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Abstract: Exponential growth in biological sequence data combined with 
the computationally intensive nature of bioinformatics applications results 
in a continuously rising demand for computational power. In this paper, 
we propose a performance model that captures the behavior and 
performance scalability of HMMER, a bioinformatics application that 
identifies similarities between protein sequences and a protein family 
model. With our analytical model, the optimal master-worker ratio for any 
specific user scenario can be estimated. The model is evaluated and is 
found accurate with error lower than 2%. We applied our model to a 
widely used heterogeneous multicore architecture, the Cell BE, using the 
PPE and SPEs as master and workers respectively. Experimental results 
show that for the current parallelization strategy, the I/O speed to read the 
database from the disk and the inputs pre-processing are the two most 
limiting factors in the Cell BE case. 
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1. INTRODUCTION  

The rapid development of genetics in recent decades has led to an explosion 
of genetic information databases. The genetic structure of many species has been 
sequenced and the resulting sheer size of such data sets makes analysis by hand 
impossible. In bioinformatics, computer technology is used to enable biological 
research directions that would be unfeasible otherwise. 

Within bioinformatics, sequence alignment is a primary activity. Fragments of 
DNA or protein sequences are compared to each other in order to identify 
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similarities between them. Due to the computational complexity of the algorithms 
used to process these data sets, demand for processing power is soaring. Therefore, 
it is critical for bioinformatics applications to be efficient and scalable in order to 
meet this demand. Two popular sequence analysis tools are BLAST [6] and 
HMMER [7]. Each has its own merits: BLAST is faster; HMMER is more 
sensitive and also able to find more distant relationships. The adoption of 
HMMER2 in the SPEC2006 benchmark suite and the recent HMMER3 
developments show its significance. 

Advancements in microprocessor technology in the past have resulted in 
steadily increasing computational power, through miniaturization and growing 
transistor budgets. However, single threaded performance improvement is 
stagnating because of frequency, power and memory scaling barriers. These 
“walls” are the reason for the current paradigm shift towards multicore 
architectures, in an attempt to deliver the expected performance growth. One 
example of such multicore architecture is Cell BE, a processor with special 
architectural components and organization that has opened a new path in processor 
design. In this paper we have used the Cell BE as a case study to validate our 
proposal, how- ever, we consider that our analysis is applicable to other multicore 
architectures as well. 

The suitability and effectiveness of the multicore paradigm for bioinformatics 
applications is still an open research question. In this paper, we develop an 
analytical model of a master-worker parallelization of HMMER for multicore 
architectures. As a case-study, we use HMMERCELL (a port of HMMER to the 
Cell architecture) to investigate its scalability behavior. Through profiling on the 
Cell processor we set the coefficients and finally we are able to validate our 
model. In essence, main contributions of this paper are: 

– Highly accurate performance prediction model (with error within 2%); 
– Detailed, quantitative characterization of program phases and their 

influence on overall performance; 
– A careful study of the HMMER scalability bottlenecks. 
The remainder of the paper is organized as follows. Section 2 describes the 

related work. Section 3 briefly introduces HMMER, the Cell BE processor main 
components and HMMERCELL. In Section 4 we present and validate our 
performance model. Section 5 describes the experimental methodology used for 
profiling and for the model construction and validation. Section 6 shows the 
results, Section 7 discusses our findings and Section 8 presents our conclusions. 

2. RELATED WORK 

HMMERCELL, the Cell BE port of HMMER, is created by Lu et al. In [9], 
detailed information on the implementation and parallelization strategy is pro- 
vided, along with raw performance data where it is benchmarked against 
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commodity x86 architectures. Compared to the AMD Opteron platform (2.8 GHz, 
1-4 cores) and the Intel Woodcrest platform (3.0 GHz, 1-4 cores), a single Cell BE 
is reported to be up to thirty times faster than a single core Intel or AMD 
processor. In contrast, in this paper we build a model of HMMER for a master- 
worker parallelization scheme and use HMMERCELL as a validation example. 
Besides, we evaluate HMMERCELL performance in much more detail by 
breaking down performance into three constituent phases. These are then modeled 
and profiled in order to analyze their behavior for various workloads. Finally, 
bottlenecks to scalability are discussed. 

HMMER has been ported to various architectures. In [10], an FPGA 
implementation of HMMER is investigated. As in HMMERCELL, the 
computationally intensive kernel of the Viterbi algorithm is the main focus. 
Similar to HMMERCELL, the FPGA is used as a filter: the sequences with a 
promising score require reprocessing on the host machine. A thirty fold speedup 
over an AMD Athlon64 3500+ is reported- comparable to the HMMERCELL 
performance. 

MPI-HMMER was created to take advantage of computer clusters [14]. 
Similar to HMMERCELL, one node is assigned a manager role and the rest of the 
machines are workers over which the workload is distributed. To cope with over- 
head from message passing, sequences are grouped in larger bundles and sent as 
one message. Through double buffering, communication latency is minimized. An 
eleven-fold speedup is reported when using sixteen machines. In [15], MPI- 
HMMER is analyzed and found to be scalable up to 32-64 nodes, depending on 
workload. PIO-HMMER is introduced, addressing I/O-related bottlenecks through 
the use of parallel I/O and optimized post-processing. The manager distributes an 
offset file with sequences to each node, worker nodes read the sequences from 
their local database. Furthermore, nodes only report significant results back to the 
manager. The resulting scaling capability is much improved, as up to 256 machines 
can be used effectively. Other authors have parallelized HMMER hmmpfam kernel 
for shared-memory machines [13] and for computer clusters in HSP-HMMER[11], 
using MPI. Although our proposed model could also be used for the mentioned 
HMMER versions, this paper only verifies the model against the HMMERCELL 
implementation. The reason why HMMER- CELL scales to less cores than other 
implementations [14, 15] is because of the higher per-core Viterbi performance 
brought by the Cell’s SPEs.  

3. BACKGROUND 

In this section we start by introducing HMMER functionality. Then we 
describe the basic features of our implementation platform, the Cell BE processor, 
and finally we discuss the parallel behavior of HMMERCELL. 
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3.1. HMMER 

HMMER [7] is an open source family of tools often used in biosequence 
analysis. It is aimed specifically at protein sequence analysis. Groups of protein 
sequences thought of as belonging to the same family are modeled with profile 
Hidden Markov Models (HMMs). This paper focuses on one tool within the 
HMMER suite: hmmsearch. With this program, an HMM can be compared to a 
protein sequence database. To perform this comparison, the Viterbi algorithm is 
used to generate an alignment and a bit score. Based on the bit score, the E-value is 
calculated, which gives the number of false positives with similar bit score that can 
be expected for this database size. Larger databases lead to more false positives, so 
in those cases, an alignment requires a higher bit score to be counted as a 
significant hit. The hmmsearch output is a list of high scoring sequences and their 
alignment to the HMM. Execution time is dominated by the Viterbi decoding 
phase, which is performed once for each sequence in the database. 

Profiling shows that for all but the simplest workloads, this phase accounts for 
98+% of total running time. 

 
Fig. 1. Cell Broadband Engine architecture block diagram. 

3.2. THE CELL BROADBAND ENGINE 

The Cell Broadband Engine [8] represents a radical departure from traditional 
microprocessors design. Figure 1 shows a block diagram of the architecture. The 
Cell BE features a heterogeneous architecture with 9 computing cores: the Power 
Processing Unit (PPE), used for general purpose tasks, and 8 Synergistic 
Processing Elements (SPEs), designed for streaming workloads. SPEs are dual-
issue in-order SIMD cores with 256KB Local Stores (LS) and 128 registers, 128-
bit wide. The PPE is a 2-way Simultaneous Multithreading dual-issue in-order 
PowerPC processor. The EIB is a circular ring comprising four 16B-wide 
unidirectional channels that connects the SPEs, the PPE, two memory controllers 
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and two I/O controllers. The operating system runs on the PPE and software can 
spawn threads in the SPEs. Data has to be explicitly copied to the SPEs LSs using 
Direct Memory Access (DMA) commands. The Memory Flow Controller (MFC) 
in each SPE takes care of these DMA transfers and it does so in parallel to the 
SPEs’ SIMD execution unit.  

3.3. HMMERCELL 

HMMERCELL [9] is the port of hmmsearch v2.32 to the Cell BE architecture. 
Since the execution time of hmmsearch is almost exclusively formed by the 
Viterbi function execution, the parallelization strategy focuses on Viterbi. 

In order to optimally utilize the Cell BE architecture, a few key techniques 
have been used. First of all, parallelism is used at two levels: coarse-grain 
parallelism by spawning SPE threads and fine-grain parallelism within the SPEs, 
by using a highly efficient SIMDized version of the Viterbi algorithm [9]. 
Secondly, due to the small SPE Local Store, the use of small memory footprint 
version of the Viterbi algorithm is required. Hence, SPEs do not provide a full 
alignment but only produce an alignment score. High scoring alignments are 
reprocessed on the PPE to obtain the actual alignment. 

 
Fig. 2. HMMERCELL program phases. 

In Figure 2, an overview is given of the HMMERCELL internal functioning. 
The PPE and the SPEs assume the master and worker rolls respectively in our case 
study. The important phases are: 

– M-BUF: the master buffers the protein sequences by loading them from disk 
to main memory and creates tasks for the workers by adding entries in a job queue. 
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– W-VIT: once a worker gets a job from the queue, it copies the assigned 
protein from main memory to its LS, performs the reduced Viterbi algorithm and 
writes the result score back to main memory. 

– M-PP: during the post-processing phase, the master runs the full Viterbi 
algorithm to recover the alignment of proteins that have passed the threshold. 

For the sake of clarity, Figure 2 does not show the loading of the HMM as this 
is done only once, at the beginning, and therefore negligible.  

4. HMMER ANALYTICAL MODEL 

Here we present an analytical model that estimates the total execution time of 
a HMMER parallel version that uses the master-worker paradigm. Based on 
theoretical expectations and code inspection, we model the required time for each 
program phase separately and then combine these phases together. This results in 
an accurate model for HMMER performance on multicore platforms. 

First, we start with the derivation of the different functions of the model. 
Then, the model is applied to our implementation platform, the Cell Broadband 
Engine, to define the numeric values of the different constants. The analytical 
results are validated and used to show how the model can be used to derive the 
maximum effectively usable SPE count. More information on the program phases 
and the profiling results are presented in Section 6.  

4.1. MODEL DERIVATION 

The following parameters are used in our HMMER model: 
– TM, TW : master-worker processor time;  
– TM_BUF, TM_PP, TW_VIT : execution time of phases;  
– li : length of a specific sequence;  

– l : average length of sequences in the test set;  
– m : length of the profile HMM H;  
– n : number of sequences in the test set S;  
– PPP : chance for protein sequence to score above the threshold and thus 

requiring post-processing on the master;  
– q : number of workers used;  
– α, β, γ, δ, Cα, Cβ, Cγ, Cδ : model coefficients. 
The required time (t) for each phase to process a single sequence is expressed 

in Equations 1-3 and is based upon expectations from theory and program 
inspection. Function IPP acts as an indicator, returning 1 when an alignment 
between a sequence si and the model H is significant for a test set of size n and 
otherwise returning 0. Such a sequence requires post-processing on the master 
node, which in our case means re-computing the alignment using the full Viterbi 
algorithm on the PPE. 
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_M BUF it l C              (1) 

_W VIT it m l C              (2) 

_M PP it m l C               (3) 

Aggregating these equations for individual sequences to the entire test set 
(containing n sequences) results in Equations 4-6. The indicator function IPP has 
been replaced by the probability function PPP , giving the average chance for a 
sequence in test set S to require post-processing. Predicting the result of indicator 
function IPP is difficult, as it requires knowledge of the biological match between 
the protein model and a specific sequence. Probability PPP however, can be 
estimated based on overall traceback count of a test set. Also, TW_V IT states the time 
required for the Viterbi computations of all the sequences combined. 

_ ( )M BUFT n l C              (4) 

_ ( )W VITT n m l C              (5) 

_ ( )M PPT n m l C              (6) 

ln( )
with PP

n C
P

n
  

  

To combine the previous equations into an integrated model of HMMER 
performance, the interrelation between the functions should be taken into account. 
The dependencies between these three functions are depicted in Figure 3. W_VIT 
starts after M_BUF, as at least one sequence should be buffered before processing 
by the workers can commence. W_VIT ends after M_BUF, as the last sequence to 
be buffered must be processed as well. M_PP starts when M_BUF finishes, as both 
buffering and post-processing are performed on the master node. M_PP ends after 
W_VIT, as the last processed sequence must be checked by the master. 

 
Fig. 3. Relationship of dependence between. 

When a test set contains many thousands of sequences, processing time of any 
individual sequence is insignificant when compared to total execution time. This 
observation allows for two simplifications: first, the above dependencies between 
functions can be approximated as follows: M_BUF and W_VIT can be assumed to 
start at the same time, M_PP starts when M_BUF completes, and M_PP must 
finish after W_VIT. The model also assumes that when M_BUF finishes there are 



International Journal on Information Technologies & Security, № 3, 2011 10 

hits already available for it to post-process. This is reasonable considering the fact 
that M_BUF is characterized by long latencies and because hits will usually be 
randomly distributed in the database. 

On the other hand, load balancing between workers is assumed to be perfect, 
as all processes will finish at approximately the same time. This approximation 
and hence the accuracy of the model relies on the assumption that the test set 
contains a large number of sequences, so that the granularity of individual 
sequence processing becomes very small. This is reasonable, for example a 
relevant workload such as the SwissProt database contains around half a million 
sequences. Using these assumptions, execution time is modeled as per Equations 
7-9: 

_ _M M BUF M PPT T T            (7) 

_W W VITT T q             (8) 

max( , )TOTAL M WT T T           (9) 

4.2. MODEL PARAMETRIZATION 

The previous section shows the generalized form of a performance model for 
an application parallelized using the master-worker paradigm. The coefficients α-
δ, Cα-Cδ and function PPP are specific to the actual implementation of HMMER. 
Here, we show the actual values for our implementation on the Cell BE 
architecture. Using linear and logarithmic regression, the parameterized values are 
derived from the profiling results. The extra processing time required by 
reprocessing high scoring sequences on the master node is incorporated in the 
coefficient’s values. 

_ 3 3

0.19 5.52

10 10M BUFT n l
     
 

        (10) 

_ 3 2 3

0.59 0.88

10 10 10W VIT

m
T n l

      
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       (11) 

_ 3 2 3

2.25 35.7

10 10 10P PP PP

m
T n l P
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       (12) 
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with PP

n
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 
  

Combining Equations 7-9 and 10-12, total execution time is approximated by: 
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  (13) 

4.3. MAXIMUM EFFECTIVE SPE COUNT 

Equation 13 can be used to derive the number of workers (or in the case of 
Cell: SPEs) that can be effectively used in scenarios that are constrained by the 
master’s buffering performance (in our case: the PPE). In such situations, the 
number of workers that will saturate the master’s buffering capability can be 
estimated by setting TM_BUF equal to TW, which results in the maximum effective 
number of workers q: 

2
_

_

10
0.59 0.88

0.19 5.52
W VIT

M BUF

m
lT

q
T l

  
 

 
        (14) 

From this equation, it follows that the number of usable workers is solely 
dependent on HMM model size. Table 1 gives the maximum number of usable 
workers for various HMM sizes when using sequences with typical length. 
Profiling results in Section 6 confirm the data from Table 1. 

Table 1. Maximum effectively usable workers. 
HMM Length 100 200 300 400 500 

q (max worker count) 3 6 9 12 15 

4.4. MODEL VALIDATION 

To validate our model, additional tests have been performed with new 
randomly selected data sets of 20.000 and 40.000 sequences (the size is 
constrained to fit in our blade user quota, but large enough to be significant for the 
experiments). These test sets have been checked to have an average sequence 
length near 355 symbols in order to ensure the same behavior as with the full 
SiwssProt database. Sequences are compared against four different HMMs with 
length 150 and 450 (two representative lengths as seen in Figure 4). The execution 
time of each of the HMMER phases is shown in Table 2 for both the empirical 
execution and the model prediction. The last two columns show the percentage 
error between prediction and estimation. Our model was able to accurately 
estimate the execution time of M_BUF and W_VIT, average deviation between 
result and expectation was 1.5% and 1.7% respectively. On the contrary, the 
estimation for M_PP was unreliable, as the number of sequences that require post-
processing depends on the biological fit between data set and the HMM, and 
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because the time for post-processing varies considerably for each sequence. 
However, the M_PP model inaccuracy will only affect overall performance 
estimation if the application is constrained by the M_PP phase, which only occurs 
if a high fraction of sequences requires post-processing. However, as traceback 
count scales logarithmically in test set size, this fraction is marginal for realistic 
test sizes. Furthermore, for shared memory architectures where the M_PP phase 
does not need to compute the full Viterbi algorithm, the significance of the phase 
is even less than in our case-study. Thus, M_PP contribution to total execution 
time is negligible. Overall, the average error of our model was below 2%. 

Table 2. Validation results. 
Test Empirical Results Model Results Difference 
m,n,q BUF VIT PP BUF VIT PP BUF VIT 

20k,150a,1 1498 6349 581 1459 6301 176 -2.6% -0.8% 
20k,150a,8 1492 797 581 1459 788 176 -2.2% -1.2% 
20k,150b,1 1442 6345 336 1459 6301 176 1.2% -0.7% 
20k,150b,8 1492 797 335 1459 788 176 -2.2% -1.2% 
20k,450a,1 1441 18440 777 1459 18868 519 1.3% 2.3% 
20k,450a,8 1448 2303 776 1459 2359 519 0.8% 2.4% 
20k,450b,1 1441 18436 1032 1459 18868 519 1.3% 2.3% 
20k,450b,8 1446 2305 1031 1459 2359 519 0.9% 2.3% 
40k,150a,1 3071 12747 1031 2934 12673 196 -4.7% -0.6% 
40k,150a,8 3023 1605 714 2934 1584 196 -3.1% -1.3% 
40k,150b,1 2927 12748 427 2934 12673 196 0.2% -0.6% 
40k,150b,8 3026 1603 427 2934 1584 196 -3.1% -1.2% 
40k,450a,1 2925 37021 509 2934 37949 577 0.3% 2.4% 
40k,450a,8 2931 4621 507 2934 4744 577 0.1% 2.5% 
40k,450b,1 2924 37021 1531 2934 37949 577 0.3% 2.4% 
40k,450b,8 2929 4629 1551 2934 4744 577 0.2% 2.4% 

5. EXPERIMENTAL METHODOLOGY 

Experiments are performed on an IBM QS21 Blade featuring two Cell 
processors (and hence 16 SPEs) running at 3.2GHz and having 4GB of RAM. The 
code has been compiled with GCC4.1.1 and -O3 flag. Only one PPE was used in 
our experiments as we intend to study scalability in the number of SPEs. 

For the profiling and model validation tests, profile HMMs from the Pfam 
database [12] and sequence data sets from the UniProtKB/SwissProt database [5] 
were used. Figure 4 shows the current model and sequence length distribution for 
Pfam and SwissProt databases. Only the length of the profile HMMs was taken 
into account. For the sequence data set, the number of items in the set and the 
distribution of their lengths was relevant. Based on this information, input test sets 
have been chosen. 



International Journal on Information Technologies & Security, № 3, 2011 13 

Profiling results were obtained by analyzing runtime traces from an 
instrumented version of the application. HMMERCELL was manually 
instrumented using the Extrae tracing library [4]. The generated traces have been 
inspected with Paraver [3], a visualization environment for trace files. To model 
application behavior, parametric functions for each phase were created. Their 
dependence on the input and the choice for linear or logarithmic scaling depends 
on theory, profiling results and inspection of the HMMER source code. Based on 
these equations, the formulas were parameterized by fitting the profiled 
performance data, using linear or logarithmic regression. 

6. CELL BE PROFILING RESULTS 

This section complements the HMMER scalability analysis by presenting 
profiling analysis. Besides reporting performance scalability on the number of 
workers, results also show scaling behavior with respect to input sizes. Profiling 
results were obtained using 5 distinct HMMs with lengths from 100 to 500 
positions. For general performance tests, a sequence set consisting of 20.000 
randomly selected sequences with length distribution identical to the SwissProt 
database was used. Figure 5 gives an overview of HMMERCELL performance 
where some basic characteristics on how HMMERCELL reacts to changes in input 
parameters are revealed: the use of a longer HMM model size requires 
correspondingly longer execution time; in general, the use of additional SPEs leads 
to shorter execution times; and only a certain number of SPEs can be used 
effectively, depending on the workload. Due to management overhead, using more 
SPEs results in identical or even deteriorated performance. 

 
Fig. 5. HMMERCELL execution time overview. 
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In order to evaluate the scaling capability of HMMERCELL, the behavior of 
each of the important program phases (M_BUF, W_VIT, M_PP) was analyzed in 
isolation. The goal of these experiments is to understand the behavior of each 
phase, their dependence on the input parameters, how they contribute to 
aggregated HMMERCELL performance, and to understand the role and impact of 
various bottlenecks to scaling capability. In the following subsections, profiling 
results are discussed for each phase, showing their scaling behavior in HMM size 
and sequence length. Each phase has two graphs showing its scaling behavior. The 
figure on the left emphasizes scaling results in sequence length (sequence length 
on the horizontal axis, lines represent different HMM sizes). The figure on the 
right emphasizes scaling in HMM model length (HMM size on the horizontal axis, 
lines represent different sequence lengths). The vertical axes represent execution 
time. 

6.1. THE PPE BUFFERING PHASE 

In Figure 6, the scaling behavior of the M_BUF phase is shown. This phase of 
the program, which runs on the PPE, is responsible for loading sequences from 
disk into main memory, for converting them to HMMER’s internal format and for 
creating jobs (for the SPEs) by adding the corresponding entries to the job queue. 
From the graphs in the figure, it is clear that the M_BUF computation time scales 
linearly in the sequence length and is independent of the HMM model size. This is 
in-line with expectations: loading a single HMM (even if it is a long one) takes 
negligible time compared to loading the many database sequences. In fact, when 
we talk about the M_BUF phase we discard the loading of the HMM. More in-
depth profiling revealed that 40% of M_BUF time is spent on I/O while most of 
the rest is spent on formatting the sequences before they can be processed.  

 

 
Fig. 6. Scaling characteristics of the PPE buffering phase (M_BUF). 
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Fig. 7. Scaling characteristics of the SPE Viterbi phase (W_VIT). 

Therefore, an increased I/O bandwidth and a faster formatting of sequences 
(either by parallelization or faster processor) would be the way of speeding this 
phase up. 

6.2. THE SPE VITERBI PHASE 

Figure 7 shows the scaling behavior of the most computationally intensive 
part, the W_VIT. During this phase, the SPEs process the PPE-created jobs in 
M_BUF. In each job, a sequence is aligned to the HMM using the Viterbi 
algorithm. A special version of the algorithm with smaller memory footprint is 
used so that all data structures fit inside the small SPEs’ LS (256KB). In this 
version, intermediate values are discarded and only the alignment score is 
produced, which is sent back to the PPE. 

From the figures, it is clear that W_VIT computation time scales linearly both 
in the length of the sequence and in the size of the HMM profile. Again, this 
confirms expectations, as the Viterbi algorithm scales linearly in sequence length 
and linear for models cast in profile HMM form.  

 
Fig. 8. Scaling characteristics of the PPE Viterbi Traceback phase (M_PP). 
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6.3. THE PPE TRACEBACK PHASE 

Figure 8 depicts the M_PP scaling behavior. This phase checks the results that 
have been produced by the SPEs and performs the full Viterbi algorithm on the 
PPE for those sequences that have a high alignment score and hence might form a 
potential match to the model. Compared to the previous phases, M_PP behavior is 
less regular. The reason for this is that whereas M_BUF and W_VIT are performed 
for each sequence in the test set, M_PP only performs the Viterbi calculations for 
a subset of sequences, namely those whose alignment score exceeds a certain 
threshold. The actual number of tracebacks depends on the underlying biological 
semantics, i.e. how many sequences in the test set fit well to the model. 

Behavior of M_PP is further analyzed by breaking it down in two 
components: the number of tracebacks performed for a test set (Figure 9) and the 
average time required for an individual traceback (Figure 10), given different 
sequence and HMM combinations. Of course, when the number of tracebacks is 
multiplied by the time per traceback, the total time spent in the traceback phase is 
produced. 

Of these two components, the results for average time per individual trace- 
back are as expected: execution time for a single sequence scales more or less 
linearly in both sequence length and HMM size. The full Viterbi algorithm 
requires a large data structure in memory and traversing this memory hierarchy is 
the reason for the observed staggered scaling. Hence, the erratic results in total 
traceback time are mainly caused by the fluctuations in the number of trace- backs. 
Some correlation between length and traceback count can be observed: generally 
speaking, longer sequences result in more hits, since local alignment is performed. 
Subsections of a sequence are allowed to form a match to the model, hence the 
longer the sequence the larger the probability of a matching subsection. HMM size 
has no clear effect on performance. 

 
Fig. 9. M_PP analysis: total number of tracebacks. 
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Fig. 10. M_PP analysis: average time per individual traceback. 

The number of tracebacks is affected by two factors: the particular 
combination of HMM and sequence set, i.e. their biological match; and the number 
of sequences in the test set, as the E-value depends on the test set size. The number 
of tracebacks required varies largely between HMMs, even for those having 
identical length. Results between different sequence sets of equal size vary much 
less. An alignment requires a higher bit score to be counted as significant when 
comparing against a larger database. A logarithmic relationship between test set 
size and traceback count is present [1].  

7. DISCUSSION 

The hmmsearch kernel was parallelized according to the master-worker 
pattern into three stages: buffering, Viterbi processing and post-processing. The 
phase that performs the Viterbi calculations is the most time-consuming portion of 
HMMER and is primarily responsible for overall program behavior. Hence, 
inspection of this part and its parallelization strategy is very important. Offloading 
the Viterbi calculations onto the workers is effective: the workload is regular, the 
computation-to-communication ratio is high, and in theory the number of workers 
that can be efficiently used is only limited by the number of sequences. However, 
the master should be able to create jobs fast enough. This implies that for any 
given workload a certain worker count exists that will saturate the master. In this 
respect, our model shows that HMM model size determines how many workers 
can be used before the master’s buffering capability is exceeded. This is explained 
by the fact that (as seen in Figs. 6-7) only the HMM size has a different impact on 
M_BUF and W_VIT. For short HMMs for instance, worker jobs are small 
compared to the M_BUF phase, resulting in the master not being able to keep up 
with preparing jobs. Notice that by letting the workers format the input sequences 
themselves would improve scalability as less work needs to be done by the master 
in the buffering phase. 
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The explicit memory architecture of the Cell BE with the SPEs having small 
LS requires the use of a smaller footprint Viterbi algorithm. As a consequence, the 
full Viterbi kernel should be included in M_PP. This phase is shown to be another 
potential bottleneck and is shown to introduce inherent uncertainty in the model. 
However, as the PPE buffering phase and the SPE Viterbi phase are both linearly 
dependent on the number of sequences in the workload, they are the most 
influential to overall performance. Because M_PP execution time becomes less 
significant for larger workloads, its impact on the overall model accuracy becomes 
negligible for realistic test sets. Overall, the model was found to be highly 
accurate, with only 2% error when compared to execution on real hardware. 

Full Viterbi in M_PP can be avoided on a shared memory system. A drawback 
of Cell BE and heterogeneous processors with explicit memory architecture in 
general, is that there is a direct impact on the parallelization strategy. The 
advantage is of course that for suitable applications depending on their compute- 
intensive nature, performance can be very high. However, the ratio between master 
and workers has to be balanced for the target application. For HMMERCELL, we 
found that three SPEs saturate the PPE for typical HMM sizes. The proposed 
model can be used to estimate the optimal ratio between PPE and SPEs for 
different workloads. In general, modeling the behavioral characteristics is useful: it 
is a valuable aid for decision-making during design space exploration as it can 
show the optimal ratio between job creation and job consumption. The proposed 
model can also be used for scheduling at runtime. 

8. CONCLUSIONS 

In this paper we presented an analytical model of HMMER aimed at master- 
worker parallelization schemes. The model was deduced from program inspection 
and later compared against execution of HMMERCELL on a real Cell processor. 
The model and the profiling results gave us an insight in the HMMER scalability 
details. The model prediction for M_BUF and W_VIT phases was found to be 
highly accurate, with only 1.5% and 1.7% error on average. Although M_PP was 
not accurately estimated by the model, we showed that for realistic test cases it 
does not affect the overall prediction. Our total execution time estimation was with 
and error within 2%. 

The findings in this paper are relevant for other bioinformatics applications as 
well. Most bioinformatics applications contain an abundance of coarse-grained 
parallelism and the master-worker pattern is a useful strategy to divide the work 
over multiple cores. For optimal scaling behavior, the master core should be 
relieved of as many other tasks as possible and control tasks should also be 
parallelized. In the case of a Cell BE blade, the two PPEs offer together four 
hardware threads that could be used to divide up the M_BUF work. Even better, 
the SPEs could take care of the sequence formatting work in M_BUF. However, 
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parallelizing M_BUF would only speedup its sequence formatting part and the I/O 
bottleneck would still remain. 

Although using HMMER and the Cell processor for the experiments, the study 
presented in this paper has a more general scope. Our ultimate goal is to 
understand the interaction between bioinformatics workloads and heterogeneous 
multicore architectures. In our future work we will analyze the new HMMER3 [2] 
and apply the same methodology. Based on the same core philosophy and 
algorithms, HMMER3 uses a three stage filtering process similar to 
HMMERCELL. 
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