
The Molen FemtoJava Engine

Julio C. B. Mattos
Embedded Systems Lab

UFRGS
Porto Alegre, Brazil
julius@inf.ufrgs.br

Stephan Wong
Computer Engineering Lab

TUDelft
Delft, The Netherlands

J.S.S.M.Wong@ewi.tudelft.nl

Luigi Carro
Embedded Systems Lab

UFRGS
Porto Alegre, Brazil
carro@inf.ufrgs.br

Abstract

This paper presents the Molen FemtoJava engine that
is extended with concepts taken from the Molen polymor-
phic processor. This allows for the existing FemtoJava to be
augmented with reconfigurable hardware with only a sin-
gle extension of the bytecodes and thereby but still allow-
ing the implementation of arbitrary hardware implementa-
tions. Therefore, computationally intensive functions can
be moved to the reconfigurable hardware to improve their
performance. Our experimental results on MP3 decoding,
which is a common embedded application, can be improved
by at least of 27% reduction of execution cycles with mini-
mal additional hardware area (about 7%). Finally, our syn-
thesis results also show that the Molen extension of the Fem-
toJava engine only required an additional 10% of area (in
terms of FPGA slices).

1. Introduction

In reconfigurable computing, reconfigurable hardware
structures augment general-purpose processors by offload-
ing computationally intensive operations from software to
these structures. This enables quick prototyping or even
product roll-out due to two reasons. First, the applica-
tion can be specified in any high-level programming lan-
guage (e.g., Java) and thereby exploiting state-of-the-art
compiler technologies to quickly generate efficient machine
code (bytecode). Second, computationally intensive opera-
tions can be modeled in a high-level hardware description
language (e.g., VHDL) and thereby utilizing automatic syn-
thesis tools that can quickly generate hardware implemen-
tations. Consequently, the ability to do this is becoming in-
creasingly more important in the design of embedded sys-
tems. Moreover, from a technological point of view, the
increasing densities of field-programmable gate arrays (FP-
GAs) coupled with falling prices of FPGAs (due to increas-
ing production volumes) allows for integration of several
embedded systems into a single FPGA device.

Moreover, software development costs must not be over-
looked as they are quickly becoming a major cost compo-
nent in the design of embedded systems. Therefore, devel-
opers have embraced Java over the past few years, because
it can provide high portability and code reuse for their ap-
plications [12, 15]. In addition, Java has features such as
small code sizes and small memory footprints that stand out
against other programming languages. These features make
Java an attractive choice as the specification and synthesis
language of embedded systems. Additionally, the efficient
execution of Java programs, especially in embedded sys-
tems, can be achieved by direct execution of Java bytecodes
in hardware, like PicoJava [13] and the Delft-Java engine
[7]. In order to solve the software problem allied to an effi-
cient implementation in terms of area, speed and power, we
have developed a Java processor called FemtoJava and its
supporting environment [9].

In this paper, we propose to apply Molen concepts [16]
to the described FemtoJava engine to extend its capabilities
support reconfigurable hardware (able to perform a wide va-
riety of implementations) with only a one-time architectural
extension of the Java bytecode. In addition, the extension
includes an interface to ’exchange’ parameters and results
between the software code and the hardware implementa-
tion. We implemented a well-known application (MP3 de-
coding) found in many embedded systems to show the ben-
efits of the Molen FemtoJava engine. Our results show that
the existing FemtoJava engine could be easily extended to
become the Molen FemtoJava engine with minimal hard-
ware overhead (about 10% in terms of FPGA slices). Ad-
ditionally, our results show that the total number of execu-
tion cycles (when compared to the fastest software alone
solution) can be reduced by about 27.5% and only paying a
small amount of the FPGA area overhead (about 7%).

This paper is organized as follows. Section 2 discusses
the related work. Section 3 presents an overview of the
proposed approach and section 4 introduces the results ob-
tained from the experiments. Finally, Section 5 draws con-
clusions and discusses future work.

2. Related Work

Reconfigurable systems are efficient in implementing
computationally intensive parts of software in reconfig-
urable hardware. There are many approaches in the research
community that present a general-purpose processor coex-
isting with a reconfigurable hardware. A good overview on
reconfigurable computing and software is presented in [3].

There are several approaches that combine reconfig-
urable computing and the Java language. Most of cur-
rent approaches use the reconfigurable hardware as a co-
processor and the host general-purpose processor runs a
Java Virtual Machine [6, 10, 4, 11]. Fleischmann [6]
presents a run-time manager schedule method for execution
either as software on the JVM of the host processor or as
hardware on the reconfigurable hardware. The scheduling
depends on the dynamic behavior of the application and on
the current partitioning table chosen by the designer. A set
of tools that support the run-time execution of applications
that mix software running on networks of workstations and
reconfigurable hardware has been also proposed [10].

There are approaches that use Java as an input to high-
level reconfigurable compilation, such as described in [2].
This work presents a compiler that starts from a representa-
tion of a high-level algorithmic abstraction in a Java virtual
machine (JVM) instructions and it targets reconfigurable
computing architectures based on a commercial FPGA. In
[1], a dynamic translation of Java bytecodes into combi-
national logic is presented. This approach combines a re-
configurable array with a binary translation mechanism in a
Java machine. A compiler and language that uses the high
level syntax and semantics of Java with additions to support
reconfigurable hardware description has been also proposed
in [8].

Our approach uses a Java processor as a host processor
making the Java execution more efficient in terms of perfor-
mance and power, instead of the current approaches that use
a JVM. In addition, the software tools automatically gener-
ate an efficient Java processor adapted to each application
by removing unused hardware. Finally, we extended our
Java processor with a reconfigurable hardware structure us-
ing the Molen approach that allows for the implementation
of arbitrary function with a single instruction set extension.

3. Molen FemtoJava organization

The proposed approach combines the Molen [16] and
Sashimi/FemtoJava [9] concepts. On the one hand, the
Molen concepts allow the designer to modify and extend
the processor functionality using reconfigurable hardware.
On the other hand, the Sashimi approach uses concepts
such as system specification using a subset of Java, CPU
customizing and high-level design space exploration pro-

viding a general methodology to support the development
of embedded applications, based on a single-language and
single-chip approach to reduce costs (our main goal is
to reduce design time) allowing the designer to rapidly
develop, simulate and validate embedded applications. The
algorithm is programmed in Java language and the resulting
Java bytecodes will be executed by a customized processor,
FemtoJava [9].

This paper presents an approach that combines concepts
taken from the Molen Polymorphic processor and the
Sashimi/FemtoJava platform. Fig. 1 illustrates the main
components of Molen-FemtoJava organization. The main
components are de core processor (FemtoJava) and the re-
configurable processor (RP). The reconfigurable processor
is divided into the ρµ-code unit and the custom configured
unit (CCU). The CCU consists of reconfigurable hardware.
All code runs on the FemtoJava except pieces of code
implemented on the CCU in order to speed up program
execution. Exchange of data between the GPP and the RP
is performed via the exchange registers (XREGs). The
XREGs in our approach are implemented inside the Fem-
toJava processor and this file register is not a conventional
register file, but it is mapped in the processor memory
space. In this way, when the processor wants to communi-
cate with the RP, it writes or reads in its own memory space.

pµ-code
unit

HW

memory

CCU HW

memory

CCU

Reconfigurable Processor

FemtoJava
Processor

Main Memory

Instruction
Fetch

Data
Fetch

Arbiter
Memory

MUX

XREGs
File

Figure 1. Molen-FemtoJava organization

We implemented the minimal instruction set (πISA) of
the ρµ-code unit. Four instructions are implemented using
unused bytecodes: set, execute, movtx, movfx. The set and
execute instructions are new instructions, however, movtx
and movfx are mapped to existing FemtoJava instructions
(store idx and load idx). In fact, the set and execute in-
structions are issued to the reconfigurable processor while
movtx and movfx are issued to the processor.

All the modifications of the original code (translated to
a code that makes calls to reconfigurable hardware) are per-
formed by the Sashimi Tool. The Sashimi Tool extracts the
code that will be implemented in hardware and inserts the
right instructions to do the communication to the RP.

The main steps of the process to design an application
using the Molen and Sashimi/FemtoJava concepts are: the

designer codes the application using Java and uses the Java
compiler to generate the Java bytecodes. Subsequently, the
designer has to select what routines that will run in the re-
configurable hardware (there are profiling tools to help the
designer). And finally, the designer utilizes the Sashimi
tool.

The main steps of the process to insert the Molen in-
structions are as follows: the Sashimi tool searches in the
Java bytecodes for the functions that are implemented in re-
configurable hardware and extract them from the bytecode.
When there is a call for these functions, the tool inserts the
appropriate Molen instructions (set, movtx, movfx, execute)
in the bytecode.

During the execution in the Molen-FemtoJava architec-
ture, the arbiter selects the instructions to be issued to Fem-
toJava processor or to the reconfigurable processor (RP).
When the arbiter issues instructions to the RP, at the same
time it issues to FemtoJava processor nop (no operation)
instructions. Furthermore, when the RP is processing the
function, the FJ processor halted (just waiting until the re-
configurable processor finishes its task).

In order to continue the execution of regular bytecodes
when executing on the RP, an additional instruction must be
added to handle synchronization issues (see [16]). In the
current Molen FemtoJava engine this is left out for simplic-
ity reasons.

4. Experimental Results

This section presents the results of our approach using
Molen and Sashimi/FemtoJava concepts. The framework,
the case study application and results are presented in the
following.

4.1. Application

MPEG-Audio is an international standard for digital high
quality sound compression. Generally speaking, the stan-
dard takes a digital audio file and reduces its size, while
maintaining the quality of the recording. Our application
code is based on a description freely available on the Inter-
net [14]. All the MP3 code was written in Java but obeying
certain constraints of the current Sashimi and FemtoJava ar-
chitecture. An example constraint is the use of integer ar-
rays instead of floating-point arrays because there is no such
unit available in the processor.

4.2. Results

In order to identify the functions that are more suitable
for hardware implementation, we performed the measure-
ments using the CACO-PS [5] cycle-accurate simulator and
the FemtoJava pipeline version to determine the amount of

time spend in each function. Table 1 presents the profiling
results of the MP3 application decoding a sample song. The
table shows the methods that spend more time during the de-
coding process. The calculatePCMSamples consumes more
than 35% of the application time, thus it is the best candi-
date for hardware implementation. The IMDCT method re-
quires about 10% of application time, making this method
another good candidate for hardware implementation.

Table 1. MP3 Software Profiling Results.
Method Name Executed Time (%)

calculatePCMSamples 37.26
IMDCT 11.97

dequantizeSamples 9.23
stereo 7.74

The FemtoJava processor was described in VHDL and
the additional Molen hardware components have has been
described in VHDL. These componets are the arbiter,
XREGs and ρµunit. Our targeted hardware platform was
an available XUP Virtex-II Pro Development System which
uses a Xilinx Virtex-2 Pro XC2VP30 FPGA [17]. Table 2
shows the synthesis results for the pipelined FemtoJava
processor and the FemtoJava processor plus the additional
Molen components. The synthesis results were obtained us-
ing Xilinx ISE version 7.1i. The first column presents the
FPGA resources considered. Column two shows only the
results for the FemtoJava processor. The third column re-
ports the synthesis results considering combined the Fem-
toJava and Molen organization. These results show that
for this target device, the FemtoJava and Molen use a few
amount of FPGA resources.

Table 2. Molen and FemtoJava Results.
FPGA resources FJ FJ + Molen
Slices 1506 1661
Flip Flops 808 955
4 inp LUTs 2757 3078
Fmax (MHz) 81.15 79.50

Using the profiling results, we decided to implements
two methods in hardware; namely IMDCT and calcu-
latePCMSamples. Both methods were described in VHDL.
Table 3 presents the FPGA resources necessary to imple-
ment each function in hardware. The second column shows
the results of IMDCT and the third column reports the re-
sults of the calculatePCMsamples implementation. One
can observe that both hardware implementations use a few
amount of FPGA area.

The table 4 shows the number of cycles of each CCU
implementation necessary to perform its task. For compar-
ison, the table also presents the number of cycles of each

software routine. For example, using the IMDCT functions
implemented in SW costs 76,652 cycles for each call and
using the in reconfigurable hardware costs just 5,346 cy-
cles. This cost includes the cycles spent on the hardware
execution plus the cycles sent with transferring parameters
transfer.

Table 3. Synthesis Results of the CCUs.
FPGA resources IMDCT CalcPCMsamples
Slices 24 96
Flip Flops 12 49
4 inp LUTs 46 181
Fmax (MHz) 220.30 204.80

Table 4. Performance Results of the CCUs.
FPGA resources IMDCT CalcPCMsamples
cycles (SW) 76,652 12,911
cycles (CCU) 5,346 7,232

Table 5 shows the results of the improvement perfor-
mance (total cycles reduction) and the area overhead (added
area over the FemtoJava-Molen) using the proposed ap-
proach. This table shows the performance improvements
and area overhead in percentage using only the IMDCT
method implemented in hardware (the first row), using the
only calculatePCMSamples in hardware (row two), and us-
ing both.

Table 5. MP3 performance and area overhead.
CCU Total Added Area (%)

Cycles Slices Flip 4 input
Reduc.(%) Flops LUTs

calculatePCM 16.39 5.77 5.13 5.88
IMDCT 11.11 1.44 1.25 1.49

Both 25.50 7.21 6.38 7.37

5. Conclusions

This paper presented an approach that combines the
Molen and Sashimi/FemtoJava concepts. Therefore, in this
design flow the designer can modify and extend the pro-
cessor functionalities and in the other hand, the designer
can still use a widely used language. Experimental results
have confirmed the hypothesis that extending FemtoJava
with Molen concepts introduce a minimal effort and area
overhead. Moreover, adding this specialized hardware re-
duces 27.50% of execution cycles in MP3 decoding with
only 10% area increase (in terms of FPGA slices) for the
Molen components and 7% area increase for the special
hardware implementations

References

[1] A. C. S. Beck and L. Carro. Dynamic reconfiguration with
binary translation: breaking the ILP barrier with software
compatibility. In DAC ’05: Proceedings of the 42nd annual
conference on Design automation, pages 732–737, New
York, NY, USA, 2005. ACM Press.

[2] J. M. P. Cardoso and H. C. Neto. Compilation for FPGA-
Based Reconfigurable Hardware. IEEE Des. Test, 20(2):65–
75, 2003.

[3] K. Compton and S. Hauck. Reconfigurable computing:
a survey of systems and software. ACM Comput. Surv.,
34(2):171–210, 2002.

[4] P. Faes, M. Christiaens, and D. Stroobandt. Transparent
Communication between Java and Reconfigurable Hard-
ware. In Proceedings of the 16th IASTED International Con-
ference Parallel and Distributed Computing and Systems,
pages 380–385, 11 2004.

[5] A. Filho, J. C. B. Mattos, F.R.Wagner, and L.Carro. CACO-
PS: A General Purpose Cycle-Accurate Configurable Power
Simulator. In Proc. 16th Symposium on Integrated Circuits
and Systems Design, pages 349–359, Los Alamitos, 2003.
IEEE Computer Society Press.

[6] J. Fleischmann, K. Buchenrieder, and R. Kress. Codesign of
embedded systems based on Java and reconfigurable hard-
ware components. In DATE ’99: Proceedings of the con-
ference on Design, automation and test in Europe, page 26,
New York, NY, USA, 1999. ACM Press.

[7] C. J. Glossner and S. Vassiliadis. The Delft-Java engine.
Java microarchitectures, pages 105–123, 2002.

[8] J. Hopf. Comparing the Bitstreams of Applications Spec-
ified in Hardware Join Java and HandelC. In D. S.
Komatsu, editor, 2003 IEEE International Conference on
Field-Programmable Technology (FPT), pages 399–402,
Tokyo, 2003. IEEE.

[9] S. A. Ito, L. Carro, and R. P. Jacobi. Making Java Work for
Microcontroller Applications. IEEE Des. Test, 18(5):100–
110, 2001.

[10] L. S. King, H. Quinn, M. Leeser, D. Galatopoullos, and
E. Manolakos. Run-Time Execution of Reconfigurable
Hardware in a Java Environment. iccd, 00:0380, 2001.

[11] E. Lattanzi, A. Gayasen, M. Kandemir, V. Narayanana,
L. Benini, and A. Bogliolo. Improving Java Performance
by Dynamic Method Migration on FPGAs. In Proceedings
of RAW 2004, 2004.

[12] G. Lawton. Moving Java into Mobile Phones. Computer,
35(6):17–20, 2002.

[13] H. McGhan and M. O’Connor. PicoJava: A Direct Execu-
tion Engine For Java Bytecode. Computer, 31(10):22–30,
1998.

[14] MP3. http://www.mp3-tech.org/. 2006.
[15] D. Mulchandani. Java for Embedded Systems. IEEE Inter-

net Computing, 2(3):30–39, 1998.
[16] S. Vassiliadis, S. Wong, G. Gaydadjiev, K. Bertels, G. Kuz-

manov, and E. M. Panainte. The MOLEN Polymorphic Pro-
cessor. IEEE Trans. Computer, 53(11):1363–1375, 2004.

[17] Xilinx. Virtex-II Pro and Virtex-II Pro X Platform FPGAs:
Complete Data Sheet. 2005.

