
1

Slack Exploitation for Aggressive Dynamic Power
Reduction in SoC

Aleksandar Milutinović Kees Goossens Gerard J.M. Smit
University of Twente NXP Research, Eindhoven & University of Twente

Enschede, The Netherlands Delft University of Technology Enschede, The Netherlands
a.milutinovic@utwente.nl Delft, The Netherlands g.j.m.smit@ewi.utwente.nl

kees.goossens@nxp.com

Abstract—
The increasing power consumption of today’s system-on-

chip (SoC) outpaces the trend of increasing battery capac-
ity. The applications offered to customers grow tremen-
dously too, a trend that is accelerating in the future. This
yields stronger requirements for lower power consumption.
During design, a system is dimensioned to worst-case work-
load requirements. Most of the time, workload is far below
this level, which results in slack in some parts of the sys-
tem. Our idea is to exploit this available slack by using ad-
equate variants of dynamic voltage and frequency scaling
and power gating. For scalability reasons, we commence
our research with local dynamic adaptive power and fre-
quency scaling, based on the slack observed at run time.
This paper presents the motivations and possible directions
for our research.

Keywords—system-on-chip, tiled architecture, dynamic
power reduction, slack exploitation.

I. Introduction

Handheld mobile electronic devices have been peo-
ple’s companions in everyday lives for decades now.
As the number and their variety is growing rapidly
nowadays, the trend goes towards fewer but more
complex devices. Instead of many, ultimately there
will be a single device with integrated all features and
services desired by user, such as various communica-
tion services, entertainment and business applications.

This paper has following organization. We describe
the scope of our research in Section II. The current
trends related to design of SoC are outlined in Sec-
tion III. In Section IV describes the problems ad-
dressed. The related work is discussed in Section V.
The description of the proposed solution in Section VI.
Finally, Section VIII concludes the paper.

II. Scope

An architecture in our scope is a low-power MPSoC
for handheld devices, a heterogeneous multi-resource
tiled architecture with different types of resources
(Figure 1), including

DDR controller DDR controller

I/O controller I/O controller

ARM
Trimedia

Trimedia DSP

DSP

FPGA

FPGA

DSP

Fig. 1. Tiled architecture of heterogeneous MPSoC.

1. processing – general purpose processors (e.g.
ARM, Trimedia), DSP, dedicated ASIC IPs, coarse
grain reconfigurable processors (e.g. Montium [7]);
2. memory – on-chip memory (SRAM) and controllers
for external memory;
3. I/O controllers, and
4. interconnect – tiles are connected through a net-
work on chip [5] or using buses.

All tiles are power-manageable, to scale down and
up their supply voltage and frequency, as well as
switching the clock and power on and off. This should
be done independently per resource or per power do-
main.

Applications in the scope are streaming applica-
tions, characterized by their periodic nature. Dead-
lines given by applications are the main guidelines for
our power management solutions. Aperiodic applica-

2

tions are also in the scope, as they are common in the
systems today, but they will be treated as best-effort
service. We assume that an application is composed
of jobs, each of which is a set of multiple dependent
tasks that are mapped on one or more tiles.

III. Trends

A. MPSoC

The general trend for SoC design is to build sys-
tems using reusable cores with more specialized IPs
and connect them through a network on chip. Inte-
gration capabilities are constantly growing and it is
certain that the number of tiles will be hundreds or
even thousands. These manycores, as they are called,
are presumably the solution for design issues raised
by rapidly growing demands on the customer side.

B. Applications

The number of services and applications offered to
the customer is growing for every product generation
and new applications are released even more often.
Applications like voice communication for example,
lost their supremacy among end-users demands. A
variety of multimedia and video communication ap-
plications will push system design towards higher re-
quirements. Usually, within a single application there
is more than one mode in which the application can
run. Differences in processing requirements between
the modes show considerable variations. This leads to
slack time and not completely utilized resources. Ad-
ditionally, the composition of tasks and dependencies
within an application mode varies over time. The sit-
uation is worse when multiple applications and their
modes should run together on the system. The num-
ber of these use-cases explodes and it is not feasible
to analyze them in full detail at the design-time (as
pointed out by Hansson [6]).

Another source of variation is the input data. It
may influence and may lead to changes in application
modes and also varies within the mode. A task con-
sumes input data in data blocks, usually called data
tokens that correspond to a sample or a video frame.

Processing requirements of successive data tokens
generally varies while the amount of time given to it
by worst-case execution time is constant. New video
codecs and standards, for example, introduce more
complex data transformations and differences in pro-
cessing the same amount of data tokens are getting
bigger. The same holds for wireless communication
protocols.

Having in mind this variety of applications, the
handheld devices are going in the direction of general
purpose computers, but mobility and energy reasons
keep them still in domain of embedded systems.

C. Transistors

Transistors are getting smaller and less reliable.
Variations originating from the fabrication process
dictate the performance of silicon during operation,
and the difference between nominal and actual per-
formance grows rapidly. The variations have a spatial
component over a die. This results in a difference
between actual and worst-case energy usage. In the
current paradigm of design for the worst case, these
variations result in an overdimensioned system, which
is not fully utilized at run-time.

D. Power and Energy

As mobile devices are powered by batteries and the
trend for battery capacity is outrun by the trends of
energy consumption required by applications, research
is paying more attention to possibilities for saving
power. Dynamic power is increased due to the grow-
ing number of components and is relevant only when
a core is active. On the other hand, energy of the bat-
tery is continuously drawn by static power while the
component is powered on. Predictions for a few next
coming process technologies claim that static power
will increase to the amount which is comparable to
dynamic power.

IV. Problems

In order to design a system capable of fulfilling all
requirements, designers mostly take into account the
worst-case requirements of applications, plus some ex-
tra performance as a margin for reliability and toler-
ance issues. The worst case typically happens very
rarely and the actual case is usually using just a small
part of available resources. This way the system is
poorly utilized most of the time and unnecessarily
burns energy more than needed when constantly run
at maximal voltage and frequency. This is currently
one of the limiting factors for accepting a product.
Besides the energy waste, silicon area is not used very
efficiently even if it is power gated. Thus, there are
two directions in solving this problem, whether the
system is optimized for energy or silicon area.

Power management (PM) aims to solve this prob-
lem. PM adjusts the operating voltage and frequency
to the current work load and thus system operates
more energy efficiently. But, this solves only the part

3

of the problem. Slowing down and speeding up is not
instantaneously, so it is effective only if there is enough
slack in the system and there is sufficient time to meet
the deadline. In some cases this fine-grained slack can
be accumulated and used later for the same or the
next period. Generally, extra buffering is needed for
this, which can have a considerable cost. Otherwise,
not all the available slack is used by PM. Due to the
input data part of variation in workload is not known
at run time.

The other approach is to dimension the system to
reduced worst-case requirements, and pay the price
in the resulting quality degradation through deadline
misses when worst case happens. This can be seen
as trade-off between quality and available resources of
the system and it is done at design time.

At the end we point out the complex trade-off be-
tween resources (silicon area), power and quality of
service (QoS): optimize the execution for power, while
providing a certain level of quality, which can be also
dynamically changed during execution, in order to fa-
vorite either longer playtime or improve quality. The
system has to be dimensioned with this feature in
mind.

V. Related work

The speed of voltage and frequency scaling and
power gating infrastructure, used by current power
management implementations, limits the minimal
amount of slack that can be used to save energy.
Shorter periods of inactivity are not used and some-
times even not reported as slack. The general argu-
ment is that the amount of energy saved this way
would be negligible. Nevertheless, when that happens
regularly, e.g. in every iteration but with different
duration, the cumulative amount of wasted energy is
again considerable. The most common approach is to
just accumulate slack and then use it as the whole.
The on-chip digital power supply control described
in [9] offers fast response time for changing supplied
voltage. What is missing from this work is the policy
of the PM that can fully utilize its speed capabilities.

The common method for observing system utiliza-
tion is observing the utilization of the main general
purpose processor. The operating system periodically
checks the status whether the processor is busy or
idling, and then counts the current period atomically
as busy or idle. After averaging, it reports the system
occupation. This happens in periods typically rang-
ing from 1 ms to 10 ms, so it works very coarsely, and
introduces certain inaccuracy in measurement and in

observation of slack. We think that more accurate
measurements, supported by hardware, would be ben-
eficial to PM and bring opportunities to reduce power
consumption. The notion of progress from the start to
end of a task execution should provide early detection
of slack produced by variable execution time.

One of the most common methodologies to improve
the capabilities of PM is to speculate on the workload
of upcoming tasks or their iterations. Most of the
work done is based on the predictions of future work-
load based on run-time history and statistical profiling
of the workload. The fact is that prediction cannot be
always sufficiently accurate.

We point out two reasons for erring a prediction.
The first one is the desired feature of PM that it has
to be universal and thus completely decoupled from
applications. Experiments show that optimal gain of
PM is achieved if it reacts with the same periodicity
as the application, and further when they are phase
aligned. This synchronization is hard when applica-
tions do not give any information. The second reason
is that a notion of progress would be beneficial if it
exposes the slack not only just before deadline or after
completion of a task. We intend to make use of slack
which is fine grained, and which has been out of the
scope of current PM methods.

Tools could provide considerable amount of infor-
mation to PM. For example, Gheorghita [3] suggests a
concept based on application scenarios and use-cases.
The same author suggests automatic detection of the
scenarios and their profiling and characterization [4].
The limitation is that only big differences in scenarios
can be used for management because of inertia of the
support for voltage and frequency scaling and switch-
ing infrastructure. On characterisation of the work-
load and determining the worst-case execution time
of the task segments there are different approaches.
Lee [8] uses hierarchical finite state machines and a
synchronous data flow model to calculate the remain-
ing workload in actual execution case at run-time.
Azavedo [2] uses the compiler to place the checkpoints
in program code at the boundaries of basic blocks.
The checkpoints carry user-defined time constraints.
At these points processor recalculates and changes the
frequency and voltage. The overhead of calculation
and taking proper action introduces high overhead in
computation and in execution time of the task, if pro-
cessor has to idle during the transition.

AbouGhazaleh [1] presents the collaboration be-
tween compiler and operating system for purposes of
power management for real-time applications. The

4

compiler inserts the instrumentation code into the
program code. This code evaluates the worst-case re-
maining cycles at run-time. Periodically, the interrupt
service routine observes this number and changes the
speed of the processor in order to consume the least
amount of energy. This method requires intervals be-
tween interrupts to be sufficiently short to satisfy all
the paths in control flow diagram, and because of that
can affect the granularity and limit the power man-
agement effect.

As stated before, optimal savings are achievable
when PM and applications are synchronized, so the
workload and progress information used for future
performance prediction within power management is
correct and trustworthy. The phase mismatch can
lead to incorrect prediction and decisions, and to in-
creased number of missed deadlines. For that reason
we think the application should provide support to
power management in form of period and synchro-
nization hints.

VI. Proposal

The main goal of the research is to maximize the
playtime of a battery powered device. We propose
dynamic reduction of power consumption by slowing
down the system when it can afford longer execution
at lower performance level or to shut down parts of
the system when they are idle for a longer period. Our
research will focus on saving dynamic energy as the
primary goal, using the DVFS as well as clock and
power gating, closely coupled to current processing
workload progress and current performance.

Our intention is to provide hardware and software
solutions that will efficiently support power manage-
ment on the system level based on credits. The com-
piler will translate the deadlines and application hints
into the credits which will be fed to the hardware sup-
port. The credits will be obtained by tools, compilers
and profilers, with possibility for hints to be given
directly by application programmers, also in form of
credits.

Direct support for monitoring events of interest
and closely observing the progress of a task will be
another feature implemented by hardware support.
That will improve early detection of slack, whether
negative or positive and thus, prevent deadline misses
or save power. Hardware that we propose will pro-
vide the support for quick and computationally non-
demanding slack detection towards the just-on-time
deadline completion.

The hardware part of proposed solution has two

Pwr & Clk
Switch

NI

Time
Ref.

IP

I$

D$

Clock

C
lo

ck

V
ol

ta
ge

Tile

MEM

Credit Manager

CREG

Voltage

NoC

DCNT

Fig. 2. Organization of a tile.

major components, as shown in Figure 2. The first
component is the switching infrastructure for DVFS,
power and clock gating. This is represented by Power
and Clock Switch in Figure 2. This component is
almost completely developed in many variants [9] and
we will use it without major changes.

The second hardware component is the support
for the credit based system, call the Credit Manager
(CM). It receives credits from tiles, processes them
and if there is a slack reacts in appropriate way by
giving instructions to Power and Clock Switch. For
these purposes the CM contains a deadline counter
(DCNT), giving a notion of the time remaining until
the deadline. The Cm also contains a credit register
(CREG), which keeps track of the amount of workload
to be done until the deadline. Every tile or domain
will have a CM with the responsibility to: 1) receive
credits and deadline indications from the IP, 2) esti-
mate and adjust the voltage and frequency condition
based on the workload and deadline, 3) report slack
time, deadline misses or completion, and 4) option-
ally, report performance counters and slack remained
after task completion.

The basic idea is that the compiler, during com-
pilation, provides credits based on estimation and/or
profiling of the program code. The credits will be re-

5

lated to cycle count needed by a certain segment of
the program code. The sum of the credits given to the
segments on the critical path in control flow graph of
a task is equal to the amount of credits that repre-
sent the deadline. At the start of the code, the IP
block reports to CM the total amount of credits for
the task, and the task deadline. These are stored in
the CREG and DCNT. The deadline counter is decre-
mented after a certain period of time that represents
the normalized value of one credit. After a segment is
executed, the IP block will report amount of credits
associated with the segment to CM. They will be sub-
tracted from CREG. When the task finishes, the value
of CREG is zero but the DCNT can contain zero or
a positive value. When a segment uses its worst-case
execution time (WCET) and just meets its deadline,
the value of DCNT is zero. Otherwise, the task fin-
ishes before the deadline, and the value of deadline
counter will be the slack generated during the task ex-
ecution. The IP can get this information and use it ac-
cording to its slack exploitation policy. The deadline
counter value cannot be negative because the charac-
terization of worst-case execution time is conservative,
and actual-case execution time cannot exceed it. Ide-
ally, if credit system is coupled with enabled power
manager, as we show below, the slack at the deadline
will be zero. The frequency calculation is the ratio of
remained workload (the value of CREG) and the time
left before the deadline (the value of DCNT).

The described credit system is able to use slack, for
example from the following sources:
1. different task execution paths, e.g. different
branches are executed;
2. workload variation, e.g. variable count of loop it-
erations;
3. variable I/O operation execution time;
4. variable instruction time due to the complexity of
instructions and their operands, and
5. cache memory misses.

The following example shows one possible variant
of the proposed credit system and the way the slack
is exposed. Figure 3 shows an example C program;
the corresponding control flow graph is shown in Fig-
ure 4. The edges of the graph represent the segments
of the program code and the (fictitious) credits asso-
ciated with them are given in parentheses. The nodes
are the bounds of program code segments and they
are associated with the amount of credits for subtrac-
tion when task reaches them. They have the maxi-
mal value of all incoming edges, e.g. for node 4 it is
max{C,G} = 30.

1 : i n i t i a l i s e () ; //A
2 : i =10; sum=0; //A
3 : whi le (a [i]>0 && i >0) { //B F
4 : sum+=a [i] ; //B F
5 : i−−; //B F
6 : }
7 : i f (sum>max) {
8 : x=sum+(sum−max)∗ r a t e ; //C
9 : f o r (i =0; i <10; i++) //C

10 : a [i]=a [i]∗ c o e f [i]− o f f s e t 1 ; //C
11 : } e l s e {
12 x=sum ; //G
13 : f o r (i =0; i <10; i++) //G
14 : a [i]−=o f f s e t 2 ; //G
15 : }
16 : output (x) ; //D
17 : c leanup () ; //E

Fig. 3. Example C program.

1

2

3

4

5

6

C(30)

D(5)

E(30)

G(10)

−30

−5

−10

−25

+100

−30

A(25)

B(10) F(0)

Fig. 4. Control flow graph of C program with credits.

TABLE I
credit values for different executions.

critical non-critical workload
node path path variation
1© (+100) 100 100 100
2© (-25) 75 75 90 (+15)
3© (-10) 65 75 (+10) 85 (+5)
4© (-30) 35 65 (+20) 75 (+20)
5© (-5) 30 60 74 (+4)
6© (-30) 0 30 44

6

TABLE II
Using slack for DVFS.

WCET case case 1 – no DVFS case 2 – with DVFS
node CREG/DCNT time f CREG/DCNT time f CREG/DCNT time f

1© 100/100 0 1.00 100/100 0 1.00 100/100 0 1.00
2© 75/75 25 1.00 75/90 10 1.00 75/90 10 0.83
3© 65/65 35 1.00 65/85 15 1.00 65/84 16 0.77
4© 35/35 65 1.00 35/75 25 1.00 35/71 29 0.49
5© 30/30 70 1.00 30/74 26 1.00 30/69 31 0.43
6© 0/0 100 - 0/44 56 - 0/0 100 -

Table I shows three execution scenarios. The val-
ues in cell are the values of the credit counter and the
deadline counter respectively. The assumption is that
subtraction of credits is done instantaneously when
the node is reached. The first column represents the
worst-case execution scenario. When the sequence fol-
lows the critical path A-B-C-D-E, there is no slack.
If execution follows the non-critical path A-F-G-D-
E and each segment executes to its WCET, there is
slack of 30. The reason is that the while loop does
not execute because the entering condition and that if
statement follows the else branch. The third scenario
illustrates an actual-case execution when the execu-
tion of a segment lasts less than the WCET, because
of the input data variation. The sequence is A-B-G-
D-E, where the I/O in segment A takes only 40% of
its WCET, and while loop executes 5 of maximal 10
iterations and the I/O operation in segment D uses
20% of its WCET. At the end, the total accumulated
slack is 44. The reason for the shorter execution time
of segment A can, for example, be cache misses, pre-
dicted in its WCET, but never happened.

We will use the last scenario of the previous ex-
ample to illustrate how detected slack can be used
for power reduction with DVFS. For purposes of this
example we will assume ideal DVFS mechanism, i.e.
arbitrary level of voltage and frequency can be used
within the operating range and that transitions be-
tween the levels are instantaneous. Table II gives two
possible variants for PM reaction based on the same
actual case. For easier comparison, the table includes
WCET scenario, and two cases of the same ACET sce-
nario, with and without slack exploitation. All cases
are given with the values of CREG and DCNT, time-
line and determined frequency. In case 1, DVFS is not
enabled so the IP runs always with maximal frequency
and in case 2 shows how frequency is lowered to the
ratio of CREG and DCNT. As a consequence, execu-

tion times of the same segments in case 2 are longer
than in case 1, due to the lower operating frequency.
The execution time of the segments are longer than
corresponding local deadlines, but the global deadline
for the task will be met. This way the slack is not nec-
essarily exploited immediately, but over the remained
task execution time. It also prevents the system of
making transitions very often which can be contra ef-
fective. It is clear that the last segment (E) will use
all the generated slack if it runs in its WCET. Other-
wise, only the slack of the last segment will remain at
the completion of task, but scaled with the operating
frequency. We expect that in real-life use-cases of this
method, the amount of slack and the power reduction
will be much bigger.

VII. Discussion

Through these two simple examples we have shown
a simple variant of the hardware and software solution
that we propose. It uses the compiler inserted credits
as a notion of progress mechanism and based on that
hardware makes the decisions how to scale frequency
and voltage.

The described approach has as a very valuable fea-
ture that it is performance neutral. If proposed solu-
tion is implemented as specified, the whole tile always
execute in WCET, for almost every actual case. Al-
though, performance can be better on average, this
approach still satisfies the specification requirements
and consume less power, if not close to optimal.

Another benefit of this approach is the local slack
exploitation: all tiles are power-managed indepen-
dently. It is simple, and there is no need for commu-
nication between power management modules. It is
easy to combine this local approach with the system-
wide slack reclamation methods.

The credit system can be modified to include some
events of interest, like cache misses, exceptional in-

7

terrupts etc. This events can be detected, converted
into credits and added to CREG. Another variant
is instead to count deadline always with the critical
path, to include some relaxed variant of WCET with
optional segments. In that case, when some addi-
tional segment has to be executed, credits are added
to CREG on the start and then subtracted at the end
of the segment.

Another extension of the credit system can be cu-
mulative deadline approach, e.g. if there are buffers
with input or output data for the task. The DCNT
and CREG can contain the values extended for over
multiple task iterations.

The credit system granularity has a big range.
Credits may represents workload in cycle count, num-
ber of instructions, number of segment iterations up to
or user-related metric. Off course, the more fine grain
approach is, the more aggressive power management
will be, with bigger power reduction.

VIII. Conclusion and Future work

We have presented in this paper the motivation and
scope of our research. Our main goal is to provide the
combined hardware and software solution for power
management of the heterogeneous MPSoC. We want
to obtain this goal by exploiting dynamically gener-
ated slack using DVFS methods and gating the clock
and power. Example has shown how the credit based
system can detect and use the slack locally. This is
achieved by the collaboration of tools and proposed
hardware support for power management.

As the part of the future work, we want to investi-
gate different variants of such credit system with dif-
ferent types of the system resources. We also want
to extend this solution for the whole system, as well
as couple it with the QoS management. The inten-
tion is not to cause any QoS degradation by actions
of power management. The hardware support will
also be closely coupled with QoS management and
promptly react accordingly to its changes.

References

[1] N. AbouGhazaleh, D. Mossé, B. Childers, and R. Melhem.
Collaborative operating system and compiler power man-
agement for real-time applications. ACM Transactions on
Embedded Computing Systems (TECS), 5(1):82–115, 2006.

[2] A. Azevedo, I. Issenin, R. Cornea, R. Gupta, N. Dutt,
A. Veidenbaum, and A. Nicolau. Profile-based dynamic volt-
age scheduling using program checkpoints. Design, Automa-
tion and Test in Europe Conference and Exhibition, 2002.
Proceedings, pages 168–175, 2002.

[3] S. Gheorghita, T. Basten, and H. Corporaal. Intra-task
scenario-aware voltage scheduling. Proceedings of the 2005

international conference on Compilers, architectures and
synthesis for embedded systems, pages 177–184, 2005.

[4] S. Gheorghita, S. Stuijk, T. Basten, and H. Corporaal. Au-
tomatic scenario detection for improved WCET estimation.
Proceedings of the 42nd annual conference on Design au-
tomation, pages 101–104, 2005.

[5] K. Goossens, J. Dielissen, and A. Rădulescu. The Æthereal
network on chip: Concepts, architectures, and implementa-
tions. IEEE Design and Test of Computers, 22(5):414–421,
Sept-Oct 2005.

[6] A. Hansson, M. Coenen, and K. Goossens. Undisrupted
quality-of-service during reconfiguration of multiple appli-
cations in networks on chip. Proceedings of the conference
on Design, automation and test in Europe, pages 954–959,
2007.

[7] P. Heysters. Coarse-grained Reconfigurable Processors:
Flexibility Meets Efficiency. Centre for Telematics and In-
formation Technology, 2004.

[8] S. Lee, K. Choi, and S. Yoo. An intra-task dynamic voltage
scaling method for SoC design with hierarchical FSM and
synchronous dataflow model. Proceedings of the 2002 inter-
national symposium on Low power electronics and design,
pages 84–87, 2002.

[9] M. Meijer, J. Pineda de Gyvez, and R. Otten. On-chip digi-
tal power supply control for system-on-chip applications. In
ISLPED ’05: Proceedings of the 2005 international sympo-
sium on Low power electronics and design, pages 311–314,
New York, 2005. ACM Press.

