
Reconfigurable Fixed Point Dense and Sparse Matrix-Vector Multiply/Add Unit

Humberto Calderón and Stamatis Vassiliadis

Computer Engineering Laboratory

Electrical Engineering Dept.,EEMCS,TU Delft, The Netherlands

email: {H.Calderon,S.Vassiliadis}@ewi.tudelft.nl

WWW home page: http://ce.et.tudelft.nl

Abstract

In this paper, we propose a reconfigurable hardware ac-

celerator for fixed-point-matrix-vector-multiply/add opera-

tions, capable to work on dense and sparse matrices for-

mats. The prototyped hardware unit accommodates 4 dense

or sparse matrix inputs and performs computations in a

space parallel design achieving 4 multiplications and up to

12 additions at 120 MHz over an xc2vp100-6 FPGA device,

reaching a throughput of 1.9 GOPS. A total of 11 units can

be integrated in the same FPGA chip, achieving a perfor-

mance of 21 GOPS.

1. Introduction

It is well known that matrix-vector multiplica-

tion/addition is an important operation in both scientific and

media applications. The main differences between the two

environments is that media operates in short data formats

(sub-words) and may extensively use fixed point rather than

floating point arithmetic. There are numerous approaches

for matrix (dense and sparse) hardware multiplication (see

for example [10, 3, 7, 2]). All the approaches consider

either sparse or dense computation, and mostly floating

point operations [4, 2, 6]. In this paper we consider media

like data formats and consider both sparse and dense com-

putation performed by a single hardwired reconfigurable

unit.

The remainder of this paper is organized as follows. Sec-

tion 2, outlines the sparse matrix compression formats con-

sidered. Section 3, extensively describes the proposed unit.

Section 4 describes the prototype results. The article is con-

cluded in section 5 with some remarks and conclusions.

2 Sparse Matrix Compression Formats

We begin by presenting the Compressed Row Storage,

the Block Based Compression Storage and the Hierarchi-

cal Sparse Matrix formats as background for our proposal.

Those formats are described in Figure 1, which depicts pic-

torially a 32 x 32 matrix
−→
A with several nonzero elements

represented in some cases by numbers and in general by an

“x” as well as the dense vector
−→
b and the resulting vector

−→c . The division, shown in matrix
−→
A , is used to best illus-

trate the sparse formats we consider.

x x x
x

x
x

x
x

x

x

x

x x

x

x
x

x

x
x

x
x

x

x

x

x

x x x
x

x
x

x
x

x
x

x
x

1
x

x
x

x
x

x
x

x x x x

x

x

x

x

0 1 2 3

87

31 2 4 9 2 7 9

3 3 3

x

x
x

9

6

3 7

21

8

A-

s s s s
0
1

2

3

4

5

6

7

8

9
10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

110 1 2 3 4 5 6 7 8 9 10 12 13 14 1516 17 18 19 2021 22 23 24 25 26 27 28 29 30 31

 b

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

c
(partial results)

b
0

b
1

b
2

b
3

10 2 3

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

c0

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

c1

cn-1

Figure 1. Sparse Matrix Representation

Compressed Row Storage (CRS) : The compression is

achieved using a linear array AN to store nonzero elements

of matrix
−→
A in a row-wise way. A second linear array AJ ,

is used to store the column index for each nonzero element

and a third one, AI , holds the indices of the first element of

a row in AN [10]. An example of this encoding is presented

in Figure 2.

Figure 2. Compressed Row Storage Format

Block Based Compression Storage (BBCS) : In this com-

pression format [7], the n × n
−→
A matrix is fraction-

ated in ⌈n
s
⌉ Vertical Blocks (VBs), where s corresponds

to a processing section, as the 4 VBs presented in Fig-

ure 1. The format enables us to process
−→
A

m in sections

for m = 0, 1, 2, 3...⌈n

s
⌉ − 1; in the same way the vector

−→
bm = [bms, bms+1, ..., bms+s−1] can be fractionated where s

remains the split section. Therefore, we are able to multiply

each section Am with the correspondent bm section, seg-

menting in this way the processing. Figure 3 presents the

BBCS format for nonzero values.

 Value CP EOR ZR EOB EOM

B

Figure 3. BBCS Format

As depicted in Figure 3, Value represents the B-bit

nonzero element of Ai,j . Column Position (CP) is the col-

umn C-bit value of Ai,j within a vertical block
−→
A

m, for

different blocks the value is j mod m. End-of-Row-flag

(EOR) is asserted when the current nonzero value is the last

element of the block, otherwise it is zero. Zero-Row-flag

(ZR) is asserted when the current row has no nonzero value.

End-of-block-flag (EOB) is true when the value is the last

non zero value of the block. End-of-Matrix-flag (EOM) is

asserted when the last nonzero element is found in the last

section. Figure 4 offers an example of this format.

1 2 3 4 5 6

1

2

3

4

5

6

Figure 4. BBCS Format Example

Hierarchical Sparse Matrix format (HiSM): In this hierar-

chical format, a matrix −→
A of M × N is partitioned in ⌈M

s
⌉

x ⌈N

s
⌉ squared sub-matrices. An example with 16 sub-

matrices with M = N = 32, and section size s = 8 can be

seen in Figure 1. The nonzero values in this format, as well

as the positional information combined, are stored in a row-

wise array in memory. The format uses two indexing levels;

the first points to the squared blocks (Level 1), which con-

tains nonzero elements and the second indexes the nonzero

elements into the squared blocks (Level 0), using column

and row representation [5]. A hierarchical format is illus-

trated in Figure 5.

Figure 5. HiSM format example

Considering the three above-mentioned compression for-

mats, it is appropriate to consider a common hardware to

process those within the preprocessing stage. The CRS can

be translated into a BBCS representation with the use of

simple hardware which subtracts one from the values in the

CRS AI index, converting the row’s pointer first element

into a position associated with an EOR flag as used in BBCS

format.1 Furthermore, the low level indexing in the HiSM

(Level 0) can be modified (HiSM-M), transforming into a

squared section version of BBCS format, by adding an EOR

flag to HiSM format. In summary we propose a hardware

which works with the nonzero elements, a column pointer

as well as an EOR flag for the processing of the above men-

tioned formats. Table 1 presents in short the aforementioned

proposals.

Table 1. Comparison of Matrix­Vector Formats

Format Value Column Index Row Index EOR

Dense A(i,j) c(A) r(A) EOR

CRS A(N) A(J) - extracted

BBCS c
AS c(A) EOR

HiSM-M As2

(i,j) c
(As2)

- EOR

Therefore, a block Am with m = 0, 1, ..., ⌈n

s
⌉ − 1 of s

columns where s is the processing section, the Am are

stored row-wise, in increasing row number order. Each

Am block will correspond to a section s of the b-vector,
−→
bm = [bms, bms+1, ..., bms+s−1], and it is suitable to multiply

each Am with its corresponding
−→
b
m section of the b-vector

without needing to reload any b-vector elements.

3 Dense-Sparse Matrix-Vector Multiply Unit

Dense matrix-vector multiplication (DMVM) and sparse

matrix-vector multiplication (SMVM) are operations appro-

priate for parallel computing. Equation 1 suggests the pos-

sible concurrently computing of eight elements per cycle;

the final result of the entire row is found through the addi-

tion of the partial calculated outcomes.

c0 =

7∑

k=0

a0,kbk +

15∑

k=8

a0,kbk + ... +

n−1∑

k=n−8

a0,kbk (1)

The hardware for the concurrently computing s entries,

and particulary s = 8 (see equation 1) is designed. The

hardware works on both dense and sparse matrix-vector

multiply operations, processing nonzero elements of differ-

ent rows and columns in a concurrent way. The proposed

solution uses dynamic connecting channels to allocate the

diverse data into four parallel execution units (s = 4) de-

signed in a collapsed way [1], and optimized in terms of

hardware use and delays. A simple control algorithm is

used to enable the hardware unit to support n × s blocks.

In this way block sizes like the ones described in Figure 1,

1Special attention has to be paid with the first element of the array.

as well as other cases2, can be processed. The main tasks

developed by a control allocation algorithm are:

1. Select one set of data (four data inputs) from a pool of

two sets resident in local memory.

2. Route the correct dense vector multiplicand and a

dense or sparse matrix multiplier in order to compute

a multiplication into reduction trees.

3. Chose the necessary multi-operand units from a set of

available resources for the addition of the 4 multiplica-

tion outcomes and a possible precalculated value. De-

pending on the incoming data, the algorithm has to al-

locate up to 4 multi-operand units.

4. Add the final partial value into the final (2/1) adders

of a row when necessary, and update the registers for

write back to memory

Memory Model: The memory model used to support the 4

stage pipeline proposed unit has the following register files

that act like vector unit registers: VR1: 8 entry 16-bit As
(i,j)

elements register file. CRC: 8 entry 8-bit index information

of the nonzero elements As
(i,j) stored in VR1 register file.

VR2: 8 entry 16-bit dense vector
−→
b
s register file. VR3-O:

8 entry 32-bit −→ci write-back register file. VR3-I: 8 entries

32-bit −→ci register file, used to load the partial results from

memory.

3.1 The Pipeline Organization

The unit is segmented into the following stages:

1) Vector Read: In the first stage, the file registers are

loaded from memory (i.e. embedded RAM), the file regis-

ters VR1, CRC and VR2. Figure 6 illustrates schematically

the functionality.

VR1-1

VR1-2

VR1-3

VR1-4

VR1-5

VR1-6

VR1-7

VR1-0

CRC-1

CRC-2

CRC-3

CRC-4

CRC-5

CRC-6

CRC-7

CRC-0

V

R

2

-

1

V

R

2

-

2

V

R

2

-

3

V

R

2

-

4

V

R

2

-

5

V

R

2

-

6

V

R

2

-

7

V

R

2

-

8

AD-1

AD-2

AD-3

AD-0

CD-1

CD-2

CD-3

CD-0

VR1-0
VR1-4

VR1-1
VR1-5

VR1-2
VR1-6

VR1-3

VR1-7

CRC-0
CRC-4

CRC-1
CRC-5

CRC-2
CRC-6

CRC-3
CRC-7

2

Register File VR2

Register File VR1

Register File CRCRegister File CD

Register File AD

Memory

Memory

M
e
m

o
ry

Control information

to other stages

Compressors 16 to 2 (Wallace tree)
(partial multiplication)

222

Figure 6. Vector Read and Multiply Reduction
Trees

2Data can come from different rows, and in this proposal we present

the processing of 2 × s data.

2) Multiply Reduction Trees: In the second stage the reg-

ister files A-Buffer Data (AD) and Control Data (CD) are

loaded. A toggle Flip-Flop (FF) controls which quadruple

set of VR1 and CRC registers are routed with the eight

2-to-1 MUXs3 to the registers AD and CD respectively, as

depicted in Figure 6. Then the Column Positions (CPs)

information held in CD registers controls the four 8-to-1

muxes (MD) to route the VR2 values. At this point, a

partial multiply operation of the 4 matrix
−→
A elements and

the corresponding dense vector
−→
b is carried out using 4

reduction trees as is shown in the aforementioned Figure 6,

which does not specify the register-pipeline (R-Pipeline)

that stores tree compressor results (SUMs and CARRYs).

A Wallace type [8] tree without the final (2/1) addition

is designed to compute the multiplication. With this

organization we save the unnecessary repetition of the

addition operation through the entire pipeline until the final

stage, diminishing the processing delay.

3) Reduction Trees (Multiple-Addition): The third

pipeline stage has four parallel reduction trees to compute

the multiple-operand addition as shown in Figure 7.

2 2 2

Compressors (16 to 2) - Partial Multiplication

2

VR3I-0
VR3I-4

VR3I-1
VR3I-5

VR3I-2
VR3I-6

VR3I-3
VR3I-7

2 2 2 2

VR3I-1

VR3I-2

VR3I-3

VR3I-4

VR3I-5

VR3I-6

VR3I-7

VR3I-0

Memory

Figure 7. Reduction Trees (Multiple­Addition)

The multiple-operand addition hardware is intended to

perform the following operations when necessary:

• The (6/2) compressor is used to carry out the partial ad-

dition of one multiply reduction tree outcome, the par-

tial result of the computing row (12/2 outcome), and

the partial result stored in VR3I.

• A reduction tree (8/2) receives two partial product out-

comes, the feedback partial value and the correspond-

ing VR3I.

• For adding three partial products, a feedback value and

the VR3I data, a (10/2) reduction tree is used.

• The (12/2) reduction tree is expended to compute the

partial addition of four incoming partial products, the

3Multiplexors are represented by thick lines in the figure’s.

Table 2. Resources Allocation Control Bits.
Term W X Y Z (6/2) (8/2) (10/2) (12/2) Compressor used. Z

0 0 0 0 0 000000 00000000 0000000000 FF0011111111 (12/2) 1

1 0 0 0 1 000000 00000000 0000000000 FF1111111111 (12/2) 0

2 0 0 1 0 000000 00000000 FF11111111 000000000011 (10/2),(12/2) 1

3 0 0 1 1 000000 00000000 FF11111111 001100000011 (10/2),(12/2) 0

4 0 1 0 0 000000 FF111111 0000000000 000000001111 (8/2),(12/2) 1

5 0 1 0 1 000000 FF111111 0000000000 001100001111 (8/2),(12/2) 0

6 0 1 1 0 000000 FF111111 0011000011 000000000011 (8/2),(10/2),(12/2) 1

7 0 1 1 1 000000 FF111111 0011000011 001100000011 (8/2),(10/2),(12/2) 0

8 1 0 0 0 FF1111 00000000 0000000000 000000111111 (6/2),(12/2) 1

9 1 0 0 1 FF1111 00000000 0000000000 001100111111 (6/2),(12/2) 0

10 1 0 1 0 FF1111 00000000 0011001111 000000000011 (6/2),(10/2),(12/2) 1

11 1 0 1 1 FF1111 00000000 0011001111 001100000011 (6/2),(10/2),(12/2) 0

12 1 1 0 0 FF1111 00111100 0000000000 000000001111 (6/2),(8/2),(12/2) 1

13 1 1 0 1 FF1111 00111100 0000000000 001100001111 (6/2),(8/2),(12/2) 0

14 1 1 1 0 FF1111 00110011 0011000011 000000000011 (6/2),(8/2),(10/2),(12/2) 1

15 1 1 1 1 FF1111 00110011 0011000011 001100000011 (6/2),(8/2),(10/2),(12/2) 0

VR3I value and feedback value for the processing of a

row.

Resource allocation mechanism: Allocation of the multi-

ply results into four parallel counters (6/2), (8/2), (10/2) and

(12/2) is controlled by the end of row flags of the incoming

set (s = 4). Table 2, show 4 variables: W, X, Y and Z, rep-

resenting the EOR flags associated with the 4 nonzero A(i,j)

elements, being W the first entry and Z the last entry of the

set. The 16 different possible states are considered, as well

as the reduction trees’ control allocation bits, this informa-

tion is a fundamental key for the entire unit operation. The

final allocation strategy presented in the seventh column of

table 2, is tuned to optimize the control complexity, reduc-

ing the logic control from 16 into 2 main states. Reduction

is made upon consideration of the following 4 rules:

1. When processing an even state, Z = 0, (0, 2, 4, 6, 8, 10,

12 and 14 terms), it means that currently a row is still

computing and that it will need to add its partial out-

come to the rest of row values derived from the next

quadruple. Partial computing is made by the (12/2)

compressor. Therefore, the feedback data will always

come from this multiple operands addition tree (see

Figure 7). By this rule the feedback control is then

simplified because we can rule out the rest of the re-

sources as possible sources of a feedback data.

2. Allocation of resources follows the principle of using

the biggest compressor when possible, taking always

into account rule 1.

3. When possible, the nonzero element corresponding to

W, X, Y and Z is distributed to compressors (6/2),

(8/2), (10/2) and (12/2) respectively.

4. EOR flags enable VR3I values for proper accumula-

tion of partial or final values.

Nomenclature used to represent allocation control bits in

table 2, uses a ‘1’ to enable the dynamic connecting chan-

nels4 of data, and a ‘0’ to disable the issuing of data into

the reduction trees. Additionally, for any compressor, from

left to right, we can determine the following meaning and

behavior of the bits:

1. The first two bits are used to control the incoming

result from (12/2) compression tree outcome. Using

these bits we can compute n DMVM sets of 4 data

with a supporting hardware of s = 4. Some entries

have an ‘F’ symbol. We use symbol ‘F’ to show that

the dynamic connecting channels of data will be ei-

ther enabled or disabled to issue data into the reduction

trees. This occurrence will depend on the Z value of

the previous computed set. Therefore, when process-

ing, e.g., the small matrix of section S2, see Figure 1,

partial result feedback is needed to obtain the row’s fi-

nal result, because we need to add the result of the first

quadruple 1, 2, 3, 4 to quadruple 9, 2, 7, 9 values. Con-

sequently, equations 2 and 3 controls the issue of the

feedback data.

F4Si = FBS4i · Z ∀ 0 ≤ i ≤ 31 (2)

F4Ci = FBC4i · Z ∀ 0 ≤ i ≤ 31 (3)

where FBS4 and FBC4 are the SUM and CARRY

outcomes of (12/2) compressor tree. Furthermore,

these bits also control the feedback of a partial result

when processing a sparse-matrix-vector-multiply op-

eration.

2. The next two control bits, are used to control the issu-

ing from VR3I when an EOR flag is found in any posi-

tion of the incoming set of 4 inputs. The control func-

tions for the SUM and CARRY values are described

by equations 4 and 5. For example, Figure 1 shows

that to compute row 24 in section A3 we need to add to

value ‘1’ to the partial result of section A2, completing

4Regards the path followed by a data coming from the multiply reduc-

tion tree outcome to the multiply-addition reduction tree.

thus (as suggested by equation 1) the computation of

the row.

FV Si = V R3Ii · EOR ∀ 0 ≤ i ≤ 31 (4)

FV Ci = V R3Ii · EOR ∀ 0 ≤ i ≤ 31 (5)

3. Finally, from left to right, the remainder of the bits con-

trols the compressor outcomes’ delivery. The next 2, 4,

6 and 8 bits enables or disables inputs to (6/2), (8/2),

(10/2) and (12/2) compression trees respectively. The

multiply reduction tree outcomes SUM and CARRY, are

controlled in their issuing by the following equations:

S = SMi · SE ∀ 0 ≤ i ≤ 31 (6)

C = CMi · CE ∀ 0 ≤ i ≤ 31 (7)

where SMi represents the SUM and CMi the CARRY

outcomes from the partial multiply unit, and SE and

CE the control bits presented in table 2 for the issu-

ing control. It is important to notice that a set of mul-

tiplexors is necessary to chose the correct state being

processed. The input to those multiplexors comes from

equations 2 to 7.

4) Final Addition and Result Update: The fourth stage

reduces and finalizes computing of the multiple-addition

trees’ results. The 4 final adders outcomes are stored ac-

cording to the column flags, and 4 de-multiplexors accom-

plish the task as schematized in Figure 8. The main memory

should be updated from registers file VR3O.

2 2 2 2

M
e
m

o
ry

VR3O-0 VR3O-4 VR3O-1 VR3O-5 VR3O-2 VR3O-6 VR3O-3 VR3O-7

VR3O-0 VR3O-1 VR3O-2 VR3O-3 VR3O-4 VR3O-5 VR3O-6 VR3O-7

Figure 8. Final Addition

Scalability: Highly parallel algorithms can use several re-

configurable units, as the proposed above, to speed up the

processing of dense and sparse matrix-vector-multiply oper-

ations. Such algorithms can schedule an inner loop instance

as described by equation 1 to each unit. An improvement in

performance can be achieved for DMVM, diminishing the

size of the entire unit. This can be done by reconfiguring

the pipeline, leaving the first stage as it is, employing a sim-

ple MUX instead of MD in the second stage, leaving only

the (12/2) multiple-operand adder in the third stage, and fi-

nally, employing only one final (2/1) compressor instead of

the four used in the whole unit.

4 Experimental Results

We have presented a general design intended to be used

in ASICs as well as in reconfigurable technology. The pro-

posed unit was described using VHDL, synthesized with the

ISE 6.1i Xilinx environment [9], for a xc2vp100-6 FPGA

device. The synthesis results indicate that our design uti-

lizes 4255 slices, 1505 FFs and 6472 LUTs for the entire

unit. Additionally, we synthesize each particular pipeline

stage separately in order to find the contribution of each

stage into the total number. We did this in respect of area

and delay; those results are depicted in Table 35.

Table 3. Matrix­Vector Multiply/Add Unit.
(Pipelines stages: time delay - hardware use)

Xilinx XC2VP100 Partial Multiply Multiple-Addition. Final Add

Operand Width 16 32 32

Pipeline Stages 1 1 1

Area of Slices 1656 1595 332

LUT 3192 3174 640

Area in % design 37 35 7

Clock rate (-6) ns 8.3 6.0 6.3

From the above table, we conclude that the partial multi-

ply stage is the bottleneck that limits frequency of the unit’s

operation. We notice that the partial multiplier unit with-

out the final addition logic is equivalent in terms of time

response to the built-in multipliers on the FPGA. Neverthe-

less, this stage, like others, can be pipelined in order to im-

prove the unit’s throughput. Concerning the hardware used

and presented in table 3, the second stage consumes a 37%

of the designed unit implementing the four multiply reduc-

tion trees and the routing logic. The third stage requires

similar hardware to the previous one, a 35% is used im-

plementing the four multiple-addition trees with their cor-

responding routing logic. The final 4 adders utilizes a 7%

of hardware used, reaching those three stages a 79% of the

total amount of hardware. Regarding the multiplexors used

to route data into the second stage depicted in table 4, we

should mention that the 1.3 ns introduced as an extra delay

become a 16 % of the total stage delay.

Table 4. Routing Multiplexors ­ Second Stage.
(Routing hardware: - time delay and hardware use)

Xilinx XC2VP100 M-CD M-AD MD

Operand Width 8 16 16

Area of Slices 18 37 128

LUT 32 64 256

Clock rate (-6) ns 0.4 0.4 1.3

In reference to the area used to route the output of the 4

partial-multipliers, we found a maximum of 1.8 ns of extra

5For first stage see table 6. Independent synthesized pipeline units use

more hardware when compared to the whole unit, due to synthesis intro-

duces resource sharing.

Table 6. Matrix­Vector Multiply Unit.
(File Registers: time delay - hardware use)

Xilinx XC2VP100 VR1/VR2 CRC/Control AD/CD VR3I/VR30 R-Pipeline

Operand Width 16 16/8 8 32/32 64

Area of Slices 72/72 40/40 36/20 144/144 288

Flip-Flips 128/128 64/64 64/32 256/256 512

Area in % design 3.2 2.8 2.2 6.4 6.4

Clock rate (-6) ns 1.6 1.6 1.6 1.6 1.6

Control: refers to the control register that holds in the pipeline the Column and EOR information.

delay as is shown in table 5. The extra delay represents a

30% of the total stage delay. The information suggests a

bigger use of resources compared with the previous stage.

This occurs because of the operands size is increased due a

partial multiply outcomes, it can be noted that we use SUM

and CARRY representation in our pipeline.

Table 5. Allocation hardware ­Third Stage.
(Dynamic channel hardware: time delay and hardware use)

Xilinx XC2VP100 G-6/2 G-8/2 G-10/2 G-12/2

Operand Width 32 32 32 32

Area of Slices 32 147 186 214

LUT 192 256 324 388

Clock rate (-6) ns 0.4 0.4 1.6 1.8

The remainder of used area, is employed to built the

register files and pipeline registers as illustrated in table 6.

Additionally, it was also synthesized the reduced unit pre-

sented in the sub-section scalability. Such reduced unit use

2507 slices and 3904 LUTs, representing 60% of the orig-

inal unit. Also the frequency operation increments to 123

MHz. It is estimated that a 1/2 of the (3:2)counters used

to construct the unit are shared by the scaled one. There-

fore, the proposed unit can be considered as viable candi-

date block, suitable to work in a reconfigurable collapsed

arithmetic unit.

5 Conclusions

We have presented a novel fixed point integer matrix-

vector multiply unit suitable to work with sparse and dense

matrices found in several media formats. The acceleration

of the proposed unit is achieved using a new concurrent

and scalable hardware capable of processing 4 matrix

entries per cycle, carrying out 4 multiplications and up to

12 additions at 120 MHz using the 9% of the resources in

a VIRTEX II PRO xc2vp100-6 FPGA device. We further

presented pre-processing of different formats in order to

convert the CRS and HiSM formats to an equivalent BBCS

compression format, without incurring in significant area

and time overhead. In all of the above representations we

can extract the information of the last nonzero element of

a row, and analyzing the data, we introduced an allocating

algorithm which distributes efficiently the incoming data

into parallel support hardware. A total of 11 units can be

integrated in the same FPGA chip, achieving a performance

of 21 GOPS. A 40% of hardware reduction is achieved

using the reconfiguration capabilities of FPGA devices

when operated as a scaled and modified unit.

References

[1] H. Calderón and S. Vassiliadis. Reconfigurable Multiple Op-

eration Array. Proceedings of the Embedded Computer Sys-

tems: Architectures, Modeling, and Simulation (SAMOS05),

pages 22–31, July 2005.

[2] M. deLorimeier and A. DeHon. Floating-Point Sparse

Matrix-Vector Multiply for FPGAs. ACM/SIGDA Thirteenth

International Symposium on Field Programmable Gate Ar-

rays (FPGA 2005), pages 75–85, February 2005.

[3] B. C. Lee, R. Vuduc, J. W. Demmel, and K. A. Yelick. Per-

formance Models for Evaluation and Automatic Tuning of

Symmetric Sparse Matrix-Vector Multiply. Proceedings of

the 2004 International Conference on Parallel Processing

(ICPP’04), pages 169–176, June 2004.

[4] E. Roesler and B. Nelson. Novel Optimizations for Hard-

ware Floating-Point Units in a Modern FPGA Architecture.

In Proceedings of the 12th International Workshop on Field

Programmable Logic and Application (FPL 2002), pages

637–646, August 2002.

[5] P. Stathis, S. Vassiliadis, and S. D. Cotofana. Hierarchi-

cal Sparse Matrix Storage Format for Vector Processors. In

Proceedings of the 17th International Parallel and Distrib-

uted Processing Symposium (IPDPS 2003), page 61a, April

2003.

[6] K. D. Underwood. FPGA vs. CPUs: Trends in Peak

Floating-Point Performance. In Proceedings of the ACM In-

ternational Symposium on Field Programmable Gate Arrays

(FPGA 2004), pages 171–180, February 2004.

[7] S. Vassiliadis, S. Cotofana, and P. Stathis. Block Based

Compression Storage Expected Performance. In Proceed-

ings of the 14th International Conference on High Perfor-

mance Computing Systems and Applications (HPC 2000),

pages 389–406, June 2000.

[8] C. Wallace. A Suggestion for Fast Multiplier. IEEE Trans-

actions on Electronic Computers, Vol. EC-13:, pages 14–17,

February 1964.

[9] I. XILINX. The XILINX Software Manuals, XILINX 6.1i.

http://www.xilinx.com/support/sw manuals/xilinx6/, 2004.

[10] L. Zhuo and V. K. Prasanna. Sparse Matrix-Vector Multi-

plication on FPGAs. ACM/SIGDA Thirteenth International

Symposium on Field Programmable gate Arrays (FPGA

2005), pages 63–74, February 2005.

