
A Comparison of Two SIMD Implementations of the 2D
Discrete Wavelet Transform

Asadollah Shahbahrami1, 2 Ben Juurlink1

1Computer Engineering Laboratory
Faculty of Electrical Engineering, Mathematics, and Computer Science

Delft University of Technology, The Netherlands
Phone: +31 15 2787362. Fax: +31 15 2784898.

E-mail: {shahbahrami,benj,stamatis}@ce.et.tudelft.nl
2Department of Electrical Engineering, Faculty of Engineering, The University of Guilan, Rasht, Iran.

Abstract—

There are generally two algorithms to traverse an image
to implement the 2D Discrete Wavelet Transform (DWT),
namely Row-Column Wavelet Transform (RCWT) and
Line-Based Wavelet Transform (LBWT). In the RCWT
algorithm, the 2D DWT is divided into two 1D DWT: hor-
izontal and vertical filtering. The horizontal filtering pro-
cesses the rows of the original image and stores the wavelet
coefficients in an auxiliary matrix. Thereafter, the verti-
cal filtering phase processes the columns of the auxiliary
matrix and stores the results back in the original matrix.
In the LBWT algorithm, the vertical filtering is started as
soon as a sufficient number of rows, as determined by the
filter length, has been horizontally processed. In this pa-
per, we provide answers to the following questions: first,
which implementation is easier to vectorize using SIMD in-
structions? Second, which SIMD implementation provides
more performance? Our initial results for Daubechies’
transform with four coefficients show that the SIMD im-
plementation of the LBWT algorithm is more complicated
than the SIMD implementation of the RCWT algorithm,
while the former algorithm is 1.60 times faster than the
latter algorithm for an image of size 4096× 4096.

Keywords: Discrete Wavelet Transform, Multime-
dia Extensions, SIMD.

I. Introduction

JPEG2000 is a wavelet-based image compression
standard. This standard has some important fea-
tures in compared to Discrete Cosine Transform
(DCT) block-based JPEG standard. For example, the
JPEG2000 standard provides performance superior at
low bit rates, decomposes the image into a multiple
resolution representation, and support region of inter-
est coding [11]. The main reason why the JPEG2000
standard provides these features is due to using the
Discrete Wavelet Transform (DWT). However, the

This research was supported in part by the Netherlands Organ-
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DWT is the main time consuming function in the
JPEG2000 standard and has higher computational re-
quirements than the DCT. Our results that have been
obtained by profiling the JasPer software tool kit [2]
shows that the 2D DWT consumes on average 46% of
the encoding time for lossless compression. For lossy
compression, the DWT even requires 68% of the to-
tal encoding time on average. Results presented by
other researchers [1,8] also show that the 2D DWT is
very time-consuming and consumes a significant part
of the total JPEG2000 encoding time. Consequently,
improving the performance of the 2D DWT is an im-
portant issue to increase the performance of the mul-
timedia compression standard.

One way to improve the performance of the 2D
DWT is exploiting the Data Level Parallelism (DLP)
by vectorization. This is because there is DLP in this
application. Vectorization determines and extracts
DLP, which employs the ability to execute the Single
Instruction on Multiple Data (SIMD) elements con-
currently. Recently, general-purpose processors have
been enhanced by the SIMD instructions such as Pen-
tium 4, which includes the SSE instruction set [19].

There are generally two algorithms to traverse an
image to implement the 2D DWT, namely Row-

Column Wavelet Transform (RCWT) and Line-Based

Wavelet Transform (LBWT) [5, 12]. In the RCWT
approach, the 2D DWT is divided into two 1D DWT,
namely horizontal filtering and vertical filtering. The
horizontal filtering filters whole rows of an image fol-
lowed by vertical filtering processes the columns. The
LBWT algorithm uses a single loop to process both
rows and columns together.

In this paper, we provide answers to the following
questions: first, which implementation is easier to vec-
torize using SIMD instructions? Second, which SIMD
implementation provides more performance? Our ini-
tial results for Daubechies’ transform with four coeffi-
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cients [24] show that the SIMD implementation of the
LBWT is 1.60 times faster than RCWT for an image
of size 4096 × 4096, while the former implementation
is more complicated than the latter implementation.

This paper is organized as follows. Section II de-
scribes the DWT and discusses the different tech-
niques to traverse an image to implement it. Sec-
tion III and Section IV describe the SIMD vector-
ization of the RCWT and LBWT algorithms, respec-
tively. The experimental evaluation is illustrated in
Section V. Related work is discussed in Section VI.
Finally, the paper ends with some conclusions in Sec-
tion VII.

II. Background

This section describes the DWT as well as RCWT
and LBWT techniques.

A. Discrete Wavelet Transform

The DWT was introduced by Crochiere et al. in
1976 [14]. The basic idea is the partitioning of the
image signal spectrum into several frequency bands
that are coded and transmitted separately. The DWT
provides a time-frequency representation of a signal.
The wavelet representation of a discrete signal X con-
sisting of N samples can be computed by convolving
X with the low-pass and high-pass filters and down-
sampling the output signal by 2, so that the two fre-
quency bands each contain N/2 samples. With the
correct choice of filters, this operation is reversible.
This process should be applied in both horizontal and
vertical directions for 2D signals. It decomposes the
original image into four subbands denoted by LL, LH,
HL, and HH, containing both low and high frequency
components [23]. In other words, this transform is
computed by performing lowpass and highpass filter-
ing of the image pixels as shows in Figure 1. The
low pass and high pass filters are denoted by h and g,
respectively. Figure 1 depicts the three levels DWT
decomposition. At each level, the high pass filter gen-
erates detail image pixels information, while the low
pass filter produces the coarse approximations of the
input image. For an N × M image, there are exactly
NM wavelet coefficients the same as the number of
image pixels.

There are different algorithms to implement 2D
DWT such as traditional convolution-based and lifting
scheme methods. The convolutional methods apply
filtering by multiplying the filter coefficients with the
input samples and accumulating the results. Their
implementation is almost similar to Finite Impulse

Response (FIR) implementation. The Daubechies’
transform with four coefficients [24] (Daub-4) and the
Cohen, Daubechies and Feauveau 9/7 filter [13] (CDF-
9/7) are examples of this category. The implementa-
tions of the convolutional methods such as Daub-4 and
CDF-9/7 are similar. In this work, we have focused
on the implementation of the Daub-4 transform. Nev-
ertheless, the proposed methodology is general and
equally applicable to other transforms.

The basic idea of the lifting scheme is to use the
correlation in the image pixels values to remove the
redundancy [15, 16]. In this paper, we focus on the
convolution-based transforms. In addition, we sup-
posse that the image data is stored as row-major order
in the memory.

In addition, there are different algorithms to tra-
verse an image to implement 2D DWT, namely Row-

Column Wavelet Transform (RCWT) and Line-Based

Wavelet Transform (LBWT) [3–6, 12]. These algo-
rithms are discussed in the following sections.

B. Row-Column Wavelet Transform Algorithm

In the RCWT algorithm, the 2D DWT is divided
into 2 1D DWT, namely horizontal filtering and verti-

cal filtering. The horizontal filtering usually processes
the rows of the original image and stores the wavelet
coefficients in an auxiliary matrix. Thereafter, the
vertical filtering phase processes the columns of the
auxiliary matrix and stores the results back to the
original matrix. In other words, this algorithm re-
quires that all lines be horizontally filtered before the
vertical filtering starts. In addition, the computa-
tional complexity of both horizontal filtering and ver-
tical filtering is the same. Each of these filtering is ap-
plied separately. Each N×M matrix requires NMcdwt

bytes of memory, where cdwt denotes the number of
bytes that represent one wavelet coefficient in mem-
ory. Figure 2 depicts both horizontal and vertical fil-
tering of this algorithm.

Figure 3 and Figure 4 depict the C implementation
of horizontal and vertical filtering, respectively, using
the Daub-4 transform for an N ×M image. Both low-
and high pass filter coefficients have been rounded to
four decimal points. Array low and high in figures
store these values. It is important to note that the
loop in the implementation of the vertical filtering in
Figure 4 has been interchanged. This is because the
straightforward implementation, which processes each
column entirely before advancing to the next column
is not able to exploit spatial locality. In order to im-
prove spatial locality loop interchange has been ap-
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Fig. 1. Three level DWT decomposition of an input image using filtering approach.
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Fig. 2. Horizontal and vertical filtering is separately applied in the row-column wavelet transform technique.

plied, which is a well-known compiler technique. The
loop interchange technique places the loop with in-
dex j after the loop with index i allowing to process
the same rows successively, thereby helping to reduce
cache misses. The experimental results that have been
presented in [20,21] clearly show that the implementa-
tions with interchanged loops are much more efficient
than the straightforward implementations. For this
reason, we have considered this algorithm for vertical
filtering of the RCWT method.

C. Line-Based Wavelet Transform Algorithm

The LBWT algorithm uses a single loop to process
both rows and columns together. The horizontal fil-
tering filters sufficient number of rows and stores the
processed coefficients of low-pass and high-pass values
in place in a small buffer. Thereafter, the vertical fil-
tering is started as soon as sufficient number of rows,
as determined by the filter length, have been horizon-
tally processed. Figure 5 depicts this algorithm.

The algorithm processes L rows, where L is num-
ber of filter length, and store the low- and high-pass
values interleave in a buffer of size L×M . Thereafter,
the columns of this small buffer are processed and the
calculated wavelet coefficients are stored in different
subbands in an auxiliary matrix in the order expected
by the quantization step. This means that the sepa-
ration of the interleaved subbands into separate low-
and high-pass subbands is implicitly performed with-
out an extra rearrangement step. In general, this al-
gorithm has three parts, namely prolog, main, and

epilog parts. The prolog and epilog are the begin-
ning and the end parts of the algorithm. These parts
are implemented separately. For example, for Daub-4
transform, two input image rows are horizontally pro-
cessed in the prolog part. The main part participates
the most codes of the program. Figure 6 represents
a part of the C implementation of the main part, for
the Daub-4 transform. As this figure depicts, there is
an outer loop with index i. Inside this loop, there are
two inner loops. The first inner loop with index j is
related to the horizontal filtering on the input matrix,
and the other inner loop with also index j is related
to the vertical filtering on the calculated results from
previous loop. In each iteration, the horizontal fil-
tering processes two consecutive image rows, and it
passes four rows of calculated wavelet coefficients to
the vertical filtering.

III. Vectorization of the RCWT algorithm

This section describes the vectorization of the
RCWT algorithm in order to utilize the SIMD instruc-
tions.

The SIMD implementation of the horizontal filter-
ing is more difficult than the vertical filtering. In other
words, vectorization of the horizontal filtering involves
a substantial reordering of operations. To explain the
reason for this, Figure 7 depicts the data flow graph
of the horizontal filtering, where x0i, 0 ≤ i < 8 are the
input samples and c0, . . . , c3 denote the filter coeffi-
cients. As this figure shows, four different input sam-
ples are multiplied with four different coefficients. The
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void Daub_4_horizontal() {

int i, j, jj;

float low[] ={-0.1294, 0.2241, 0.8365 , 0.4830};

float high[]={-0.4830, 0.8365, -0.2241, -0.1294};

for (i=0; i<N; i++)

for(j=0, jj=0; jj<M; j++, jj +=2) {

ou_image[i][j] = in_image[i][jj] * low[0] + in_image[i][jj + 1] * low[1]

+ in_image[i][jj + 2] * low[2] + in_image[i][jj + 3] * low[3];

ou_image[i][j + M/2] = in_image[i][jj] * high[0] + in_image[i][jj + 1] * high[1]

+ in_image[i][jj + 2] * high[2] + in_image[i][jj + 3] * high[3];

}

}

Fig. 3. C implementation of horizontal filtering using the Daub-4 transform.

void Daub_4_vertical() {

int i, j, jj;

float low[] ={-0.1294, 0.2241, 0.8365 , 0.4830};

float high[]={-0.4830, 0.8365, -0.2241, -0.1294};

for (i=0, ii=0; ii<N; i++, ii +=2)

for(j=0; j<M; j++) {

in_image[i][j] = ou_image[ii][j] * low[0] + ou_image[ii+1][j] * low[1] + ou_image[ii+2][j] * low[2]

+ ou_image[ii+3][j] * low[3];

in_image[i+N/2][j] = ou_image[ii][j] * high[0] + ou_image[ii+1][j]* high[1]+ou_image[ii+2][j] * high[2]

+ ou_image[ii+3][j]* high[3];

}

}

Fig. 4. C implementation of vertical filtering using the Daub-4 transform. Note that the loops have been interchanged
w.r.t. the straightforward implementation.
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Fig. 5. Processing both rows and columns in the line-based wavelet transform technique.

intermediate results are accumulated into one destina-
tion operand, while there are no such SIMD instruc-
tions in the SSE extension.

To vectorize the horizontal filtering, the data flow
graph in Figure 7 must be converted so that four even-
numbered values or four odd-numbered values should
be stored in an SIMD register. For example, four
even-numbered values of x00, x02, x04, x06 and four
odd-numbered values of x01, x03, x05, x07 are sepa-
rately stored in two SIMD registers. Many over-
head instructions are needed to reorder these input
sequences. Figure 8 depicts some of these overhead
instructions that used in the SIMD implementation
of the horizontal filtering using the SSE extension.

Another way of vectorizing the horizontal filtering
is using transposition. However, the overhead cost
that is involved for the transposition is larger than
the benefits of vectorization.

On the other hand, vectorization of the vertical
filtering is much easier than the horizontal filtering.
This is because the image pixels that can be processed
simultaneously are stored consecutively in memory. In
vertical filtering, instead of a single sample of a sin-
gle column, four horizontally neighboring samples are
read from memory into a packed register. Figure 9
illustrates the data flow graph of the vertical filtering.
It can be seen that four different input samples of each
row are multiplied with one filter coefficient simulta-
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void Both_Hori_Ver() {

int i, j, jj;

float low[] ={-0.1294, 0.2241, 0.8365 , 0.4830};

float high[]={-0.4830, 0.8365, -0.2241, -0.1294};

for (i=0, ii=0; i<N; ii++, i +=2) {

k = ( ii % 2 ) * 2;

for(j=0, jj=0; jj<M; j++, jj +=2) {

BufLow[k][jj] = in_image[i][jj] * low[0] + in_image[i][jj + 1] * low[1] +

in_image[i][jj + 2] * low[2] + in_image[i][jj + 3] * low[3];

BufLow[k][jj + 1] = in_image[i][jj] * high[0] + in_image[i][jj + 1] * high[1] +

in_image[i][jj + 2] * high[2] + in_image[i][jj + 3] * high[3];

BufLow[k+1][jj] = in_image[i+1][jj] * low[0] + in_image[i+1][jj + 1] * low[1] +

in_image[i+1][jj + 2] * low[2] + in_image[i+1][jj + 3] * low[3];

BufLow[k+1][jj + 1] = in_image[i+1][jj] * high[0] + in_image[i+1][jj + 1] * high[1] +

in_image[i+1][jj + 2] * high[2] + in_image[i+1][jj + 3] * high[3];

}

for(j=0, jj=0; jj<M; j++, jj +=2) {

ou_image[ii][j] = BufLow[0][jj] * low[0] + BufLow[1][jj] * low[1] +

BufLow[2][jj] * low[2] + BufLow[3][jj] * low[3];

ou_image[ii + N/2][j] = BufLow[0][jj] * high[0] + BufLow[1][jj] * high[1] +

BufLow[2][jj] * high[2] + BufLow[3][jj] * high[3];

ou_image[ii][j + M/2] = BufLow[0][jj + 1] * low[0] + BufLow[1][jj + 1] * low[1] +

BufLow[2][jj + 1] * low[2] + BufLow[3][jj + 1] * low[3];

ou_image[ii + N/2][j + M/2] = BufLow[0][jj + 1] * high[0] + BufLow[1][jj + 1] * high[1] +

BufLow[2][jj + 1] * high[2] + BufLow[2][jj + 1] * high[3];

}

}

}

Fig. 6. A part of the C implementation of the line-based wavelet transform algorithm for the Daub-4 transform.
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Fig. 7. Data flow graph of the horizontal filtering of the Daub-4 transform.
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movaps xmm0, (esi)

movaps xmm1,16(esi)

movaps xmm2, xmm0

unpcklps xmm0, xmm1

unpckhps xmm2, xmm1

movaps xmm1, xmm0

unpcklps xmm0, xmm2

unpckhps xmm1, xmm2

movups xmm2,8(esi)

movups xmm3,24(esi)

movaps xmm4, xmm2

unpcklps xmm2, xmm3

unpckhps xmm4, xmm3

movaps xmm3, xmm2

unpcklps xmm2, xmm4

unpckhps xmm3, xmm4

movaps xmm4, xmm0

movaps xmm5, xmm1

movaps xmm6, xmm2

movaps xmm7, xmm3

Fig. 8. SSE instructions needed to rearrange the input
sequences for the horizontal filtering of the Daub-4 trans-
form.

neously. Each filter coefficient should be spread across
four different subwords of a media register. After four
multiplications of four consecutive rows with different
coefficients, the results of each column are added to
each other. Finally, four wavelet coefficients are cal-
culated simultaneously. There are SIMD instructions
in the SIMD architectures for these operations.

IV. Vectorization of the LBWT Algorithm

For SIMD implementation of the LBWT, we have
defined a circular queue buffer of size L×M , where L
is the filter length and M is the image height. In the
LBWT algorithm, L − 2 rows of the input image are
horizontally processed in the prolog part and stored
in the L − 2 rows of the buffer. In the main loop of
the program, first, two extra rows of the input image
are horizontally processed and stored in the last two
rows of the buffer. Second, the filled buffer is verti-
cally filtered and the calculated wavelet coefficient are
stored in an auxiliary matrix in the order expected by
the quantization step. In the next iteration of the
main loop, only two rows of the input matrix are hor-
izontally processed and stored in the first two rows
of the buffer. This is because the remaining L − 2
rows from 2 to L − 1 are reused for the next itera-
tion. In addition, for another iteration, rows from 4

Processor Intel Pentium 4

CPU Clock Speed 3.0GHz

L1 Data Cache 8 KBytes, 4-way set associative,
64 Bytes line size

L2 Cache 512 KBytes, 8-way set associative,
64 Bytes line size, On Chip

TABLE I

Parameters of the experimental platform.

to L − 1 and rows 0 and 1 are reused. We have used
this buffer as a circular queue and in each iteration two
rows are sequentially replaced with wavelet coefficient,
which have been horizontally obtained. Figure 10 de-
picts three iterations of this algorithm. As this figure
shows, each four low-pass and four high-pass values
are interleaved. This is because of the 4-way SIMD
implementation.

V. Performance Evaluation

In this section, we evaluate the performance of the
RCWT and LBWT algorithms.

A. Experimental Setup

Four programs have been implemented. Two pro-
grams have been completely written in C. One per-
forms the 2D DWT using RCWT algorithm, the other
performs the 2D DWT using LBWT algorithm. These
programs will be referred to as C-RCWT and C-
LBWT, respectively. They were compiled using the
gcc compiler with optimization level -O2. Other two
programs have been written using SSE instruction set.
These programs are the vectorized versions of the C-
RCWT and C-LBWT programs, which are referred
to as SSE-RCWT and SSE-LBWT, respectively. In
all programs, the first level decomposition has been
implemented and the input images are considered as
a single tile.

As experimental platform, we have employed a
3.0GHz Pentium 4 processor. The main architectural
parameters of our system are summarized in Table I.

All programs were executed on a lightly loaded sys-
tem. Performance was measured using the IA-32 cy-
cle counter [17]. Cycle counters provide a very precise
tool for measuring the time that elapses between two
different points in the execution of a program [7, 22].
In order to eliminate the effects of context switch-
ing and compulsory cache misses, the K-best mea-
surement scheme and a warmed up cache have been
used [7]. That means that the function is repeatedly
(K times) executed and the fastest time is recorded.
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Fig. 9. Data flow graph of the vertical filtering of the Daub-4 transform.
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Fig. 11. Speedup of the C-LBWT and SSE-RCWT over
C-RCWT as well as the speedup of the SSE-LBWT over
C-LBWT for the first level decomposition of the 2D DWT
using different image size.

Executing the function at least once before starting
the measurement minimizes the effects of both in-
struction and data cache misses.

B. Performance Evaluation Result

Figure 11 depicts the speedup of the C-LBWT and
SSE-RCWT over C-RCWT as well as the speedup of
the SSE-LBWT over C-LBWT for the first level de-
composition of the 2D DWT. The performance of the
C-LBWT program is almost the same as C-RCWT.
The speedup of the SSE-RCWT implementation for
128 × 128 image size is 2.63, while the speedup for
image sizes larger than 128 × 128 is 1.22 on average.
The main reason for this is that for small image sizes,
almost all reads hit the L1 data cache except for com-
pulsory misses. Therefore, the speedup obtained is
the speedup resulting from SIMD vectorization. For
larger image sizes, the speedup decreases because this
SIMD implementation has become memory-bound. In
other words, in the vertical filtering, four input rows
that are needed to compute one output row can be
kept in cache for small image sizes, while for larger
image sizes they cannot. This means that for larger
image sizes, in addition to compulsory misses, there
are capacity misses.

As can be seen in Figure 11, the speedup of the SSE-
LBWT over the corresponding C implementation for
128 × 128 image size is 2.81, while for large image
sizes it is 1.75 on average. In general, the SSE-LBWT
implementation yields more performance than SSE-
RCWT. The performance improvement of the SSE-
LBWT over SSE-RCWT ranges from 1.10 to 1.60.

C. Discussion

The SSE-LBWT improves performance more than
the SSE-RCWT, while its implementation is more
complicated. As mentioned in Section II-C, this al-
gorithm has three phases: prolog, main, and epilog.

The horizontal filtering is implemented in both prolog
and main parts. In the prolog part, the horizontal fil-
tering is used to process two input image rows. The
vertical filtering is also implemented in both main and
epilog phases. The vertical filtering is repeated once
in the epilog part to calculate the last output row. In
other words, the prolog and epilog parts are employed
to correctly handle the first and last output rows. The
SIMD implementations of these parts have to be im-
plemented individually. This makes the code size of
the program increase. In addition, there are many
repetitions of instructions. For example, each hori-
zontal and vertical processing has to be implemented
twice.

Although, the speedup of the SSE-RCWT is smaller
than the speedup of the SSE-LBWT, its code size is
smaller than SSE-LBWT. This is because each hori-
zontal and vertical filtering is implemented only once.
In addition, there are no any prolog and epilog parts
in this algorithm.

VI. Related Work

SIMD vectorization of the 2D DWT has been con-
sidered in [9,10,18]. Chaver et al. [9] used SSE and the
CDF-9/7 filter. They focused on automatic vector-
ization and did not consider assembly-level program-
ming. The Intel compiler, however, can only vectorize
simple loops, and therefore some manual code mod-
ifications had to be performed. Furthermore, only
horizontal filtering could be automatically vectorized
(they assumed column-major order). They also com-
bined aggregation with a line-based approach for their
SIMD implementation. In [10] they have vectorized
vertical filtering of CDF-9/7 by hand using built-in
SSE functions. In order to do so, however, an ad-
ditional data transposition stage was required, which
reduces the benefits of SIMD vectorization.

Kutil [18] has implemented the (9, 7) lifting scheme
using built-in SSE functions. He proposed a single
loop approach to SIMD vectorization. In this ap-
proach horizontal and vertical filtering are combined
into a single loop. This is called line-based compu-
tation in [12] and pipeline computation in [9], where
it has been used to vectorize the CDF-9/7 transform.
The single-loop approach requires a buffer whose size
is equal to 16 rows of data. If this buffer does not fit
in the cache, the temporal locality will be reduced.
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VII. Conclusions

In this paper, we have focused on comparing dif-
ferent SIMD implementations of the 2D DWT. There
are generally two algorithms to traverse an image to
implement the 2D DWT. The first algorithm is row-
column wavelet transform, which divides the 2D DWT
into two 1D DWT, namely horizontal and vertical fil-
tering. The horizontal filtering filters the whole rows
of the original image and stores the intermediate re-
sults in an auxiliary matrix. Thereafter, the vertical
filtering filters the whole columns of the auxiliary ma-
trix and stores the results back in the original matrix.
On the other hand, in the LBWT algorithm, the ver-
tical filtering is started as soon as a sufficient number
of rows have been horizontally filtered. In this re-
search paper, we have found that the vectorization of
the RCWT algorithm is easier than LBWT, while the
performance improvement of the SIMD implementa-
tion of LBWT is larger than RCWT. For instance, our
results for Daub-4 transform showed that the SIMD
implementation of the LBWT is 1.60 times faster than
the SIMD implementation of the RCWT for an image
of size 4096 × 4096.
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