
International Journal on Information Technologies & Security, № 3, 2011 3

SEQUENCE ALIGNMENT APPLICATION MODEL FOR
MULTI- AND MANYCORE ARCHITECTURES1

Sebastian Isaza, Ernst Houtgast, Georgi Gaydadjiev

Computer Engineering Laboratory, Delft University of Technology
e-mails: s.isazaramirez@tudelft.nl

The Netherlands

Abstract: Exponential growth in biological sequence data combined with
the computationally intensive nature of bioinformatics applications results
in a continuously rising demand for computational power. In this paper,
we propose a performance model that captures the behavior and
performance scalability of HMMER, a bioinformatics application that
identifies similarities between protein sequences and a protein family
model. With our analytical model, the optimal master-worker ratio for any
specific user scenario can be estimated. The model is evaluated and is
found accurate with error lower than 2%. We applied our model to a
widely used heterogeneous multicore architecture, the Cell BE, using the
PPE and SPEs as master and workers respectively. Experimental results
show that for the current parallelization strategy, the I/O speed to read the
database from the disk and the inputs pre-processing are the two most
limiting factors in the Cell BE case.

Key words: multicore architectures, bioinformatics, performance models.

1. INTRODUCTION

The rapid development of genetics in recent decades has led to an explosion
of genetic information databases. The genetic structure of many species has been
sequenced and the resulting sheer size of such data sets makes analysis by hand
impossible. In bioinformatics, computer technology is used to enable biological
research directions that would be unfeasible otherwise.

Within bioinformatics, sequence alignment is a primary activity. Fragments of
DNA or protein sequences are compared to each other in order to identify

1 This work was sponsored by the European Commission in the context of the
following projects: SARC (#27648) and the HiPEAC NoE. The authors would like
to thank the Barcelona Supercomputing Center for the access to the Cell BE
blades, tools and their excellent technical support.

International Journal on Information Technologies & Security, № 3, 2011 4

similarities between them. Due to the computational complexity of the algorithms
used to process these data sets, demand for processing power is soaring. Therefore,
it is critical for bioinformatics applications to be efficient and scalable in order to
meet this demand. Two popular sequence analysis tools are BLAST [6] and
HMMER [7]. Each has its own merits: BLAST is faster; HMMER is more
sensitive and also able to find more distant relationships. The adoption of
HMMER2 in the SPEC2006 benchmark suite and the recent HMMER3
developments show its significance.

Advancements in microprocessor technology in the past have resulted in
steadily increasing computational power, through miniaturization and growing
transistor budgets. However, single threaded performance improvement is
stagnating because of frequency, power and memory scaling barriers. These
“walls” are the reason for the current paradigm shift towards multicore
architectures, in an attempt to deliver the expected performance growth. One
example of such multicore architecture is Cell BE, a processor with special
architectural components and organization that has opened a new path in processor
design. In this paper we have used the Cell BE as a case study to validate our
proposal, how- ever, we consider that our analysis is applicable to other multicore
architectures as well.

The suitability and effectiveness of the multicore paradigm for bioinformatics
applications is still an open research question. In this paper, we develop an
analytical model of a master-worker parallelization of HMMER for multicore
architectures. As a case-study, we use HMMERCELL (a port of HMMER to the
Cell architecture) to investigate its scalability behavior. Through profiling on the
Cell processor we set the coefficients and finally we are able to validate our
model. In essence, main contributions of this paper are:

– Highly accurate performance prediction model (with error within 2%);
– Detailed, quantitative characterization of program phases and their

influence on overall performance;
– A careful study of the HMMER scalability bottlenecks.
The remainder of the paper is organized as follows. Section 2 describes the

related work. Section 3 briefly introduces HMMER, the Cell BE processor main
components and HMMERCELL. In Section 4 we present and validate our
performance model. Section 5 describes the experimental methodology used for
profiling and for the model construction and validation. Section 6 shows the
results, Section 7 discusses our findings and Section 8 presents our conclusions.

2. RELATED WORK

HMMERCELL, the Cell BE port of HMMER, is created by Lu et al. In [9],
detailed information on the implementation and parallelization strategy is pro-
vided, along with raw performance data where it is benchmarked against

International Journal on Information Technologies & Security, № 3, 2011 5

commodity x86 architectures. Compared to the AMD Opteron platform (2.8 GHz,
1-4 cores) and the Intel Woodcrest platform (3.0 GHz, 1-4 cores), a single Cell BE
is reported to be up to thirty times faster than a single core Intel or AMD
processor. In contrast, in this paper we build a model of HMMER for a master-
worker parallelization scheme and use HMMERCELL as a validation example.
Besides, we evaluate HMMERCELL performance in much more detail by
breaking down performance into three constituent phases. These are then modeled
and profiled in order to analyze their behavior for various workloads. Finally,
bottlenecks to scalability are discussed.

HMMER has been ported to various architectures. In [10], an FPGA
implementation of HMMER is investigated. As in HMMERCELL, the
computationally intensive kernel of the Viterbi algorithm is the main focus.
Similar to HMMERCELL, the FPGA is used as a filter: the sequences with a
promising score require reprocessing on the host machine. A thirty fold speedup
over an AMD Athlon64 3500+ is reported- comparable to the HMMERCELL
performance.

MPI-HMMER was created to take advantage of computer clusters [14].
Similar to HMMERCELL, one node is assigned a manager role and the rest of the
machines are workers over which the workload is distributed. To cope with over-
head from message passing, sequences are grouped in larger bundles and sent as
one message. Through double buffering, communication latency is minimized. An
eleven-fold speedup is reported when using sixteen machines. In [15], MPI-
HMMER is analyzed and found to be scalable up to 32-64 nodes, depending on
workload. PIO-HMMER is introduced, addressing I/O-related bottlenecks through
the use of parallel I/O and optimized post-processing. The manager distributes an
offset file with sequences to each node, worker nodes read the sequences from
their local database. Furthermore, nodes only report significant results back to the
manager. The resulting scaling capability is much improved, as up to 256 machines
can be used effectively. Other authors have parallelized HMMER hmmpfam kernel
for shared-memory machines [13] and for computer clusters in HSP-HMMER[11],
using MPI. Although our proposed model could also be used for the mentioned
HMMER versions, this paper only verifies the model against the HMMERCELL
implementation. The reason why HMMER- CELL scales to less cores than other
implementations [14, 15] is because of the higher per-core Viterbi performance
brought by the Cell’s SPEs.

3. BACKGROUND

In this section we start by introducing HMMER functionality. Then we
describe the basic features of our implementation platform, the Cell BE processor,
and finally we discuss the parallel behavior of HMMERCELL.

International Journal on Information Technologies & Security, № 3, 2011 6

3.1. HMMER

HMMER [7] is an open source family of tools often used in biosequence
analysis. It is aimed specifically at protein sequence analysis. Groups of protein
sequences thought of as belonging to the same family are modeled with profile
Hidden Markov Models (HMMs). This paper focuses on one tool within the
HMMER suite: hmmsearch. With this program, an HMM can be compared to a
protein sequence database. To perform this comparison, the Viterbi algorithm is
used to generate an alignment and a bit score. Based on the bit score, the E-value is
calculated, which gives the number of false positives with similar bit score that can
be expected for this database size. Larger databases lead to more false positives, so
in those cases, an alignment requires a higher bit score to be counted as a
significant hit. The hmmsearch output is a list of high scoring sequences and their
alignment to the HMM. Execution time is dominated by the Viterbi decoding
phase, which is performed once for each sequence in the database.

Profiling shows that for all but the simplest workloads, this phase accounts for
98+% of total running time.

Fig. 1. Cell Broadband Engine architecture block diagram.

3.2. THE CELL BROADBAND ENGINE

The Cell Broadband Engine [8] represents a radical departure from traditional
microprocessors design. Figure 1 shows a block diagram of the architecture. The
Cell BE features a heterogeneous architecture with 9 computing cores: the Power
Processing Unit (PPE), used for general purpose tasks, and 8 Synergistic
Processing Elements (SPEs), designed for streaming workloads. SPEs are dual-
issue in-order SIMD cores with 256KB Local Stores (LS) and 128 registers, 128-
bit wide. The PPE is a 2-way Simultaneous Multithreading dual-issue in-order
PowerPC processor. The EIB is a circular ring comprising four 16B-wide
unidirectional channels that connects the SPEs, the PPE, two memory controllers

International Journal on Information Technologies & Security, № 3, 2011 7

and two I/O controllers. The operating system runs on the PPE and software can
spawn threads in the SPEs. Data has to be explicitly copied to the SPEs LSs using
Direct Memory Access (DMA) commands. The Memory Flow Controller (MFC)
in each SPE takes care of these DMA transfers and it does so in parallel to the
SPEs’ SIMD execution unit.

3.3. HMMERCELL

HMMERCELL [9] is the port of hmmsearch v2.32 to the Cell BE architecture.
Since the execution time of hmmsearch is almost exclusively formed by the
Viterbi function execution, the parallelization strategy focuses on Viterbi.

In order to optimally utilize the Cell BE architecture, a few key techniques
have been used. First of all, parallelism is used at two levels: coarse-grain
parallelism by spawning SPE threads and fine-grain parallelism within the SPEs,
by using a highly efficient SIMDized version of the Viterbi algorithm [9].
Secondly, due to the small SPE Local Store, the use of small memory footprint
version of the Viterbi algorithm is required. Hence, SPEs do not provide a full
alignment but only produce an alignment score. High scoring alignments are
reprocessed on the PPE to obtain the actual alignment.

Fig. 2. HMMERCELL program phases.

In Figure 2, an overview is given of the HMMERCELL internal functioning.
The PPE and the SPEs assume the master and worker rolls respectively in our case
study. The important phases are:

– M-BUF: the master buffers the protein sequences by loading them from disk
to main memory and creates tasks for the workers by adding entries in a job queue.

International Journal on Information Technologies & Security, № 3, 2011 8

– W-VIT: once a worker gets a job from the queue, it copies the assigned
protein from main memory to its LS, performs the reduced Viterbi algorithm and
writes the result score back to main memory.

– M-PP: during the post-processing phase, the master runs the full Viterbi
algorithm to recover the alignment of proteins that have passed the threshold.

For the sake of clarity, Figure 2 does not show the loading of the HMM as this
is done only once, at the beginning, and therefore negligible.

4. HMMER ANALYTICAL MODEL

Here we present an analytical model that estimates the total execution time of
a HMMER parallel version that uses the master-worker paradigm. Based on
theoretical expectations and code inspection, we model the required time for each
program phase separately and then combine these phases together. This results in
an accurate model for HMMER performance on multicore platforms.

First, we start with the derivation of the different functions of the model.
Then, the model is applied to our implementation platform, the Cell Broadband
Engine, to define the numeric values of the different constants. The analytical
results are validated and used to show how the model can be used to derive the
maximum effectively usable SPE count. More information on the program phases
and the profiling results are presented in Section 6.

4.1. MODEL DERIVATION

The following parameters are used in our HMMER model:
– TM, TW : master-worker processor time;
– TM_BUF, TM_PP, TW_VIT : execution time of phases;
– li : length of a specific sequence;

– l : average length of sequences in the test set;
– m : length of the profile HMM H;
– n : number of sequences in the test set S;
– PPP : chance for protein sequence to score above the threshold and thus

requiring post-processing on the master;
– q : number of workers used;
– α, β, γ, δ, Cα, Cβ, Cγ, Cδ : model coefficients.
The required time (t) for each phase to process a single sequence is expressed

in Equations 1-3 and is based upon expectations from theory and program
inspection. Function IPP acts as an indicator, returning 1 when an alignment
between a sequence si and the model H is significant for a test set of size n and
otherwise returning 0. Such a sequence requires post-processing on the master
node, which in our case means re-computing the alignment using the full Viterbi
algorithm on the PPE.

International Journal on Information Technologies & Security, № 3, 2011 9

_M BUF it l C   (1)

_W VIT it m l C    (2)

_M PP it m l C    (3)

Aggregating these equations for individual sequences to the entire test set
(containing n sequences) results in Equations 4-6. The indicator function IPP has
been replaced by the probability function PPP , giving the average chance for a
sequence in test set S to require post-processing. Predicting the result of indicator
function IPP is difficult, as it requires knowledge of the biological match between
the protein model and a specific sequence. Probability PPP however, can be
estimated based on overall traceback count of a test set. Also, TW_V IT states the time
required for the Viterbi computations of all the sequences combined.

_ ()M BUFT n l C    (4)

_ ()W VITT n m l C     (5)

_ ()M PPT n m l C     (6)

ln()
with PP

n C
P

n
  



To combine the previous equations into an integrated model of HMMER
performance, the interrelation between the functions should be taken into account.
The dependencies between these three functions are depicted in Figure 3. W_VIT
starts after M_BUF, as at least one sequence should be buffered before processing
by the workers can commence. W_VIT ends after M_BUF, as the last sequence to
be buffered must be processed as well. M_PP starts when M_BUF finishes, as both
buffering and post-processing are performed on the master node. M_PP ends after
W_VIT, as the last processed sequence must be checked by the master.

Fig. 3. Relationship of dependence between.

When a test set contains many thousands of sequences, processing time of any
individual sequence is insignificant when compared to total execution time. This
observation allows for two simplifications: first, the above dependencies between
functions can be approximated as follows: M_BUF and W_VIT can be assumed to
start at the same time, M_PP starts when M_BUF completes, and M_PP must
finish after W_VIT. The model also assumes that when M_BUF finishes there are

International Journal on Information Technologies & Security, № 3, 2011 10

hits already available for it to post-process. This is reasonable considering the fact
that M_BUF is characterized by long latencies and because hits will usually be
randomly distributed in the database.

On the other hand, load balancing between workers is assumed to be perfect,
as all processes will finish at approximately the same time. This approximation
and hence the accuracy of the model relies on the assumption that the test set
contains a large number of sequences, so that the granularity of individual
sequence processing becomes very small. This is reasonable, for example a
relevant workload such as the SwissProt database contains around half a million
sequences. Using these assumptions, execution time is modeled as per Equations
7-9:

_ _M M BUF M PPT T T  (7)

_W W VITT T q (8)

max(,)TOTAL M WT T T (9)

4.2. MODEL PARAMETRIZATION

The previous section shows the generalized form of a performance model for
an application parallelized using the master-worker paradigm. The coefficients α-
δ, Cα-Cδ and function PPP are specific to the actual implementation of HMMER.
Here, we show the actual values for our implementation on the Cell BE
architecture. Using linear and logarithmic regression, the parameterized values are
derived from the profiling results. The extra processing time required by
reprocessing high scoring sequences on the master node is incorporated in the
coefficient’s values.

_ 3 3

0.19 5.52

10 10M BUFT n l
     
 

 (10)

_ 3 2 3

0.59 0.88

10 10 10W VIT

m
T n l

      
 

 (11)

_ 3 2 3

2.25 35.7

10 10 10P PP PP

m
T n l P

       
 

 (12)

21.9 ln() 73.2
with PP

n
P

n

 


Combining Equations 7-9 and 10-12, total execution time is approximated by:

International Journal on Information Technologies & Security, № 3, 2011 11

   
 

3 3 2 3 3

3 2 3

0.19 2.25 5.52 35.7

10 10 10 10 10

0.59 0.88

10 10 10

max
PP PPM

W

m
P l P

m
l q

T n

T n

      

  

       

  

 (13)

4.3. MAXIMUM EFFECTIVE SPE COUNT

Equation 13 can be used to derive the number of workers (or in the case of
Cell: SPEs) that can be effectively used in scenarios that are constrained by the
master’s buffering performance (in our case: the PPE). In such situations, the
number of workers that will saturate the master’s buffering capability can be
estimated by setting TM_BUF equal to TW, which results in the maximum effective
number of workers q:

2
_

_

10
0.59 0.88

0.19 5.52
W VIT

M BUF

m
lT

q
T l

  
 

 
 (14)

From this equation, it follows that the number of usable workers is solely
dependent on HMM model size. Table 1 gives the maximum number of usable
workers for various HMM sizes when using sequences with typical length.
Profiling results in Section 6 confirm the data from Table 1.

Table 1. Maximum effectively usable workers.
HMM Length 100 200 300 400 500

q (max worker count) 3 6 9 12 15

4.4. MODEL VALIDATION

To validate our model, additional tests have been performed with new
randomly selected data sets of 20.000 and 40.000 sequences (the size is
constrained to fit in our blade user quota, but large enough to be significant for the
experiments). These test sets have been checked to have an average sequence
length near 355 symbols in order to ensure the same behavior as with the full
SiwssProt database. Sequences are compared against four different HMMs with
length 150 and 450 (two representative lengths as seen in Figure 4). The execution
time of each of the HMMER phases is shown in Table 2 for both the empirical
execution and the model prediction. The last two columns show the percentage
error between prediction and estimation. Our model was able to accurately
estimate the execution time of M_BUF and W_VIT, average deviation between
result and expectation was 1.5% and 1.7% respectively. On the contrary, the
estimation for M_PP was unreliable, as the number of sequences that require post-
processing depends on the biological fit between data set and the HMM, and

International Journal on Information Technologies & Security, № 3, 2011 12

because the time for post-processing varies considerably for each sequence.
However, the M_PP model inaccuracy will only affect overall performance
estimation if the application is constrained by the M_PP phase, which only occurs
if a high fraction of sequences requires post-processing. However, as traceback
count scales logarithmically in test set size, this fraction is marginal for realistic
test sizes. Furthermore, for shared memory architectures where the M_PP phase
does not need to compute the full Viterbi algorithm, the significance of the phase
is even less than in our case-study. Thus, M_PP contribution to total execution
time is negligible. Overall, the average error of our model was below 2%.

Table 2. Validation results.
Test Empirical Results Model Results Difference
m,n,q BUF VIT PP BUF VIT PP BUF VIT

20k,150a,1 1498 6349 581 1459 6301 176 -2.6% -0.8%
20k,150a,8 1492 797 581 1459 788 176 -2.2% -1.2%
20k,150b,1 1442 6345 336 1459 6301 176 1.2% -0.7%
20k,150b,8 1492 797 335 1459 788 176 -2.2% -1.2%
20k,450a,1 1441 18440 777 1459 18868 519 1.3% 2.3%
20k,450a,8 1448 2303 776 1459 2359 519 0.8% 2.4%
20k,450b,1 1441 18436 1032 1459 18868 519 1.3% 2.3%
20k,450b,8 1446 2305 1031 1459 2359 519 0.9% 2.3%
40k,150a,1 3071 12747 1031 2934 12673 196 -4.7% -0.6%
40k,150a,8 3023 1605 714 2934 1584 196 -3.1% -1.3%
40k,150b,1 2927 12748 427 2934 12673 196 0.2% -0.6%
40k,150b,8 3026 1603 427 2934 1584 196 -3.1% -1.2%
40k,450a,1 2925 37021 509 2934 37949 577 0.3% 2.4%
40k,450a,8 2931 4621 507 2934 4744 577 0.1% 2.5%
40k,450b,1 2924 37021 1531 2934 37949 577 0.3% 2.4%
40k,450b,8 2929 4629 1551 2934 4744 577 0.2% 2.4%

5. EXPERIMENTAL METHODOLOGY

Experiments are performed on an IBM QS21 Blade featuring two Cell
processors (and hence 16 SPEs) running at 3.2GHz and having 4GB of RAM. The
code has been compiled with GCC4.1.1 and -O3 flag. Only one PPE was used in
our experiments as we intend to study scalability in the number of SPEs.

For the profiling and model validation tests, profile HMMs from the Pfam
database [12] and sequence data sets from the UniProtKB/SwissProt database [5]
were used. Figure 4 shows the current model and sequence length distribution for
Pfam and SwissProt databases. Only the length of the profile HMMs was taken
into account. For the sequence data set, the number of items in the set and the
distribution of their lengths was relevant. Based on this information, input test sets
have been chosen.

International Journal on Information Technologies & Security, № 3, 2011 13

Profiling results were obtained by analyzing runtime traces from an
instrumented version of the application. HMMERCELL was manually
instrumented using the Extrae tracing library [4]. The generated traces have been
inspected with Paraver [3], a visualization environment for trace files. To model
application behavior, parametric functions for each phase were created. Their
dependence on the input and the choice for linear or logarithmic scaling depends
on theory, profiling results and inspection of the HMMER source code. Based on
these equations, the formulas were parameterized by fitting the profiled
performance data, using linear or logarithmic regression.

6. CELL BE PROFILING RESULTS

This section complements the HMMER scalability analysis by presenting
profiling analysis. Besides reporting performance scalability on the number of
workers, results also show scaling behavior with respect to input sizes. Profiling
results were obtained using 5 distinct HMMs with lengths from 100 to 500
positions. For general performance tests, a sequence set consisting of 20.000
randomly selected sequences with length distribution identical to the SwissProt
database was used. Figure 5 gives an overview of HMMERCELL performance
where some basic characteristics on how HMMERCELL reacts to changes in input
parameters are revealed: the use of a longer HMM model size requires
correspondingly longer execution time; in general, the use of additional SPEs leads
to shorter execution times; and only a certain number of SPEs can be used
effectively, depending on the workload. Due to management overhead, using more
SPEs results in identical or even deteriorated performance.

Fig. 5. HMMERCELL execution time overview.

International Journal on Information Technologies & Security, № 3, 2011 14

In order to evaluate the scaling capability of HMMERCELL, the behavior of
each of the important program phases (M_BUF, W_VIT, M_PP) was analyzed in
isolation. The goal of these experiments is to understand the behavior of each
phase, their dependence on the input parameters, how they contribute to
aggregated HMMERCELL performance, and to understand the role and impact of
various bottlenecks to scaling capability. In the following subsections, profiling
results are discussed for each phase, showing their scaling behavior in HMM size
and sequence length. Each phase has two graphs showing its scaling behavior. The
figure on the left emphasizes scaling results in sequence length (sequence length
on the horizontal axis, lines represent different HMM sizes). The figure on the
right emphasizes scaling in HMM model length (HMM size on the horizontal axis,
lines represent different sequence lengths). The vertical axes represent execution
time.

6.1. THE PPE BUFFERING PHASE

In Figure 6, the scaling behavior of the M_BUF phase is shown. This phase of
the program, which runs on the PPE, is responsible for loading sequences from
disk into main memory, for converting them to HMMER’s internal format and for
creating jobs (for the SPEs) by adding the corresponding entries to the job queue.
From the graphs in the figure, it is clear that the M_BUF computation time scales
linearly in the sequence length and is independent of the HMM model size. This is
in-line with expectations: loading a single HMM (even if it is a long one) takes
negligible time compared to loading the many database sequences. In fact, when
we talk about the M_BUF phase we discard the loading of the HMM. More in-
depth profiling revealed that 40% of M_BUF time is spent on I/O while most of
the rest is spent on formatting the sequences before they can be processed.

Fig. 6. Scaling characteristics of the PPE buffering phase (M_BUF).

International Journal on Information Technologies & Security, № 3, 2011 15

Fig. 7. Scaling characteristics of the SPE Viterbi phase (W_VIT).

Therefore, an increased I/O bandwidth and a faster formatting of sequences
(either by parallelization or faster processor) would be the way of speeding this
phase up.

6.2. THE SPE VITERBI PHASE

Figure 7 shows the scaling behavior of the most computationally intensive
part, the W_VIT. During this phase, the SPEs process the PPE-created jobs in
M_BUF. In each job, a sequence is aligned to the HMM using the Viterbi
algorithm. A special version of the algorithm with smaller memory footprint is
used so that all data structures fit inside the small SPEs’ LS (256KB). In this
version, intermediate values are discarded and only the alignment score is
produced, which is sent back to the PPE.

From the figures, it is clear that W_VIT computation time scales linearly both
in the length of the sequence and in the size of the HMM profile. Again, this
confirms expectations, as the Viterbi algorithm scales linearly in sequence length
and linear for models cast in profile HMM form.

Fig. 8. Scaling characteristics of the PPE Viterbi Traceback phase (M_PP).

International Journal on Information Technologies & Security, № 3, 2011 16

6.3. THE PPE TRACEBACK PHASE

Figure 8 depicts the M_PP scaling behavior. This phase checks the results that
have been produced by the SPEs and performs the full Viterbi algorithm on the
PPE for those sequences that have a high alignment score and hence might form a
potential match to the model. Compared to the previous phases, M_PP behavior is
less regular. The reason for this is that whereas M_BUF and W_VIT are performed
for each sequence in the test set, M_PP only performs the Viterbi calculations for
a subset of sequences, namely those whose alignment score exceeds a certain
threshold. The actual number of tracebacks depends on the underlying biological
semantics, i.e. how many sequences in the test set fit well to the model.

Behavior of M_PP is further analyzed by breaking it down in two
components: the number of tracebacks performed for a test set (Figure 9) and the
average time required for an individual traceback (Figure 10), given different
sequence and HMM combinations. Of course, when the number of tracebacks is
multiplied by the time per traceback, the total time spent in the traceback phase is
produced.

Of these two components, the results for average time per individual trace-
back are as expected: execution time for a single sequence scales more or less
linearly in both sequence length and HMM size. The full Viterbi algorithm
requires a large data structure in memory and traversing this memory hierarchy is
the reason for the observed staggered scaling. Hence, the erratic results in total
traceback time are mainly caused by the fluctuations in the number of trace- backs.
Some correlation between length and traceback count can be observed: generally
speaking, longer sequences result in more hits, since local alignment is performed.
Subsections of a sequence are allowed to form a match to the model, hence the
longer the sequence the larger the probability of a matching subsection. HMM size
has no clear effect on performance.

Fig. 9. M_PP analysis: total number of tracebacks.

International Journal on Information Technologies & Security, № 3, 2011 17

Fig. 10. M_PP analysis: average time per individual traceback.

The number of tracebacks is affected by two factors: the particular
combination of HMM and sequence set, i.e. their biological match; and the number
of sequences in the test set, as the E-value depends on the test set size. The number
of tracebacks required varies largely between HMMs, even for those having
identical length. Results between different sequence sets of equal size vary much
less. An alignment requires a higher bit score to be counted as significant when
comparing against a larger database. A logarithmic relationship between test set
size and traceback count is present [1].

7. DISCUSSION

The hmmsearch kernel was parallelized according to the master-worker
pattern into three stages: buffering, Viterbi processing and post-processing. The
phase that performs the Viterbi calculations is the most time-consuming portion of
HMMER and is primarily responsible for overall program behavior. Hence,
inspection of this part and its parallelization strategy is very important. Offloading
the Viterbi calculations onto the workers is effective: the workload is regular, the
computation-to-communication ratio is high, and in theory the number of workers
that can be efficiently used is only limited by the number of sequences. However,
the master should be able to create jobs fast enough. This implies that for any
given workload a certain worker count exists that will saturate the master. In this
respect, our model shows that HMM model size determines how many workers
can be used before the master’s buffering capability is exceeded. This is explained
by the fact that (as seen in Figs. 6-7) only the HMM size has a different impact on
M_BUF and W_VIT. For short HMMs for instance, worker jobs are small
compared to the M_BUF phase, resulting in the master not being able to keep up
with preparing jobs. Notice that by letting the workers format the input sequences
themselves would improve scalability as less work needs to be done by the master
in the buffering phase.

International Journal on Information Technologies & Security, № 3, 2011 18

The explicit memory architecture of the Cell BE with the SPEs having small
LS requires the use of a smaller footprint Viterbi algorithm. As a consequence, the
full Viterbi kernel should be included in M_PP. This phase is shown to be another
potential bottleneck and is shown to introduce inherent uncertainty in the model.
However, as the PPE buffering phase and the SPE Viterbi phase are both linearly
dependent on the number of sequences in the workload, they are the most
influential to overall performance. Because M_PP execution time becomes less
significant for larger workloads, its impact on the overall model accuracy becomes
negligible for realistic test sets. Overall, the model was found to be highly
accurate, with only 2% error when compared to execution on real hardware.

Full Viterbi in M_PP can be avoided on a shared memory system. A drawback
of Cell BE and heterogeneous processors with explicit memory architecture in
general, is that there is a direct impact on the parallelization strategy. The
advantage is of course that for suitable applications depending on their compute-
intensive nature, performance can be very high. However, the ratio between master
and workers has to be balanced for the target application. For HMMERCELL, we
found that three SPEs saturate the PPE for typical HMM sizes. The proposed
model can be used to estimate the optimal ratio between PPE and SPEs for
different workloads. In general, modeling the behavioral characteristics is useful: it
is a valuable aid for decision-making during design space exploration as it can
show the optimal ratio between job creation and job consumption. The proposed
model can also be used for scheduling at runtime.

8. CONCLUSIONS

In this paper we presented an analytical model of HMMER aimed at master-
worker parallelization schemes. The model was deduced from program inspection
and later compared against execution of HMMERCELL on a real Cell processor.
The model and the profiling results gave us an insight in the HMMER scalability
details. The model prediction for M_BUF and W_VIT phases was found to be
highly accurate, with only 1.5% and 1.7% error on average. Although M_PP was
not accurately estimated by the model, we showed that for realistic test cases it
does not affect the overall prediction. Our total execution time estimation was with
and error within 2%.

The findings in this paper are relevant for other bioinformatics applications as
well. Most bioinformatics applications contain an abundance of coarse-grained
parallelism and the master-worker pattern is a useful strategy to divide the work
over multiple cores. For optimal scaling behavior, the master core should be
relieved of as many other tasks as possible and control tasks should also be
parallelized. In the case of a Cell BE blade, the two PPEs offer together four
hardware threads that could be used to divide up the M_BUF work. Even better,
the SPEs could take care of the sequence formatting work in M_BUF. However,

International Journal on Information Technologies & Security, № 3, 2011 19

parallelizing M_BUF would only speedup its sequence formatting part and the I/O
bottleneck would still remain.

Although using HMMER and the Cell processor for the experiments, the study
presented in this paper has a more general scope. Our ultimate goal is to
understand the interaction between bioinformatics workloads and heterogeneous
multicore architectures. In our future work we will analyze the new HMMER3 [2]
and apply the same methodology. Based on the same core philosophy and
algorithms, HMMER3 uses a three stage filtering process similar to
HMMERCELL.

REFERENCES

 [1] HMMER User’s Guide.
ftp://selab.janelia.org/pub/software/hmmer3/3.0/Userguide.pdf.

[2] Howard Hughes Medical Institute, HMMER Web Site.
http://hmmer.janelia.org/.

[3] Barcelona Supercomputing Center, Paraver, Sep. 2010.
http://www.bsc.es/paraver.

[4] Barcelona Supercomputing Center, Extrae tool user’s Guide, 2011.
http://www.bsc.es/ssl/apps/performanceTools/files/docs/extrae-2.1.1-
userguide.pdf.

[5] UniProt: Universal Protein Resource, 2011. www.uniprot.org.

[6] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. Basic
Local Alignment Search Tool. Journal of Molecular Biology, 215:403–410, 1990.

[7] S. R. Eddy. Profile Hidden Markov Models. Bioinformatics, 14(9):755–763,
1998.

[8] J. Kahle, M. Day, H. Hofstee, C. Johns, and D. Shippy. Introduction to the Cell
Multiprocessor. IBM Systems Journal, 49(4/5):589–604, 2005.

[9] J. Lu, M. Perrone, K. Albayraktaroglu, and M. Franklin. HMMer-Cell: High
Performance Protein Profile Searching on the Cell/B.E. Processor. In ISPASS ’08:
IEEE International Symposium on Performance Analysis of Systems and software,
pages 223 –232, 2008.

[10] T. Oliver, L. Yeow, and B. Schmidt. Integrating FPGA Acceleration into
HMMER. Parallel Computing, 34(11):681–691, 2008.

[11] B. Rekapalli, C. Halloy, and I. Zhulin. HSP-HMMER: A Tool for Protein
Domain Identification on a Large Scale. In ACM Symposium on Applied
Computing, pages 766–770, 2009.

International Journal on Information Technologies & Security, № 3, 2011 20

[12] E. L. Sonnhammer, S. R. Eddy, and R. Durbin. Pfam: a Comprehensive
Database of Protein Domain Families based on Seed Alignments. Proteins,
28(3):405–420, 1997.

[13] U.Srinivasan,P.-S.Chen,Q.Diao,C.-C.Lim,E.Li,Y.Chen,R.Ju,andY.Zhang.
Characterization and Analysis of HMMER and SVM-RFE Parallel Bioinformatics
Applications. In IEEE International Symposium on Workload Characterization,
pages 87 – 98, 2005.

[14] J. Walters, B. Qudah, and V. Chaudhary. Accelerating the HMMER Sequence
Analysis Suite using Conventional Processors. In AINA ’06: International
Conference on Advanced Information Networking and Applications, page 6 pp.,
2006.

[15] J. P. Walters, R. Darole, , and V. Chaudhary. Improving MPI-HMMER’s
Scalabil- ity with Parallel I/O. In IPDPS ’09: IEEE International Symposium on
Parallel & Distributed Processing, pages 1 –11, 2009..

Information about the authors:

Senastian Isaza – He is a PhD. student in the Computer Engineering Laboratory, at Delft
University of Technology, the Netherlands. He graduated in Electronic Engineering at the
University of Antioquia, Colombia in 2004. In 2006 he obtained an MSc. In Embedded
Systems Design at the University of Lugano, Switzerland. Since 2010 he also holds a
faculty position at the University of Antioquia. His research interests include multicore
architectures, parallel computing and bioinformatics.

Ernst Houtgast – He obtained his MSc. degree in Computer Engineering at Delft
University of technology, the Netherlands. His research interests are parallel computing,
bioinformatics and finance. He is currently employed in the financial industry.

Georgi Gaydadjiev – is currently a faculty member in the Computer Engineering
Laboratory at Delft University of Technology, the Netherlands. His experience includes
more than 25 years in hardware and software research and development in the Industry and
Academia in several European countries. His research interests include computer
architecture and micro-architecture, reconfigurable computing, hardware/software co-
design, embedded systems design, VLSI design, and computer systems testing.

