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Abstract—In this paper, we analyze a particular spatial locality case (called horizontal locality ) inherent to manycore accelerator
architectures employing barrel execution of SPMD kernels, such as GPUs. We then propose an adaptive memory access
granularity framework to exploit and enforce the horizontal locality in order to reduce the interferences among accelerator cores
memory accesses and hence improve DRAM efficiency. With the proposed technique, DRAM efficiency grows by 1.42X on
average, resulting in 12.3% overall performance gain, for a set of representative memory intensive GPGPU applications.

✦

1 INTRODUCTION

THE bulk synchronous programming model[14] has
been widely adopted in programming languages tar-

geting manycore accelerator architectures, e.g., CUDA[6]
and OpenCL[10]. In such languages, the parallelism of
the application’s compute intensive kernels is explicitly
expressed in a single program multiple data (SPMD) manner.
Explicitly-parallel, bulk-synchronous SPMD program execution
on manycores, such as GPUs, often employs barrel process-
ing[13] due to its low pipeline implementation overhead.

Off-chip memory bandwidth is becoming a precious re-
source in current and future manycore processors due to
chip pin count limitations. Particularly, the bandwidth can
be a severe bottleneck for the manycore accelerator architec-
tures for a growing number of data/memory intensive ap-
plications. In addition, DRAM access streams from different
cores can easily incur destructive interferences among them,
in the following forms: Hot DRAM Channels: when multi-
ple cores access single or few DRAM channels, leaving the
others idle and basically wasting their bandwidth. DRAM
bank conflicts: when memory accesses from multiple cores
compete reading or writing to different rows of the same
DRAM bank causing frequent opening and closing row
operations, known for their high penalty. Bus read/write
transition cost: Shifting between read and write in the same
DRAM channel causes latency and bandwidth losses due
to the data bus turn-around time which is necessary for
the shared input/output data bus design adopted in most
contemporary DRAM chips. The above penalties are often
noneligible for data intensive applications.

Manycore accelerators using SPMD barrel execution have
specific characteristics. In order to better address the off-chip
memory bandwidth inefficiencies, the unique characteristics
of both the programming and execution models of these
manycores should be exploited. In this paper, we leverage a
spatial locality typical for SPMD barrel processing (horizon-
tal locality) to improve external memory access efficiency. We
propose a holistic DRAM bandwidth optimization frame-
work for manycore accelerators with combined compile-
time, run-time, and architectural efforts. Our technique
utilizes statically detected memory instruction access pat-
tern information, and runtime access granularity scheduling
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Fig. 1. Worker threads hierarchy and memory accesses

based on the available horizontal locality determined by the
access pattern. With the support of co-designed hardware,
adaptive memory access granularity is achieved and DRAM
efficiency and the overall performance are improved.

In the remaining sections, we analyze the horizontal
locality (Sec. 2), exploit it using our adaptive memory access
granularity scheme (Sec. 3), and evaluate the memory effi-
ciency improvement using cycle level full system simulation
(Sec. 4). Experiments show that for a set of memory inten-
sive GPGPU applications our technique improves DRAM
efficiency by 1.42X and overall performance by 12.3%.

2 SPMD BARREL EXECUTION ANALYSIS

Programming Model Properties: In explicitly-parallel, bulk-
synchronous SPMD programming models, the programmer
extracts the application data-parallel section, identifies the
basic working unit (e.g., element in the problem domain),
and explicitly expresses the same sequence of operations
on each working unit in a kernel. Multiple kernel instances
(CUDA threads) run independently on the accelerator cores.

In CUDA, parallel threads are organized in 2-level hierar-
chy, in which a kernel (called grid) consists of parallel CTAs
(Cooperating Thread Array, or block), with CTAs composed
by parallel threads, as shown in Fig. 11. Explicit, localized
synchronization and on-chip data sharing mechanisms (e.g.,
CUDA shared memory) are supported inside each CTA.
Baseline Manycore Barrel Processing Architecture: Fig. 2
shows our baseline architecture. On the right the high-level
system organization is shown. The system consists of an ac-
celerator node with K cores and a memory subsystem with

1. CUDA, with warp size reduced from 32 to 2 for simplification
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L DRAM channels, connected by the on-chip interconnect2.
The host processor offloads compute intensive kernels to
the accelerator cores. The kernel code and parameters are
transferred using the host interface, and the workloads are
dispatched at the grain of independent CTAs/blocks.

The left part of Fig. 2 illustrates a single accelerator
core. During execution, a batch of threads from the same
CTA are grouped into a warp, the smallest unit for the
pipeline front-end processing. Each core maintains a set of
on-chip hardware execution contexts and switches among
them at the warp granularity. The context switching, also
called warp scheduling, is done in an interleaved manner,
also known as barrel processing[13]. Warps are executed by
the core pipelines in a SIMD fashion to improve pipeline
front-end efficiency. Warps can access two memory types:
on-chip shared and off-chip memory. When there is an
off-chip memory access, the execution is taken care of by
a miss status holding register (MSHR), shown in Fig. 2.
The memory access information is logged by the allocated
MSHR entry, and warp execution is put into inactive status.
Horizontal Locality: Within barrel execution of SPMD ker-
nels, memory access behavior of manycore accelerators is
determined not only by a single thread/warp, but also
by concurrent warps execution. Fig. 1 shows a typical
CUDA kernel 2D address pattern. Please note that, the
access pattern not only guides each worker thread to its
working field (data memory address), but also binds the
relationship among threads memory accesses. For example,
memory addresses of warps 0 and 1 are always contiguous,
for the given access pattern. Therefore, spatial locality can
be exploited. Different from the spatial locality in general
purpose processors, this locality type has two distinct char-
acteristics: 1) it is inter-thread/warp locality among multiple
independent warps; 2) it can only benefit the neighbor
threads/warps but not the memory access initiator. We call
such inter-thread/warp spatial locality horizontal locality.

Above we have assumed that all warps are executing the
same memory instruction using the same access pattern. In
fact, this originates from the combination of the SPMD pro-
gramming model and the barrel execution model used by
contemporary manycore accelerators, e.g., GPGPUs. Within
strict barrel execution, an instruction from each warp context
is launched at each clock cycle in an interleaved manner.
Moreover, all warps are executing the same SPMD kernel
code. In this way, the execution of concurrent warps in a
core is highly correlated, and thus the in-flight instructions are
similar. Even with relaxed barrel execution, where consecutive
instructions from the same warp are allowed to issue into
the SIMD pipeline, since the average size of independent
instruction blocks3 is small (1∼3 instructions in our bench-
marks), the horizontal locality can still be captured in time4

before the requested data arrives.
As stated in Sec. 1, concurrent memory accesses of differ-

ent cores can interfere in manycores. For example, even if ac-
cesses from warps 0 and 1 of block (0,0) are issued back-to-
back to memory, they can be separated on the way to DRAM,
e.g., by on-chip interconnect or memory controllers. As a
result, their horizontal locality is broken, leading to extra

2. Accelerator nodes may be separate chips (e.g., GPUs), or
together with the host CPU(s) be on the same die (e.g., [1])
3. A sub-basic block with mutually independent instructions
4. 32 warps will issue a 3 instructions block in 384 cycles, shorter

than average main memory access delay (> 500 cycles in our case)
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Fig. 2. Baseline barrel processing accelerator architecture

DRAM bank conflicts and memory bus transition penalties.
In the following, we propose a novel way to exploit and
enforce the horizontal locality in manycore accelerators and
improve external memory bandwidth efficiency.

3 IMPROVING MEMORY EFFICIENCY
Compiler and Runtime Access Pattern Analyzer: In an
explicitly-parallel, bulk-synchronous SPMD program, in or-
der for the worker thread to identify its working set, a map-
ping between the thread id and its working set is designated
in the code: addr = Φ(tid.z, ctaid.y, tid.y, ctaid.x, tid.x),
see Fig. 1. Ideally Φ can have arbitrary form, however,
the number of patterns used in programmers practice is
rather small, and address generation complexity is often
limited. Leveraging this observation, we have prototyped
a framework able to detect and exploit the most common
memory access patterns for CUDA kernels. Our framework
employs static control- and dataflow analysis at compilation
to detect the access skeleton type, and build the correspond-
ing parameters expressions. A skeleton is defined as a
parameterized address mapping function, which is able to
generate a class of memory access patterns. Our runtime
library will evaluate the parameters expressions provided
by compiler analysis, based on the CUDA kernel dimen-
sions and input parameters available at launch time. We
implemented our prototype as additional NVCC compiler
pass and library extensions to CUDA runtime environment.
Currently, our framework supports 2 most common skeletons
– 1D/2D contiguous/strided/block-strided access:

η(a,b,c,d,e,f)=(a,b,c,d,e,f)·(tid.z,ctaid.y,tid.y,ctaid.x,tid.x,1)

=a·tid.z+b·ctadid.y+c·tid.y+d·ctaid.x+e·tid.x+f

with parameters a,b,c,d,e,f∈N (used in regular memory access
patterns); and skewed access:

y=η(a,b,c,d,e,f)

ϕ(h1,l1,s1,h0,l0,s0,α,β,y)=(y[h1:l1]�s1 | y[h0:l0]�s0)·α+β

where, h1,l1,s1,h0,l0,s0,α,β∈N (used in irregular applications).
Skewed access skeleton is constructed using 1D/2D access
(y), and has 2 bits sections: higher, taken from h1 to l1 of y

shifted left by s1 bits; and lower section generated similarly.
The parameters of the above two equations are internally

represented as trees. For now we support only 2 skeletons
with rather complete representations to investigate our ap-
proach’s true benefits under a constrained case scenario.
Adaptive Memory Access Granularity Scheduling: To re-
duce bank conflicts and bus turn-around times, adaptive
memory access granularity (Alg. 1) is created to determine
the DRAM access granularity, based on access pattern in-
formation generated by the memory pattern analyzer.
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Alg. 1 Adaptive memory access granularity scheduling

1: max gran ←DRAM channel interleaving granularity
2: min gran ←DRAM minimal access granularity
3: data size ←data size of memory access instruction
4: blockDim.x ←block size in dimension x
5: d, e, is skewed access, l1, s1, h0 ←access pattern parameters
6: if e! = data size or blockDim.x×e! = d or (is skewed access

and (l1 ≤ h0 or s1 ≤ h0 or 2h0 ≤ max gran)) then
7: return min gran

8: else if blockDim.x × e > max gran then
9: return max gran
10: else if blockDim.x × e < min gran then
11: return min gran

12: else
13: return blockDim.x × e

14: end if

The essential idea of the adaptive granularity schedul-
ing is as follows. Since the address pattern determines
the locality among neighbor warps’ memory accesses, we
can choose the maximal access granularity allowed by the
horizontal locality, for a given memory instruction. When a
warp memory instruction execution misses, it initiates the
external memory access with the large granularity. Due to the
horizontal locality, the extra requested data will be used by
neighbor warps in most cases, hence, improving memory
efficiency, without the penalty of wasted memory bandwidth.

The key in the adaptive memory access granularity is to
correctly identify the available horizontal locality. Line 6 of
Alg. 1 examines if a memory instruction has the appropriate
horizontal locality. Currently, only instructions accessing
contiguous memory addresses among neighbor threads in a
block x-axis (Fig. 1) are considered. Lines 8 to 13 determine
the proper access granularity under three constraints: 1) min
access granularity, set by the DRAM interface5; 2) max gran-
ularity, set by DRAM channel interleaving granularity; and
3) the block boundary constraint (e× blockDim.x), because a
warp should not fetch data outside block boundary.
Example: For the global memory load instruction in Fig. 1,
our compiler pass identified 2D access skeleton, with pa-
rameters (a,b,c,d,e,f)=(0,192,48,16,4,0) calculated by the run-
time by evaluating their tree representations. At kernel
launch time, first the warp memory access contiguity is
determined, by checking if neighbor warps accesses fail
to cover the contiguous address space (e �= data size or
blockDim.x × e �= d, false in this case). At this point, the
access pattern is assured to have strong horizontal locality
where contiguous blockDim.x×e (16 in this case) bytes data
will be fully used by the load instruction warps execution in
the block. Therefore, an MSHR entry is allocated, and 16B
external memory request is fired into the interconnect when
warp 0 is run. In case of no HW data cache, warp 0 has also
to book MSHR space for the fired load request, only for its
own requested data (8B data segment X). Later, when warp
1 is invoked for the load execution, it checks the MSHR tag
array to find an ongoing load which covers its request (8B
data segment Y ). At this point, it allocates an MSHR entry
and reserves the data space for Y . Afterwards, it becomes
inactive, awaiting data Y to return from DRAM. The HW
mechanism supporting this process is called elastic MSHR
with deferred reservation.

5. 32B for GDDR3 in our study
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Fig. 3. DRAM efficiency improvement

4 EXPERIMENTAL EVALUATION
Experimental Setup: We use a modified version of GPGPU-
Sim[2], a cycle level full system simulator implementing
PTX ISA[7]. The detailed configuration of the modeled
accelerator is shown in Tbl. 1. The prototyped access pattern
analyzer and the adaptive access granularity scheduling
run on the host CPU. When a kernel is to be launched,
the scheduled optimal access granularity values for mem-
ory instructions are transferred to the accelerator. At the
accelerator node, the baseline and our proposal execution
differ mainly in memory access granularity: 32B6 vs value
adapted to the memory instruction. The adaptivity, exploit-
ing both intra- and inter-warp locality, is determined by the
scheduler at launch time, and realized by the elastic MSHR
(Sec. 3) implemented in our architecture. In our experiments
only adaptive memory load granularity is evaluated. We
used 17 memory intensive benchmarks from CUDA SDK[8],
Rodinia[3], and [2], common in GPU architecture research.
DRAM Access Granularity Distribution: In our experi-
ments, no particular pattern in the granularity type dis-
tribution is observed across all benchmarks – their opti-
mal granularity spread among all four valid categories of
32/64/128/256B in our configuration. Moreover, 10 out of
the 17 benchmarks require at least two access granularity
types. This suggests that in general a single optimal access
granularity for all memory accesses is not feasible, and,
confirms the need for scheduling memory instructions sep-
arately, according to their access patterns.
Improved DRAM Efficiency: DRAM efficiency is defined
as the ratio between DRAM data bus actual transfer
cycles and the number of cycles with pending DRAM

access: Etot=

#kernels−1P

k=0

#channels−1P

i=0
#bus transactionsk,i

2·
#kernels−1P

k=0

#channels−1P

i=0
#active cyclesk,i

, where

#bus transactionsk,i is the number of accomplished DRAM
bus transactions in channel i during kernel k execution, and
#active cyclesk,i is the number of DRAM bus cycles during
which channel i is not completely idle7. The factor 2 in the
equation is due to two bus transactions per cycle for dual-
data-rate memories.

Fig. 3 shows the overall DRAM efficiency of our adaptive
access granularity scheme for all benchmarks. Each group
has three bars, left and middle for the DRAM efficiency
with the baseline and our proposal and the right bar
for the net gain. The RD and SP see the largest DRAM
efficiency improvement due to very few memory access
instructions with simple access patterns (high horizontal
locality). Meanwhile, we have observed that most fetched
data are efficiently utilized by neighbor warps in such
kernels, even at the largest access granularity of 256B. Other

6. Appropriate for the simulated 8-way SIMD pipeline
7. The DRAM channel status with no pending access in its

request queue and any ongoing memory access
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TABLE 1
Baseline Accelerator Configuration†

Number of cores 16 @1296.0 Mhz

Core Configuration
8-wide SIMD execution pipeline, 24 pipeline stages
32 threads/warp, 1024 threads/core, 8 CTAs/core, 16384 registers/core
warp scheduling policy: Round-robin, execution model: strict barrel processing (Sec. 2)

On-chip Memories
16KB software managed cache (i.e., shared memory)/core, 8 banks, 1 access per core cycle per bank
64 MSHRs/core, with 32B data field per MSHR (no hardware cache)

DRAM

4 GDDR3 memory channels, 2 DRAM chips per channel, 2KB page per DRAM chip, 8 banks per DRAM chip
8 Bytes/channel/transmission, 68.2 GB/s aggregate bandwidth @1066 Mhz bus freq
GDDR3 memory timing: tCL=12, tRP =12, tRC=41, tRAS=29, tRCD=14, tRRD=10
memory controller policy: out-of-order (FR-FCFS)[11], 32 DRAM request buffer entries

Interconnect Network crossbar (2-ary 5-fly butterfly[4]) @602.0 Mhz, 16-Byte flit size, 2 Virtual Channels, 8 buffers per Virtual Channel
† a downsized NVIDIA GeForce GTX 280 version, with 16 vs 30 processor cores and half of its aggregated DRAM bandwidth (68.2 instead of 141.7 GB/s)
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Fig. 4. Speedup over the baseline
benchmarks also show varied efficiency increment, with the
only exceptions being WP and NN. The reason is that the
identified access patterns do not have exploitable horizontal
locality, while for the rest instructions the analyzer failed
to extract the precise access patterns as they are control flow
dependent. As a result WP and NN are executed with the
same access granularity as the baseline. Nonetheless, our
scheme improves the average DRAM efficiency by 1.42X.
Overall Performance Improvement: Fig. 4 shows the over-
all performance improvement with our adaptive memory
granularity scheme. Only kernel execution times on the
accelerator are counted in calculating the speedup (our
lightweight runtime library (Sec. 3) has little CPU over-
head). On average, performance is improved by 12.3%.
Some benchmarks, e.g., BFS and LPS, show performance
degradation. Detailed analysis reveals that severe inter-warp
control flow divergence occurs during kernel execution. In this
case, neighbor warps execute along different control flow
paths, rendering the extra data fetched at large granularity
being wasted. As a result, memory bandwidth is wasted and
system performance is degraded, especially for BFS (heavily
memory bound). This requires further investigation.

5 RELATED WORK

GPGPU memory performance optimizations have been ad-
dressed at different architectural levels. At the processor
core level, there have been studies in applying prefetching
techniques for GPGPUs[12], however only for data inside
one thread. A recent GPGPU prefetching proposal Inter-
Thread Prefetching (IP)[5], is quite similar to our work spirit,
since recognizes the GPU specific locality among parallel
threads. IP focused on latency reduction using speculation,
while our work emphasize on external memory access effi-
ciency, using accurate access pattern information. Moreover,
our work is novel in analyzing the horizontal locality in
SPMD barrel execution embodied by GPGPUs. Memory
coalescing[9] is a HW mechanism in NVIDIA GPUs to
buffer and merge intra-warp memory accesses. It assumes
half warp or single warp scope, due to lacking future
warp access information. In contrast, our proposal takes
advantage of the high level access pattern information, and
captures horizontal locality both inside and among warps
even when not issued back-to-back (Sec. 2). We observed

28.4% performance gain for RD and 10+% for FWT and BS,
while comparing our proposal with half-warp coalescing.
On the other hand, coalescing tracks dynamic warp memory
access behavior, being complementary to our proposal in
capturing the control flow dependent horizontal locality
(not captured by static analysis, such as BFS and LPS).

At the interconnect level, work in [15] addresses memory
access streams interleaving problems in GPU interconnect,
using a customized control flow policy. At the memory
controller side, sophisticated our-of-order DRAM schedul-
ing schemes, e.g., FR-FCFS[11], use queues to reorder and
optimize DRAM accesses, albeit limited by the queue size.
In contrast, we utilize high-level access pattern information,
and adaptively adjust memory access granularity to prevent
locality from being broken.

6 CONCLUSION
In this paper, we analyzed horizontal locality inherent in
manycore accelerators with SPMD barrel execution. We
proposed an adaptive memory access granularity scheme
to exploit the horizontal locality and reduce memory access
interferences among cores to improve DRAM efficiency. Our
proposal improves DRAM efficiency by 1.42X on average,
and the overall performance by 12.3%, for a set of represen-
tative memory intensive GPGPU applications.
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