialized Ss generated in Step 1 on a

defective memory might result in the the following full

FPs: <0vr0v/1/1> and <0vw0v/1/−>. Note that the

term full FPs refers to the fact that all FPs resulting from

Step 2 have all accessed cells initialized.

The resulting full FPs are taken as input for Step 3

which generates all possible FPs where S has a reduced

initialization part (referred to as reduced FPs). In this

step, a new set of FPs is generated with all possible per-

mutations of initializations of S in each full FP. This set

of FPs will serve in Step 4 to inspect whether initial-

ization are actually necessary in the FP description. As

an example, the full FP = <0vw0v/1/−> from Step 2

generates the reduced FP <w0v/1/−> where the ini-

tialization 0v is removed.

Finally, all FPs (full and reduced) are presented to

Step 4, where an algorithm is used to identify the pre-

cise FPs. In Section 5, algorithms used in Step 4 to

identify precise FPs are discussed in detail. The follow-

ing example shows how to apply Steps 1, 2 and 3 of the

fault analysis method shown in Figure 1. Examples of

Step 4 are given in Section 5.

Example 3 As input to Step 1, a set of relevant cells

({c1, ..., ck}) and the number of operations (#O) should

be given. If the cells are chosen to be {a1, a2, v} and

#O = 0 then Step 1 results in the following 8 Ss:

0a10a20v, 0a10a21v, 0a11a20v, 0a11a21v, 1a10a20v,

1a10a21v, 1a11a20v, and 1a11a21v.

Step 2 applies these 8 Ss to the memory under in-

vestigation and represents the failing Ss of them as

FPs. We assume that the following FPf is sensitized

<0a10a21v/0/−>, which is called a full FPf since it

contains all initializations of relevant cells. This full FPf

is taken by Step 3 to generate the FPrs with reduced ini-

tializations. Step 3 gives the following 3 reduced FPrs:

<1v/0/−>, <0a11v/0/−>, and <0a21v/0/−>. All

resulting 4 FPs (3 FPrs from Step 3 and the full

FPf from Step 2) are forwarded to Step 4 to inspect

which FPs of them are precise. Later in the paper

these 4 FPs are used, therefore we denote them here

as FP1 = <1v/0/−>, FP2 = <0a11v/0/−>, FP3 =

<0a21v/0/−>, and FP4 = <0a10a21v/0/−>. 2

Depending on the provided neighborhood of relevant

cells ({c1, ..., ck}) and the number of operations (#O),

the Ss generated in Step 1 of the fault analysis method

can be classified into 3 neighborhood types:

1. Static neighborhoods: no operations are performed

(neither on the aggressors nor on the victim)

2. Active neighborhoods: operations are only per-

formed on the aggressors

3. General neighborhoods: operations are performed

on the victim as well as the aggressors

In the next section, an algorithm is given for the static

neighborhood.

5 Precise identification algorithm

This section tackles the precise FP identification prob-

lem. Due to the limited space, only the algorithm for

static neighborhoods is shown in this paper.

Static neighborhoods mean that the used S has no

performed operations (#O = 0); hence, the cells in the

performed S are only observed. The general notation of

an S of this type can be described as:

Ss = dv da1 ... dai
... da(m−1)

where one of the cells is considered as a victim (v) while

the others (m− 1) cells are aggressors. This S does not

contain read operations and therefore it results in a fault

described by FPs = <Ss/F/−> where R = −. The

problem is to establish whether FPs is precise.

According to Definition 2, all initializations of S in

a precise FP should be necessary and sufficient to sen-

sitize the fault. For the special case of static neigh-

borhoods, it should be shown that all initializations in-

cluded in Ss are indeed needed to sensitize the fault and,

at the same time, none of the other (k−m) relevant cells

in the memory (in which k cells are considered relevant

to the faulty behavior; see Figure 1) participate in the

fault. In order to give an algorithm to do this, we need

the following definition.

Definition 3 Given any general sensitizing operation

sequence Sm, with an initialization part involving m
cells (0 ≤ k ≤ m), a memory permutation of S is

defined as an S′ with the same operation part as S, and

an extended initialization part in which the remaining

(k −m) relevant memory cells are initialized to a given

value.

S′ = dc1 ...dci
...dcm

dcm+1 ...dck
Odc1 ... Odcj

...Odcn

In order to show the necessity of a given initializa-

tion dci
in S (0 ≤ i ≤ m), the following procedure

should be performed. First, the memory behavior should

be inspected when the initialization data di for cell ci is

inverted to di. If the data inversion results in proper be-

havior, then the initialization dci
is necessary. However,

if the fault remains then this does not yet mean that dci
is

unnecessary, since it is possible that dci
does contribute

to the faulty behavior in collaboration with other initial-

izations in Ss. Therefore, dci
is only considered unnec-

essary if for all (2k−m) memory permutations of Ss, us-

ing dci
still results in a faulty behavior. This means that

dci
is considered necessary if there is at least one mem-

ory permutation of Ss that results in no faulty behavior

when dci
is replaced by dci

in Ss. This procedure should

be performed (m−1) times for each initialization in Ss.

In order to show that none of the (k − m) relevant

cells (not included in Ss) influence the FP, the follow-

ing should be done. All memory permutations of Ss

should be performed and the memory behavior is in-

spected. If any memory permutation of Ss results in no

faulty behavior, then there is a necessary initialization

not included in Ss. This means that the initializations in

Ss are only considered sufficient if none of the memory

permutations of Ss changes the faulty behavior.

The following algorithm gives two conditions which

the faulty behavior of the memory should satisfy in or-

der for FPs to be precise.

Algorithm 1 If performing Ss results in sensitizing

FPs = <Ss/F/−>, then FPs is precise if:

1. Check initializations are necessary: For each of

the (m − 1) aggressors in Ss the following should

be inspected. If the initialization value is inverted

then at least one of the 2k−m memory permuta-

tions given by S′ = dvda1 ... dai
... da(m−1)

dam
...

da(k−1)
, where (dm, ..., dk−1) ∈ {0, 1}k−m, does

not result in a fault (i.e., results in proper memory

behavior).

2. Check initializations are sufficient: Performing

all possible 2k−m memory permutations for Ss

given by S′ = dvda1 ... da(m−1)
dam

... da(k−1)
,

where (dm, ..., dk−1) ∈ {0, 1}k−m, always results

in <S′/F/−>.

This algorithm is not trivial in the way it assigns fault

primitives to the observed faulty behavior. To clarify

the algorithm, the following example is given, where the

algorithm results in an FP assignment that is intuitively

expected.

Example 4 This example is based on the faulty behav-

ior resulting from a defect injected into a DRAM design.

The defect is modeled at the electrical level by two re-

sistors from the victim to two aggressors, as shown in

Figure 2. All three cells, the victim and the two aggres-

sors, are located on the true bit line (BT). Let us consider

the way the state of the victim is affected by the states

of the two aggressors. Since we are only considering the

states of the cells while no operations are performed, the

three cells remain isolated from the rest of the memory.

Therefore, it is safe to say that only these three cells are

relevant (k = 3) and the rest of memory does not in-

fluence this faulty behavior. Assume that the victim is

initialized to logic 1 and that the state of the victim is

inspected after a time period τ < Tprech , where Tprech

is the cell array precharge time. It is possible to choose a

defect resistance value (Rdef), such that the aggressors

can only pull the victim down if both of them are set to

0, otherwise the victim remains 1 after τ . An overview

of the way the states of the aggressors affect the state of

the victim after a time period τ is given in Table 1.

R

VictimAggressor1
BT

Aggressor2

R
defdef

Figure 2. Electrical model of a DRAM with a defect connecting three

memory cells together.

Table 1. Effect of a1 and a2 on a stored 1 in v as discussed in

Example 4.

a1 a2 v v after τ

0 0 1 0

1 0 1 1

0 1 1 1

1 1 1 1

Applying Steps 1, 2, and 3 of the analysis method

in Figure 1 on this defective memory with the set

{a1, a2, v} and #O = 0 as input, gives the following

4 FPs: FP1 = <1v/0/−>, FP2 = <0a11v/0/−>, FP3

= <0a21v/0/−>, and FP4 = <0a10a21v/0/−>. (See

Example 3)

One would expect this faulty behavior to be rep-

resented by a three-cell FP as in <0a10a21v/0/−>.

Applying Condition 2 of Algorithm 1 to FP1 (with

S = 1v) shows that the following memory permutation

S′ = 1a11a21v results in a proper memory behavior.

This means that the initializations in FP1 are insuffi-

cient and that FP1 is underspecified. In the same way,

FP2 and FP3 are shown to be underspecified. Finally,

Algorithm 1 is applied to FP4. Inverting the initializa-

tion of a1 or a2 in FP4 results in a proper memory be-

havior, thereby validating Condition 1. In addition, all

relevant cells are initialized in FP4 meaning the initial-

izations are sufficient, thereby validating Condition 2.

In conclusion, according to Algorithm 1 the faulty be-

havior observed can be described by the three-cell FP4

= <0a10a21v/0/−>, as it is intuitively expected. 2

6 Conclusions

In this paper, an automatic fault analysis method has

been presented that precisely characterizes the faulty be-

havior of a memory. Two types of imprecision in FPs

have been identified—overspecified and underspecified

FPs. It has been shown that overspecified FPs result in

generating inefficient tests, while underspecified FPs re-

sult in tests with incomplete fault coverage. The pro-

posed fault analysis method is general and does not re-

fer to electrical data to specify the type of fault. The

method results in a set of precise FPs that are neither

overspecified nor underspecified. This enables deriving

optimal tests for the memory under analysis, resulting in

complete fault coverage with minimal test time.

References

[1] A.J. van de Goor and B. Smit, “Generating March

Tests Automatically,” in Proc. IEEE Int’l Test

Conf., 1994, pp. 870–878.

[2] K. Zarrineh, S.J. Upadhyaya and S. Chakravarty,

“A New Framework for Generating Optimal

March Tests for Memory Arrays,” in Proc. IEEE

Int’l Test Conf., 1998, pp. 73–82.

[3] V.N. Yarmolik, Y.V. Kilmets and A.J. van de

Goor, “Diagnostic RAM Tests,” in Automatic Con-

trol and Computer Science, vol. 31, no. 2, 1997,

pp. 11–16.

[4] R.D. Adams and E.S. Cooley, “Analysis of a De-

ceptive Destructive Read Memory Fault Model

and Recommended Testing,” in Proc. IEEE North

Atlantic Test Workshop, 1996.

[5] D. Niggermeyer, M. Redeker and E.M. Rud-

nick, “Diagnostic Testing of Embedded Memo-

ries Based on Output Tracing,” in Proc. IEEE

Int’l Workshop on Memory Technology, Design

and Testing, 2000, pp. 113–118.

[6] Z. Al-Ars and A.J. van de Goor, “Static and Dy-

namic Behavior of Memory Cell Array Spot De-

fects in Embedded DRAMs,” in IEEE Trans. on

Comp., vol. 52, no. 3, 2003, pp. 293-309.

[7] Z. Al-Ars, DRAM Fault Analysis and Test Genera-

tion, PhD thesis, Delft Univ. of Technology, Delft,

the Netherlands, 2005, http://ce.et.tudelft.nl/˜zaid/

[8] S. Hamdioui, Testing Static Random Access Mem-

ories: Defects, Fault Models and Test Patterns,

Kluwer Academic Publishers, Boston, MA, 2004.

[9] S. Naik, F. Agricola and W. Maly, “Failure Analy-

sis of High Density CMOS SRAMs,” in IEEE De-

sign and Test of Computers, vol. 10, no. 2, 1993,

pp. 13–23.

[10] Z. Al-Ars and A.J. van de Goor, “Modeling Tech-

niques and Testing for Partial Faults in Memory

Devices,” in Proc. Design, Automation and Test in

Europe, 2002, pp. 89–93.

