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Abstract

In this paper, we introduce the FLUX interconnection networks, a scheme where the interconnections of a parallel sys-
tem are established on demand before or during program execution. We present a programming paradigm which can be
utilized to make the proposed solution feasible. We perform several experiments to show the viability of our approach and
the potential performance gain of using the most suitable network configuration for a given parallel program. We exper-
iment on several case studies, evaluate different algorithms, developed for meshes or trees, and map them on “grid”-like or
reconfigurable physical interconnection networks. Our results clearly show that, based on the underlying network, different
mappings are suitable for different algorithms. Even for a single algorithm different mappings are more appropriate, when
the processing data size, the number of utilized nodes or the hardware cost of the processing elements changes. The impli-
cation of the above is that changing interconnection topologies/mappings (dynamically) on demand depending on the pro-

gram needs can be beneficial.
© 2007 Elsevier B.V. All rights reserved.

Keywords: Interconnection networks; Multiprocessor parallel systems

1. Introduction

In computer engineering, improvements have
been achieved with the technological advances in
terms of area, which presumably increases exponen-
tially, delay and chip I/O count, which we postulate
increases at best linearly. It has been postulated that,
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under the conjectures stated above, microarchitec-
tures provide a substantial increase in performance
in uniprocessor systems. Based on experimental evi-
dence, however, it has been indicated that it is doubt-
ful such a claim can be substantiated in the recent
past [2]. Given that uniprocessor microarchitectures
may experience some difficulties to exploit techno-
logical advances, it can be envisioned that multipro-
cessors could be the answer to the performance
quest. In the very near future, it is almost certain that
the VLSI technology will allow single chip multicore
general purpose processors to become feasible (pos-
sibly exceeding the order of 10", where x > 2). Mul-
tiprocessor multichip parallel systems are not new
(e.g. see ILTAC 1V [3]), and it will appear that using
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past multiprocessor experiences and applying them
in single chip VLSI implementations will provide a
solution to general purpose uniprocessor perfor-
mance scalability. While multiprocessors can be
implemented on a chip the VLSI design of single
chip massive multiprocessors is only one of the chal-
lenges and by no means the only one. Simply stated,
being able to fit numerous processors in a single
chip, does not necessarily imply that the perfor-
mance increases substantially. It is well known, that
in the past only a small fraction of peak performance
has been achieved in parallel systems. There are
numerous problems that prohibit top performance
achievements. For example, assuming shared mem-
ory paradigms, scalability is not guaranteed a priori.
Clearly, coherence does not scale (not easily) and
most definitely creates costs that substantially dimin-
ish potential multiprocessor advantages. Addition-
ally, software performance is not “portable”. That
is, software development for a system at time ¢
may not scale to a system developed at time ¢+ 1.
One of the fundamental reasons, but by no means
the only one, is that software does not “mutate” to
take into account new network topologies, while sel-
dom parallel systems use a single network topology
from one design point to the next.

In this paper, we address a single challenge
regarding multiprocessor parallel systems. We con-
sider the effects the interconnects have on the porta-
bility and scalability of software performance. It is a
well known fact that developed algorithms have in
mind an interconnection network. Traditionally
speaking, interconnection networks are rigid and
often (actually usually) the interconnection network
changes from one design point to the next. A conse-
quence of the above is that algorithms and software,
when ported to a new family of multiprocessor par-
allel systems, will not scale in terms of performance
(at least) and new software development has to be
under way if performance is critical. We introduce
a new approach, diametrically opposite to the exist-
ing network proposals, for adaptable networks sta-
ted by the following: Interconnection networks are
provided (dynamically) on demand to suit the needs
of an applicationlalgorithm/program. We describe
some potential implementation and propose a pro-
gramming paradigm that may allow the intercon-
nects to be fused with traditional models. Finally,
we provide experimental evidence suggesting that
our proposal is promising.

The paper is organized as follows: In Section 2
we discuss previous solutions in interconnects of

multiprocessor parallel systems and point out their
performance drawbacks. In Section 3, we introduce
the FLUX networks, present several implementa-
tion schemes and provide a programming paradigm
to change dynamically on demand processing and
interconnecting of processors (general purpose or
not) allowing them to adapt to the interconnect
demands of software. In Section 4, we provide ini-
tial experimental data supporting our approach.
Finally, in Section 5 we present our conclusions.

2. Background

Currently, multiprocessor systems are designed
based on a specific hardwired interconnect topol-
ogy. That is, the designer provides the physical
structure of the interconnects having in mind a reg-
ular network topology such as crossbar, cube, fat-
tree, etc. Furthermore, the network structure is fixed
and rigid. For example, once the designer fixes the
link width, it will remain the same for the entire life
time of a parallel system. Additionally, since the
physical structure of the network is rigid, the way
communications occur may be restricted. Even
when it is found that different communication/net-
work schemes will be more beneficial to achieve bet-
ter performance because of the rigid network
restrictions (e.g. fixed buffer space, bus width, etc.)
in most circumstances the benefits can not be
achieved. Clearly for these circumstances a different
physical organization is required and such an orga-
nization can not be accommodated by fixed net-
works. For example, as depicted in Fig. 1, an
application at time “¢#” requires a 2D mesh topol-
ogy, while at time “z + 17 the lower processing ele-
ments (PEs) need to transfer large amount of data

Router

Processing
I Element

a— 64 bits |

Fig. 1. Adapting interconnects on demand.
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to the middle PE. A fixed/rigid network would not
be able to alleviate these communication require-
ments, resulting in substantial performance draw-
backs. On the contrary, in reconfigurable fabrics
the interconnects can be reconfigured, e.g. changing
the PE router, link width and buffering size, (and
possibly the communication scheme and algorithm)
to accommodate the communication traffic. In the
example of Fig. 1, extra links and buffering in the
middle PE are added and several PE routers change.
In addition, the width of several links changes, that
is, critical links become wider (64 instead of 32 bits),
while links which are not often used become nar-
rower (8 instead of 32 bits). This way, in FLUX net-
works the hardware resources are better utilized to
facilitate the communication requirements of the
current parallel application/program phase and
maximize performance.

Obviously, some classes of applications benefit
from a specific physical structure. A general purpose
parallel system is build however to accommodate a
multiplicity of application classes. Given that a pro-
vided interconnection network and communication
scheme does not fit a pre-specified interconnection
mechanism, not all applications can substantially
benefit from parallel processing.

Before we introduce the proposed approach in
detail, we first describe the concept of logical and
physical networks. We denote logical network as
the network which the application designer has in
mind. For example, the logical network structure
of an application developed for binary trees is a bin-
ary-tree with specific guidelines about the workload
distribution and the nodes communication. The
physical network is the network available by the
designed chip. As described earlier the logical and
physical networks do not always match, therefore,
the logical structure somehow has to be mapped into
the physical network. In this case, no matter what
the logical structure is, the physical network con-
straints the mapping and the logical network con-
nections have to follow the physical paths, usually
through intermediate (switching) nodes. Therefore,
the link delay of the physical network is the lowest
delay that a logical link mapping can achieve. When
mapping is performed, several parameters have to be
taken into account such as congestion, dilation and
expansion [4], while how successful this mapping is
determines how efficient the communication will be
and therefore the performance of the entire system.

To alleviate performance penalties, numerous
researchers have provided algorithms for mapping

communication networks needed for an application
on to different interconnections [5,4,6,7]. Consider-
ing VLSI chip structures, the current designer
practices may not be the most appropriate. Cur-
rently, algorithms should be created to suit the mul-
tiprocessor system topology in order to maximize
performance. Alternatively, we propose the inter-
connection network to be provided (dynamically) on
demand to fit an algorithm’slprogram’s communica-
tion needs. In order to allow for on demand inter-
connection networks, connections have to be
“adapted”. This is possible because reconfigurable
technologies have an underlying network that can
be “modified”. Consequently, it may be of benefit
for multiprocessors using reconfigurable fabric, to
not commit in advance the underlying network
structure into specific interconnects.

3. FLUX interconnects on demand

In FLUX Networks, the network is the one to be
adapted instead of the parallel programs. To do so,
the underlying physical network requires to provide
higher flexibility than the current fixed networks.
Obviously, this flexibility comes at the expense of
delay and possibly area overhead, which is a fair
price to pay, just like in previous experience in gen-
eral purpose computers. Concerning the delay over-
head, it is a fact that an application of a logical
network “A” when ported in a fixed network “A4”
will execute substantially faster than in the FLUX
Networks. However, when other parallel applica-
tions of different logical networks (which is the gen-
eral case) are ported into a fixed network “A4” and
the FLUX Networks, then the latter may be faster
since it can adapt to any new communication needs.
The FLUX Networks require increased hardware
resources to provide flexibility and accommodate
arbitrary network installments. However, techno-
logical improvements provide more metal layers
which may be used for the FLUX network underly-
ing physical network. In addition, fixed networks
also require significant amount of hardware
resources. Each fixed network switch may often be
as large as the 32-bit RISC processor it serves. A
fixed network often uses complicated (adaptive)
routing algorithms and large buffers (i.e. packet/
reorder buffers) to overcome the fact that it is fixed
(cannot match multiple logical networks) and to
bypass congested communication hot spots. Conse-
quently, fixed networks also require significant area
resources, may increase network latency, and
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possibly need techniques such as packet reordering
to guarantee correct communication. On the con-
trary, in FLUX Networks simple network structures
can be efficient to achieve high performance for a
given traffic pattern, since they can be reinstalled
and adapted again to any new communication
pattern.

To exemplify our approach, consider the multi-
processor system of Fig. 2 which consists of several
processing engines (PEs) physically connected on a
physical interconnection network. Note that the
underlying physical network structure may be highly
irregular and chosen by the designer to best ““fit in”’
the technology he/she is considering rather than a
pre-determined regular structure as proposed by all
existing network topologies. In the case of an algo-
rithm implemented for binary-trees (BT), this
scheme, given a mapping algorithm, can connect
the PEs in a BT topology. Similarly, for an algorithm
that is suitable for a mesh interconnect, the network
topology can be a mesh. Of course, this flexibility is
limited by the resources available for the intercon-
nection. This means that the number of the PEs that
can be connected in a specific topology depends on
the routing resources available (wires and switch
boxes). In the FLUX Networks, PEs interconnects
can change during the execution of a single program.
In case different phases of a program ““prefer’” differ-
ent topologies, then the interconnection network
could change at run-time. Consequently, at time ¢
the interconnection topology can be a BT and at

Algorithm
Phase 1

Physical o

Interconnection

Phase 2

Algorithm

0302 0S ORI
FE6H =

time 7 + 1 can change to a 2D mesh. More precisely,
in each phase we reassign the nodes and the connec-
tions required to match the communication needs of
the BT at time ¢ and the mesh at time ¢ + 1. Obvi-
ously, for a given physical network, logical topolo-
gies can be mapped more or less -efficiently
depending on the logical network and the mapping
algorithm to the physical structure.

Any network mapping algorithm might leave
some of the resources of the underlying network
“unused”. That means that a network structure
per se may not be needed and processors could be
connected on demand at point to point networks
if there are available connections (unused routing
resources). When a BT is mapped into the topology
of Fig. 2, unused links can be used to connect two
PEs additionally to the utilized interconnection net-
work (Fig. 3). In this example, a direct/hot connec-
tion between PEs #2 and #4 can be established
besides the existing binary-tree (BT) interconnect
(in dark lines). This connection should be setr when
needed and released when the data exchange is fin-

Mapping 1
time: t

Mapping 2

Fig. 2. FLUX network on demand.
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ished. That is, if on a specific time ‘“processor 2’
needs to communicate with “processor 4 without
going via the existing BT network (that is for the
mapped BT the path through processors: 2—5-7—
6-4), because of a critical event, then a direct con-
nection is established (and afterwards released) on
demand.

3.1. FLUX networks in reconfigurable hardware

Reconfigurable technologies have an underlying
network that can be (dynamically) “modified”, thus
they are excellent potential for FLUX implementa-
tion platforms. Next, we consider using reconfigura-
ble hardware as the underlying network of the
FLUX interconnects. Current FPGA physical inter-
connects can approximate the logical network of an
application (i.e. one-to-one mapping), since they use
different types of wires to traverse short, medium or
long distances [8]. This way, distant logic blocks can
be connected avoiding most of the in between switch
boxes and the delay they introduce. The entire inter-
connection network, or part of it can be reconfig-
ured on demand using the programming paradigm
described in the next section and the MOLEN
ISA extensions [9]. Reconfigurable FLUX networks
can be implemented using numerous schemes
including (but not limited by) the ones described
next.

Reconfigurable Interconnects with staticldynamic
PE placement: Fig. 4 depicts a multiprocessor sys-
tem that consists of several PEs and a reconfigurable
part that can interconnect them in different arbi-

NoC

Reconfigu-
rable Area

I/F to NoC

PE

Reconfigu-
rable

Algorithm Phase 1

Algorithm Phase 2

trary topologies. For instance, in the case of an
algorithm implemented for binary-trees (BT logical
network), this scheme can connect the PEs in a
BT topology. For an algorithm that is suitable for
a mesh interconnect, the interconnection can be a
mesh. Clearly, the topologies will follow different
physical links to match the logical structure of each
algorithm or phase of a program. The reconfigura-
ble FLUX networks can also be adjusted at run-
time during the execution of a single program.
The run-time reconfiguration overhead of the net-
work is technology dependent. When run-time
reconfiguration is decided, it should be clear that the
performance gain, which results from the network
switching, is greater than the reconfiguration over-
head, otherwise adapting the interconnects will be
proven inefficient. In this first scheme, each PE con-
sists of two parts, the first part is fixed and executes
part of the program, while the second part involves
the PE interface with the interconnection network.
Since the network is reconfigurable, the interface
between the PE and the interconnection network
should also be reconfigurable in order to apply dif-
ferent routing algorithms for different topologies.
Thus, this latter part of the PE should include a
routing module and an interface between the vari-
able number of network links and the processor
core.

The above scheme implies that the processing
engines are fixed (statically placed, hardcores). Sta-
tic PE placement may restrict the network routing.
To overcome this restriction, an alternative solution
is that PEs are softcores (Fig. 5). In this case, the

Mapping 1
time: t

—)

Mapping 2
time: t+1

—

Fig. 4. Reconfigurable FLUX networks with fixed PE placement.
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Fig. 5. Reconfigurable FLUX networks without fixed PE placement.

interconnection topology and the PE placement can
change over time (in different phases of an applica-
tion). Consequently, when a network topology is
decided, both the network and the PEs are reconfig-
ured. However, this approach introduces different
performance and reconfiguration overheads. In
order to compare the above two alternatives, we
first assume a hybrid technology where the PEs
would be implemented in ASIC and between PEs
reconfigurable hardware would be available for
the interconnect. In this case, the PEs could operate
faster than if they were implemented in reconfigura-
ble hardware. Even if both approaches were imple-
mented in reconfigurable hardware, then in the first
case the network reconfiguration process could be
substantially faster. That is because in the first case
the reconfigured area (only the network) is much
smaller and can be chosen to be partially reconfig-
ured. Furthermore, the PEs may continue running
their part of the algorithm (without communicating
with each other), while this does not hold true for
the second case.

Direct “point-to-point” & chaotic interconnects:
The FPGA routing architectures provide an
underlying ““‘unused” reconfigurable network. Con-
sequently, the general direct point-to point connec-
tions scheme can be applied in reconfigurable
hardware. Fig. 6 illustrates a direct point-to-point
connection in reconfigurable hardware. The PEs
#1 and #5 are directly connected besides the exist-
ing Ring topology. This way for example, PE #1
can send data to PE #5 spending a single hop
instead of using the ring network and spending four
hops. In addition, depending on the amount of
available wires/resources the width of the direct
“point-to-point” connection may be increased so

2] o) [

.0 1

Fig. 6. Direct “point-to-point” connection.

that higher communication throughput can be
achieved. The PE interconnections can be build on
dynamically established connections (chaotic net-
work) if some specific conditions are satisfied. This
approach discards any fixed network topology to
directly interconnect PEs based on the communica-
tion requests of the application and the available
connections. Apart from the complex routing of
the wires that this solution requires, a second issue
is timing. Not knowing in advance the wire length
of each connection implies that proper mechanisms
are required to guarantee correct communication
between the PEs (GALS, fully asynchronous con-
nections, etc.). Furthermore, a priori analysis of
the routing resources is required to determine the
maximum communication load that the intercon-
nection network can handle. For each connection
request, a specific methodology should be followed:
a routing path should be established; then the data
should be sent and last, the connection should be
released. Having said the above, in case the underly-
ing structure is partially reconfigurable dynamically
in acceptable speeds, the point-to-point and the cha-
otic networks could be of interest.

Technology considerations: An interesting ques-
tion regarding what has been presented is which of
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the proposed mechanisms can be implemented by
currently available technologies and which are the
directions for making the remaining mechanism a
reality. Current technology allows for reconfigura-
tion to be done before program execution. Thus
loading an interconnection network before program
execution is readily available. Regarding dynamic
reconfiguration, we first note that a network is used
for substantially long time (e.g. scientific applica-
tions) in parallel systems that perform massive data
operations with the same network requirements. In
[10], we showed that FLUX networks as the traffic
load increases can asymptotically approach the the-
oretical latency of a network that always provides
the most suitable topology without any reconfigura-
tion overhead. The suggestion is that, the reconfigu-
ration overhead is negligible, when a traffic load of
specific characteristics runs for sufficient time." Con-
sequently, it can be suggested that interconnects can
be dynamically changed with current technology.
Direct point-to-point and chaotic interconnects
could be difficult to implement in current technolo-
gies because they require fine-grain and fast recon-
figurability. However, current technologies such as
Xilinx allow partial reconfiguration of relatively
large areas, which may span the entire height of a
device and a fraction of one column and require
few milliseconds [12]. This restriction can provide
substantial difficulties for point-to-point and cha-
otic interconnects. Numerous approaches can be
envisioned, however, outside of the scope of the
paper, to change current commercial chips and
incorporate smaller dynamic reconfigurability slides
to achieve point-to-point and chaotic interconnects
in the near future.

3.2. Programming paradigm

In our proposal we do not consider using a fixed
network for all the parallel applications ported on
the system. Instead, we let the program decide at
run-time how to more efficiently use the physical
connections and which network configuration to
install. In order for a network to exhibit these prop-
erties, explicit network calls should be added to the
programming paradigm to support adapting the
physical interconnect on demand. In the following,

! This time is technology dependent, relative to the reconfigu-
ration time of the device (which in current FPGAs is a few tens of
milliseconds [11]) and finally depends on the size of the
reconfiguration area.

we discuss the way of adapting an interconnection
network using ISA extensions similar to the Molen
paradigm [9]. Hardware implementations of arbi-
trary interconnection networks can be instantiated
under software or hardware control before program
execution or at runtime. They are detected “on-the-
fly” or pre-determined “off-line” at hardware/soft-
ware co-design stage using application partitioning,
profiling, monitoring, etc. A master-slave parallel
processing model is considered, where the program
running on the master processor being responsible
for (at least) the following:

e Node mapping: distribute the workload to the
PEs of the system (possibly generate it as well)
and specify an address per node.

e Connection mapping: Specify the communica-
tion path between each pair of nodes.

e Run the master/manager process,
sequential consistency of the program.

e Control and synchronize the PEs (activate PEs,
receive a message when a PE job is finished)

e May perform part of the work itself.

keeping

When it is needed to configure the network, then
a SET (parameters) instruction is necessary (similar
to Molen paradigm [9]). As depicted in Fig. 7, the
parameters specify the way the logical network
(according to the communication needs of the appli-
cation) maps into the physical network. The param-
eters are at least the following:

e Node addressing/mapping.

e Workload assignment to nodes (including num-
ber of utilized nodes).

e Establish routing paths (mapping of the logical
paths to the physical ones)

SET network #1 SET Network
parameters:
PROGRAM
- Number of nodes
SET network #2 | - Node.addressing-
mapping
PROEERAM - Connections
mapping
. - Routing (algorithm,
SET network #N policies)
- etc.
PROGRAM

O

Fig. 7. Execution of the SET instruction before or during
different phases of an application.
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It should be noted that in difference with existing
programming paradigms, our proposal allows usual
program structures to co-exist with the direct expo-
sure and controlling of the physical network. In the
case of direct point-to-point connections, the com-
munication paths are either scheduled statically at
compile time or allocated dynamically. When a
request is allocated dynamically, it should be checked
first whether the required resources are available
(wires and switches), and then that the destination
PE(s) is/are available to receive a new connection.
The procedure could be based on circuit switching
and repeated in a round trip delay request fashion,
in case a direct connection is not possible, due to lim-
itations. When all necessary requirements are met the
direct connection(s) can be configured using a partial
SET (parameters) instruction. Lastly, when the nec-
essary data is exchanged the connection should be
released, meaning that the utilized resources should
be again available for other possible use.

The Molen organization [9] (Fig. 8), can be con-
sidered for implementing the FLUX Networks in
reconfigurable hardware. When it is needed to con-
figure the network, then a SET (address) instruction
is necessary. The SET instruction utilizes an address
to a memory location where the first element of the
configuration bitstream is to be loaded from. This
way, numerous different network configurations
are allowed to be available in the configuration
memory. The bitstream may include the configura-
tion of the entire interconnection network or part
of it (the partial set P_SET (address) Molen instruc-
tion). Furthermore, the PEs configuration (includ-
ing routing information) and possibly the initial
data of each local PE memory (instructions and

data, etc.) may also be part of the bitstream.
Fig. 8 illustrates a possible reconfigurable FLUX
network organization using a control processor.
The control processor manages the reconfiguration
of the reconfigurable multiprocessor system. An
arbiter detects the SET instructions and subse-
quently activates the reconfiguration process utiliz-
ing the microcode unit. The bitstream is
downloaded from the memory to the reconfigurable
unit through the data load/store unit and the data
memory multiplexer. When the reconfiguration is
accomplished the microcode unit sends a signal to
the arbiter and the following instructions are sent
to the control processor in order to continue the
execution of the remaining program. Finally, the
synchronization of the PEs can be accomplished
through the exchange registers bank and the
MOVTX and MOVFX Molen instructions.

4. Experimental results

In this section, we provide evidence suggesting the
viability of our proposal when the underlying net-
work is either fixed or reconfigurable. First, we eval-
uate several sample parallel problems using logical
interconnects that are binary-trees (BT) or 2D
meshes. The physical interconnections are assumed
to be a 2D mesh. That is, for specific mesh logical
topologies the links are physical = logical, while for
the BT logical topologies usually physical # logical.
We use a regular physical structure rather than irreg-
ular only as an example and for simplicity of discus-
sion (most readers are familiar with such structures
and there is plenty of literature for mapping a regular
network structure into another also regular struc-

| Main Memory

e
ARBITER |
|
A4
vy VY
Control
Processor A
A | Microcode !
| -
v UMt
Exchange
Registers [€<—>

Fig. 8. A FLUX parallel system scheme with reconfigurable FLUX networks.
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Fig. 9. Binary-tree and mesh logical structures mapped on a 2D mesh physical underlying network.

ture). Fig. 9 illustrates the above, where on the left-
hand side column is the parallel system composed
of its processors and the physical interconnection
network, the middle column is the logical BT and
mesh structures, and on the right-hand column are
mappings of these structures into the physical net-
work. Second, we use reconfigurable hardware, set
a network area constraint, and evaluate a single par-
allel algorithm when changing parameters such as
the processing data size and the PE hardware cost.

4.1. Embedding a binary-tree into a 2D mesh

Efficient strategies and algorithms can be devel-
oped to map algorithms in multiprocessor systems
and several researchers discuss embedding one inter-
connection network into another [5,4,6,7]. In order
to evaluate the performance of an algorithm devel-
oped for BTs into a 2D mesh interconnection, we
first need to use an algorithm that maps the BT into
the 2D mesh. Next, we describe two different ways

of embedding a BT topology into a mesh and ana-
lyze their advantages and disadvantages.

Lee and Choi mapping: The first mapping algo-
rithm, proposed by Lee and Choi [13], results on a
maximum congestion” of 2 when a BT with 27 — |
nodes is mapped into a v/2° x v/2° mesh (optimum
expansion®). The dilation® of this mapping
is @ + 1 for the edges between the second and third
level of the tree. In many cases however, BT net-
works suffer from a communication bottleneck at
higher levels of the tree [14,15] and, when mapped

2 When embedding topology 4 into topology B, edge conges-
tion is the maximum number of A edges, mapped onto any B
edge.

* When embedding topology A4 into topology B, expansion of
the mapping is the ratio of number of the B nodes to the number
of A nodes. For the above mapping, that is 2},2:.

4 When embedding topology A4 into topology B, dilation is the
maximum number of links in B that any edge of A4 is mapped
onto.
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into a mesh with such a dilation, the communication
bottleneck becomes even greater.

H-trees: Another way of mapping a BT into a
mesh is the well known H-trees described in [16].
H-trees result on edge congestion one and a smaller
dilation @ compared to the previous algo-
rithm. On the other hand, the expansion of the map-
ping is asymptotically twice the optimum, since a

pil ptl . .

(2T — 1) X <2T — 1) mesh is required to map a

BT of (27 — 1) nodes.

4.2. Evaluation of several case studies

In this section, we evaluate the performance of
several parallel problems (case studies), more suit-
able when solved in a specific topology. For each
case study, we utilize either a fixed or reconfigurable
physical network. In order to run BT algorithms a
2D mesh physical network, we map the BTs into
the mesh networks using the mappings described
above. All network performance results are simu-
lated, considering that all networks use packet
switching and wormhole routing, routers have sin-
gle flit buffers, while the minimum latency per router
is one clock cycle. Finally, in all cases single flit
packets are assumed sufficient for each communica-
tion transaction between two nodes.

Find the maximum in BTs and meshes: Given a set
of n numbers (in our experiments n: 23, 2'¢ or 2%°),
the goal in this case study is to find the greatest
number in the set. Three algorithms are used, two
for BTs and one for meshes:

e MaxBTI: Each one of the £ leaf BT nodes is
loaded with a smaller subset of ”’%2 numbers. Each
cycle, one element of each subset is compared
with the results of the other nodes (§ elements
in total). The root node keeps the partial maxi-
mum and compares it with the partial results
coming next in a pipelined fashion. The maxi-
mum number of the set is found when all the ele-
ments of the subsets have been compared
through the tree.

e MaxBT2: The set is divided into (p — 1) smaller
subsets and loaded onto the (p — 1) processors.
Each processor finds sequentially the maximum
on its data subset which consists of p= numbers.
This maximum is compared to the results of
other nodes. The tree structure is used to obtain
the maximum number of the set by passing only
the maximum number from each subtree.

o MaxME: Similar to the above algorithm, the set
is divided into p smaller subsets and loaded onto
the p processors. We merge the partial results
first row by row and then column by column,
until we obtain the maximum number of the
entire set.

We evaluate the first two algorithms in BTs
(BT_MaxBT1 and BT _MaxBT2) and in meshes
using Lee Choi and H-tree mappings (ME_Htree
MaxBT1, ME Htree- MaxBT2, ME LeeChoi
MaxBT1, and ME_LeeChoi_MaxBT2), and the
third algorithm in meshes (ME_MaxME). In this
and the next case studies, we consider that the
comparison between two elements takes a single
clock cycle, while a single communication transac-
tion is a single flit packet. Fig. 10 depicts the total
number of cycles required to execute the algo-
rithms for different sizes of data sets and number
of nodes. The MaxBT1 requires more communica-
tion than the other algorithms, since the maximum
is calculated throughout the tree instead of having
each node processing a subset sequentially. There-
fore the MaxBT1 algorithm when running on a
mesh has up to 4-32 times higher latency than a
BT. On the contrary, the MaxBT2 adapts better
into the mesh mappings. For the MaxBT1 algo-
rithm H-trees are better (up to 2x) than Lee Choi
mapping (for small and medium systems), since H-
trees have lower dilation. However, when the total
number of nodes increases and the processing data
remain constant then the Lee_Choi mapping is bet-
ter (up to 50%) since the total number of utilized
nodes (expansion) is more important. When run-
ning the MaxBT2 algorithm, the Lee Choi map-
ping becomes better because the diameter of this
mapping is smaller. That is because although
Lee_ Choi mapping has higher dilation, the aver-
age number of mesh edges required per BT edge
is lower. Additionally, Lee Choi mapping exploits
almost all mesh nodes, while H-trees have worse
expansion. The MaxME is almost as good as the
BTs for small number of nodes, but when the sys-
tem gets larger has up to 2x worse performance
even compared to any mapping of the MaxBT2
algorithm into the 2D mesh. Finally, the size of
the processing data affects performance. For
example, for smaller data sets the ME_LeeChoi
MaxBT1 gets more efficient than the ME_Htree
MaxBT1 for large systems, while the point
(#nodes) where it starts being better differs for dif-
ferent data sets.
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Fig. 10. Performance of the maximum case study for different algorithms, data sizes and number of nodes. (For this graph and the graphs
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Searching algorithms in BTs and meshes: The pur-
pose of this case study is to search for m specific
numbers on an unsorted sequence S of n numbers
(n=2", 2" or 2%°, ;m = 8). If such a number is in
S, the searching algorithm outputs the position of
the matched number, otherwise, the output is zero.
The implementation of this case study is similar
for the BT and mesh topologies, SearBT and
Sear ME respectively. The set is divided into small
subsets of 2 numbers. Each of these subsets is pro-
cessed by a single node and the partial results are
sent towards the root node.

Fig. 11 depicts again the number of cycles spent
for the execution of the searching algorithm. In this
case, the gap between the binary-tree (BT) and the
meshes is smaller because the searching algorithm
requires more processing, O(nm) instead of O(n),
while the percentage of the total time spent for com-
munication is smaller compared to the MaxBT2
algorithm. The SearME is up to 4x better than the
SearBT algorihm mapped into a mesh. For the

SearBT algorithm, the Lee_Choi mapping is gener-
ally better than the H-trees (about 50%), however,
for large systems the H-trees achieve similar or bet-
ter performance. Again the size of the data set
affects performance. For example, the SearME algo-
rithm (running on a mesh) for medium systems (25—
2'? nodes) follows the BT SearBT performance
when processing large data sets, while for smaller
data sets has higher execution time.

Sorting algorithms in BTs and meshes: Given a
sequence of n numbers, a sorting algorithm will pro-
duce a sorted sequence of the same input set S. For
sorting in BTs we use the algorithm described in
[17,18] (denoted here as SortBT) and is performed
as follows: the set of numbers S is divided into smal-
ler subsets and loaded onto the leaf processors.
Each processor executes a sequential quick sort
algorithm on its data subset; parallelism is achieved
by having all leaf processors work on their portion
of data at the same time. The smallest element of
each sub-sequence is sent towards the root node.
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Fig. 11. Performance of the searching case study for different algorithms, data sizes and number of nodes.

The set S is sorted when all the elements are sent
out through the root node. For sorting in meshes
we implemented the bitonic sort as described in
[19]. This mesh algorithm (Bitonic) sorts n* numbers
on a n x n mesh. Therefore, in order to have a fair
comparison between the two algorithms, the set
contains as many numbers as the number of mesh
nodes.

We evaluate the bitonic sort in meshes and the
SortBT algorithm in BTs mapped into meshes
(using Lee or H-tree mapping). Fig. 12 illustrates
the ratio between the execution latency of the above
cases and the SortBT when running in the original
BT. In each case, the time spent to load and unload
data into/from the system is included in the overall
latency. Clearly, the bitonic sort in meshes is less
efficient than the SortBT in Lee and H-tree map-
pings. However, when the size of the processing
data increases (along with the number of nodes)
the runtime ratio between the three cases and the
BT topology decreases. Contrary to the MaxBTI
algorithm, for sorting the Lee mapping is better than
the H-trees. That is because in this case the expan-

1.7
e r— ]
€15 —a— ME_Lee/BT |
£1.4
g 1.3 \\
5 1.2
€ 11 /\'\-l'\%
Wl e

10° 10° 10* 10°

Number of nodes
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Fig. 12. Execution time ratio between sorting on a 2D mesh
(using different mappings and algorithms) and on a binary-tree.

sion of the mapping is more significant than the
dilation.

The SortBT algorithm in reconfigurable hardware:
In this case study, we utilized the SortBT algorithm
described above and reconfigurable hardware as the
FLUX implementation platform. We implemented
the routing structures of an 8-level binary-tree
(BT) and 7 and 6-level fat-trees (FT) using 32-bit
words. Table 1 depicts the characteristics of these
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Implementation results: 8-L binary-tree & 6.7-L fat-trees
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Max. links

#Links

#Nodes

Diameter # hops

Frequency

Total area

Total area,
PE

Routing area
logic cells
22,008

Link width

per node

29LC, PE =357LC

254
384

255

14
12
10

254

113,043
112,931

29,403
71,275
29,259

32-bit
32-bit
32-bit

8L-BT
7L-FT
6L-FT

128

127

238
257

67,592
27,432

160 64

63

49,923

three interconnection networks. We chose to imple-
ment BTs and FTs of different levels in order to cre-
ate structures of similar area. However, since the
trees do not have the same depth, the number of
PEs in each case differs. Therefore, in order to fairly
compare their area cost we need to take into
account the area of the PEs. Consequently, as Table
1 illustrates, the BT requires more area than the 6-
level FT when using PEs larger than 29 logic cells,
and more area than the 7-level FT when each PE
occupies more than 357 logic cells. We evaluate
the performance of the following sorting algorithm
including the latency of loading and unloading data
for these three interconnection networks for data
sizes 2! up to 2%6. Fat trees cannot exploit during
the execution phase the fact that they have more
links per node in the higher levels. That is because
only one element can move from a child node to a
parent node at a time. Therefore, the execution
latency is identical in BTs and FTs of the same tree
depth. However, the difference between the FTs and
the BTs occurs in the load/unload phase, where the
FTs are significantly better.

Fig. 13 illustrates the performance ratio between
the 7 and 6-level FT and the BT. The 7-level FT is
up to 1.7 times better than the 8-level BT, however
for large data sets (2%°) is less efficient. For small
data sizes the 6-level FT achieves higher perfor-
mance than the BT up to 1.3x, while for larger data
sets (>2'%) it is less efficient requiring up to 2x the
latency of the 8-L BT. In general, as the data set gets
larger the performance ratio decreases. That is
because the initial sorting in the leaf nodes becomes
the dominant factor compared to the load/unload
communication delay.

One would assume that the FT topology is more
suitable for sorting than the BT, since FT I/O band-
width is substantially higher. However, this case
study clearly shows that we cannot choose in all
cases the most suitable topology according only to
the application. There are other parameters that
should be taken into account such as the data size,
the underlying technology and the architecture of
the PEs. This makes our argument stronger, mean-
ing that reconfigurable interconnects can be proved
beneficial even when its not clear in advance which
topology is suitable. The above case study indicates
that the overall performance depends on the data
size and PEs area requirements. Assuming a certain
area constrain on a chip, the same program may
demand a different interconnection network, depend-
ing on the amount of data it has to operate upon,
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Fig. 13. Performance ratio between a 7-L or 6-L FT and a 8-L BT in sorting.

implying that the networks on demand will have been
the correct choice.

4.3. A programming example

In this section, we present a programming exam-
ple, showing the way to port an application/algo-
rithm in different underlying networks. In our
example, the underlying network is either a nxn
2D mesh, an FPGA or a BT interconnection net-
work. The utilized application is the MaxBT1 algo-
rithm described in the previous Section 4.2. The
program decides which mapping to use according
to the following parameters: the underlying physical
network, the processing data size and the number of
nodes. For different applications or physical net-
works, other parameters might also be considered
(node size, network area cost, etc.) Assuming that
a 2D mesh, a BT, or an FPGA is the underlying
physical network, Fig. 14 illustrates the program-
ming function that decides the interconnection
setup for the MaxBT]1 algorithm.

The above function is based on the results of
Fig. 10. When the underlying network is a binary-
tree (BT) then obviously it is more efficient to use
the physical topology itself. In case of the FPGA
interconnection, our experiments show that when
a BT is implemented, it has a similar cycle time with
the 2D mesh and requires about 70% less resources.
Therefore, based again on the performance results
of Fig. 10, it is more efficient to utilize the BT topol-
ogy. For the 2D mesh physical network, the most
efficient mapping depends on the number of nodes
and the processing data size. More precisely, for
small number of nodes or medium systems and
small data sets the H-trees are better, while for large

SetNet MAXBTI1:

CASE (PHY Net) { //whatis the physical network?
BT: //if the Physical Network is a binary tree
SET BT; //then map a binary tree

2-D Mesh: //ifthe Physical Network is a 2-D Mesh
CASE (#nodes) {
// if the system has up to 2"\ 0 nodes
(#nodes <= 2710):
// then map a binary tree using H-trees
SET H-trees mapping;
// if the system has more than 210 and up to 2" 2 nodes
(2710 < #nodes <= 2712):
// and the processing data size is upto 210
IF (Data <= 2710) THEN
// then map a binary tree using H-trees
SET H-trees mapping;
ELSE
//else map a binary tree using Lee Choi mapping
SET Lee Choi mapping;
// if the system has more than 21 2 and upto 2"14 nodes
(27212 < #nodes <= 2714):
// and the processing data size is upto 2°16
IF (Data <= 2~16) THEN
// then map a binary tree using H-trees
SET H-trees mapping;
ELSE
//else map a binary tree using Lee Choi mapping
SET Lee Choi mapping;
// if the system has more than 214 nodes
(#nodes > 2714):
// then map a binary tree using Lee Choi mapping
SET Lee mapping;

}

FPGA: // if the Physical Network is Reconfigurable
SET BT; //then map a binary tree
}

Fig. 14. A programming example for the MaxBT1 algorithm.

number of nodes or medium systems and large data
sets the Lee Choi mapping is more beneficial.
Finally, when a specific topology/mapping is
decided (e.g. SET H-trees mapping into a 2D mesh),
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at least the following parameters should be explic-
itly specified:

e The FLUX networks offer the ability to adapt the
physical underlying network to the application
needs. More precisely, based on the parameters

e Node addressing: assign each physical node with that affect the application performance (underly-

an address and a workload.

¢ Establish routing paths: specify the communica-
tion path between every pair of (utilized) nodes.
e Routing algorithms/policies: specify routing
algorithms and policies (i.e priorities of connec-
tions), if can be supported by the physical
network.

Some of the reasons why FLUX Networks are ben-

eficial: We discuss, next, some advantages of the
proposed FLUX networks:

e Definitely, when a single algorithm is ported
into a physical network (designed to match the
algorithm) then it will be faster. That is an algo-
rithm communication needs might match the
physical interconnect. Generally speaking, this
is a difficult task since the algorithm developer
has to have in mind the technology details of
the physical network. Furthermore, multiple
algorithms should be able to efficiently run on
a single multiprocessor system, and if there is
an one-to-one mapping for one network, this
will not be the case for others. Therefore (as
shown by the example mappings) the intercon-
nection network should be adaptable to achieve
more benefits.

Software portability: for a given technology an
algorithm may match the physical network. How-
ever, for the next device family (new technology)
the algorithm will not match the new physical
structure. In this case the algorithm communica-
tion needs become the “logical” network that
has to be efficiently ported into the new physical
structure, implying that generally speaking
the FLUX networks are the most beneficial
solution.

When the logical and the physical networks do
not match, the algorithm usually cannot exploit
all the physical network resources. That is,
because of lack of technology knowledge, an
algorithm developer has difficulties in achieving
optimum mappings. Therefore, using directly
the physical structure may not improve perfor-
mance and will possibly increase complexity. In
FLUX networks, both users and developers of
technologies are involved improving the
networking.

ing network, number of nodes, data size, etc.), it
chooses the best mapping (pre-selection) of the
logical network to the physical one. Our experi-
ments in a rigid physical underlying network
(2D mesh) show that Lee mapping is better for
the MaxBT2, while the H-trees is more efficient
for MaxBT1 algorithm. Actually, the perfor-
mance can be 1.5-2x higher, when the best map-
ping is followed.

In FLUX networks, direct “point-to point’ con-
nections can be utilized to detect and change any
wrong decisions of the application developer
regarding the communication needs of the appli-
cation (e.g. via monitoring mechanisms). Hot
spot connections of the network can also be
added (see also Figs. 1 and 6).

We propose that designer, system programmer
and application developer should be involved in
a complimentary fashion. The hardware designer
maximizes physical network flexibility to accom-
modate mapping arbitrary logical networks. The
system programmer finds the most suitable map-
ping/utilization of the network, exploiting the
flexibility of the FLUX network and gives feed-
back to the algorithm developer regarding the
performance tradeoffs of different network deci-
sions. The application developer utilizes several
techniques (profiling, monitoring, etc.) to find
the most suitable interconnect for the targeting
problem.

The FLUX networks allow physical network
descriptions to co-exist with common program-
ming constructs. For a single application running
on a single physical network the best mapping
can vary. FLUX networks provide the ability
to detect and change the mapping of the applica-
tion into the physical network on-the-fly (multi-
ple mappings), and therefore, can exploit in
each case the best network configuration. The
above is not supported by previous works [20,7].
Contrary to others [20], FLUX Networks on
reconfigurable fabric can reconfigure the PE rou-
ters, changing the routing algorithm, the number
and width of the links, add buffering, etc. on
demand instead of being prefixed.
Reconfigurable hardware has a unique character-
istic. Physical connections can match the logical
connections of an application and support addi-
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tional direct point-to point connections not fore-
seen by the algorithm developer.

e Our approach can dynamically adapt to arbitrary
topologies, while other solutions can only sup-
port several topologies and regular predefined
structures [20].

¢ In reconfigurable hardware, we set raw connec-
tions and the configuration time can be relatively
small if a fine-grain configuration can be sup-
ported by the technology. Furthermore, there is
no local memory under each switch, to store
the possible configurations for every supported
topology. Other solutions employ routing ele-
ments to ‘“‘reprogramme” the local memory
introducing delay [20]. In essence, such networks
are programmable rather than reconfigurable,
adding extra interconnection overhead and
delays.

5. Conclusions

In this paper, we introduced the FLUX networks
and have discussed some performance potential for
parallel applications suitable for different intercon-
nection topologies/mappings. We studied different
types of physical interconnections and presented a
programming paradigm as a way to accomplish
the configuration (mapping) of an interconnection
network on demand. In addition, we presented
some experimental results to show that, when run-
ning a parallel algorithm in a multiprocessor system
interconnected in a fixed or reconfigurable topol-
ogy, performance is affected. More precisely, we
showed that the performance of a parallel algorithm
drops when using other mapping than the appropri-
ate one. We also pointed out that, besides the imple-
mented algorithm, other parameters such as the
data size, the underlying technology and the number
of nodes should be taken into account in order to
decide which topology is most suitable for an appli-
cation. The implication of the above is that by
determining the network in advance and by exploit-
ing network instalments (statically or dynamically)
substantial gain can be expected.
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