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urable by designers requirements. The architecture consists of a
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Array (CGRA) targeting multi-media and mobile devices. This the-
sis project delivers (1) a novel toolflow for power simulations, syn-
thesis & performance evaluation of a variety of ADRES architec-
tures for energy-delay trade-off. The toolflow utilizes an innovative
instruction-set simulator based approach for capturing switching ac-
tivity of synthesis-invariant components in addition to regular VHDL
RTL simulations. The FFT, IDCT and MPEG2 benchmarks are uti-
lized for evaluation of different architectures. Furthermore, (2) opti-
mization techniques are proposed utilizing clock gating, operand iso-
lation, memory segmentation and architectural modifications. Clock
gating reduced power by 10 - 21%. Combined with operand isola-
tion a reduction of 39 - 53% is obtained. Segmenting a memory of
256wx128b into 2 parts reduces memory power by 20% with 27% area
increase. Architecture modifications like sharing register files among
four functional units reducing power with 14 - 16% compared to a
reference 4x4 architecture with 64 - 80mW at 100MHz and 619nJ -
1944uJ. On top of the optimizations (3) an extensive power analysis
of different architectures has been performed. The proposed architec-
ture with the evaluated optimizations including pipelining consumes
63.87 - 82mW at 312MHz and 307nJ - 702.7uJ when synthesized
with 90nm Synopsys TSMC library (tcbn90ghptc).
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Abstract

R
econfigurable computational architectures are envisioned to deliver power efficient, high
performance, flexible platforms for embedded systems design. One such architecture,
the Architecture for Dynamically Reconfigurable Embedded Systems (ADRES) is being

developed by the IMEC DESICS department. ADRES is a template configurable by designers
requirements. The architecture consists of a VLIW engine tightly coupled with a Course Grain
Reconfigurable Array (CGRA) targeting multi-media and mobile devices. This thesis project
delivers (1) a novel toolflow for power simulations, synthesis & performance evaluation of a
variety of ADRES architectures for energy-delay trade-off. The toolflow utilizes an innovative
instruction-set simulator based approach for capturing switching activity of synthesis-invariant
components in addition to regular VHDL RTL simulations. The FFT, IDCT and MPEG2
benchmarks are utilized for evaluation of different architectures. Furthermore, (2) optimization
techniques are proposed utilizing clock gating, operand isolation, memory segmentation and
architectural modifications. Clock gating reduced power by 10 - 21%. Combined with operand
isolation a reduction of 39 - 53% is obtained. Segmenting a memory of 256wx128b into 2
parts reduces memory power by 20% with 27% area increase. Architecture modifications like
sharing register files among four functional units reducing power with 14 - 16% compared to
a reference 4x4 architecture with 64 - 80mW at 100MHz and 619nJ - 1944uJ. On top of the
optimizations (3) an extensive power analysis of different architectures has been performed. The
proposed architecture with the evaluated optimizations including pipelining consumes 63.87 -
82mW at 312MHz and 307nJ - 702.7uJ when synthesized with 90nm Synopsys TSMC library
(tcbn90ghptc).
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Introduction 1
1.1 Background

The requirements for high performance and low power consumption are becoming more
stringent every day when designing devices; especially for multi-mode multimedia. New
chip architectures should be able to execute multiple applications delivering high perfor-
mance, while maintaining low power consumption, area, non-recurring engineering costs
and shorter time-to-market. Figure 1.1 depicts several architectures with their power
efficiency and performance values.
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Figure 1.1: Power efficiency vs. performance and flexibility of various architectures

A General Purpose Processor (GPP) is very flexible for configurations and usually
targets computers were performance has a higher priority than power consumption itself.
The power efficiency is therefore low and unsuitable for embedded systems. On the other
hand, Application Specific IC (ASIC) has very high performance and power efficiency,
but has low flexibility in configuration. An Application Specific Instruction set Processor
(ASIP) has the same performance as a GPP, but with a higher power efficiency. Digital
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Signal Processors (DSP) are an intermediate solution between GPP and ASIC targeting
signal processing applications e.g. FFT and IDCT. DSPs focus on power efficiency
and performance with good flexibility. Field Programmable Gate Arrays (FPGA) are
more flexible due to their reconfigurable possibilities, but are slow compared to DSPs.
Additionally, FPGAs consume a vast amount of energy making them unsuitable for
mobile devices as noted by Binfeng Mei [27]. Unlike the FPGAs and other medium of
highly flexible architectures, Coarse-Grained Reconfigurable Arrays (CGRA) have high
performance and power efficiency. ADRES is a CGRA which targets 50MOPS/mW
with 90nm technology reducing power to the minimum and is still flexible due to its
reconfigurable possibilities.

IMEC develops an Architecture for Dynamically Reconfigurable Embedded Systems
(ADRES) [28] consisting of a Very Large Instruction Word (VLIW) processor with a
reconfigurable array tightly coupled with it. The VLIW controls the array and speeds-up
the program’s execution with Instruction Level Parallelism (ILP), while the array does
the same with Loop Level Parallelism (LLP). The ADRES architecture is a template
allowing designers to specify the specific interconnections, type and the number of
Functional Units (FU) and register files (RF). Compiling applications for ADRES
is performed with Dynamically Reconfigurable Embedded System Compiler (DRESC)
re-targeting regular ANSI-C code for the architecture of choice. Each application can
be tested at symbolic, instruction and clock cycles accurate level.

The target of this thesis is to estimate the performance and power consumption
based on benchmark applications executed on a basis ADRES core instance and
optimize the architecture balancing performance and power consumption. A simulation,
synthesis and analysis tool chain flow is setup for performance and power evaluating
the decisions. Based on preliminary findings the architecture is optimized in both
power and/or performance where this is required. Synthesizing an ADRES instance
is performed with 90nm TSMC technology [20]. The most appropriate library from
Artisan or Synopsys of this technology is selected based on performance, power and
area.

1.2 Scope of Document

The ADRES processor consists of the CGRA, data memory and instruction cache. Each
component can be improved in both power and performance, however, this thesis only
focusses on the core architecture for optimizations. A non-pipelined version of ADRES
is utilized during the coarse of this thesis project for evaluation and comparison. A
pipelined version was only available in the last stages of the thesis and is implemented
in the final optimized architecture. The data memory and instruction cache were not
available during the synthesis procedure. Any data noted in this thesis about these two
components are based on information found in data sheets.

Optimizations applied to ADRES instances are for both performance and power of
which the latter has higher priority. Static and dynamic optimizations are utilized and
either verified with the aid of the synthesis and simulation tool chain or by data sheets.

The logic synthesis of a chip to determine a.o. power consumption is done by syn-
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thesizing the HDL code with a the synthesis tool Physical Compiler of the Synopsys tool
chain [19] using 90nm TSMC libraries. The final architecture is placed and routed to
obtain capacitance and resistance values to improve accuracy of the simulation results.

Power estimations are done by PrimePower annotating switching activity of the
ADRES nets on the synthesized design. For accurate power estimations a gate level
simulation of the ADRES architecture has to be performed, however, the simulations
did not work. Of the non-pipelined version of ADRES there was only one instance work-
ing correctly at RT level simulations. Since different instances should be compared a
different approach had to be followed. A cycle-true instruction set simulator (ISS) [12] is
modified to obtain switching activity of the nets similar to simulations at register transfer
(RT) level by the clock cycle accurate simulator ModelSim [18]. The activity values of
the simulations are annotated on the gate level netlist of an ADRES instance. Chapter
4 will prove the reliability of the instruction cycle accurate methodology compared to
RT level simulations.

For validation and verification of an ADRES instance we used an Inverse Discrete
Cosine Transformation (IDCT), a Fast Fourier Transformation (FFT) and a multi-media
application (MPEG2) of which the first two are primarily used for rapid testing, selection
of architectures and debugging. MPEG2 itself is used when significant optimizations
(called milestones) are applied to the base architecture. The benchmark applications
results of the final architecture are utilized for comparison with the selected base archi-
tecture.

1.3 Document Structure

To get a better understanding of the ADRES architectural template, its modules and
possibilities are explained in Chapter 2. Modifying the DRESC compiler is out of the
scope of this thesis, however, a small explanation of the scheduler for ADRES is provided.
The instructions cache and data memory included in the pipelined version of ADRES are
also explained. Using the non-pipelined ADRESv0 several architectures are generated
to empirically select an appropriate base ADRES architecture based on characteristics
such as power, performance and energy.

Chapter 3 describes the exploration methodology of this thesis based on the possibil-
ities of the selected architecture, the benchmark applications and the available designer
tools.

High and low level optimization techniques are described in Chapter 5 and eval-
uated in terms of power, performance, energy and area. The optimizations are later
implemented in the final design.

In Chapter 4, a flow is created to synthesize each architecture and determine their
physical characteristics and power consumptions. This requires a synthesis and simula-
tion flow for evaluation utilizing the available programs and 90nm TSMC libraries.

The results of the optimizations are combined in the final design in Chapter 6 to
depict the optimization improvements and compare with the base ADRES architecture
selected in Chapter 2. In addition, there are two different vendors of 90nm TSMC
technology, which are explored for their influence on performance and power. The most
appropriate library of Artisan or Synopsys is selected as described in Section 6.1. Finally,
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the results of the final architecture are provided and possible improvements for future
investigation.
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According to Amdahl’s law overall application speedup can be achieved by enhancing
the parallel fraction in the code as best as possible as noted by Hennessy et al [10] and in
the speedup formula below. This speedup can be achieved by looking at the part in the
code that can be parallelized (Fractionenhanced) and requires most of the time during
execution. A widely held rule of thumb according to Hennessy et al. [10] is that 90%
of the execution time is spent on 10% of the code, which are generally loop iterations.
Accelerating the parallelized fraction could increase the overall speedup significantly. If
the Speedupenhanced is equal to the number of processors in the architecture the overall
speedup would theoretically become 1/(1 − Fractionenhanced) with an infinite number
of processors. However, this is a fallacy, since adding more processors would introduce
additional communication overhead until no more enhancement is possible.

Speedupoverall = 1

(1−Fractionenhanced)+

(
Fractionenhanced
Speedupenhanced

)
Acceleration can be done a.o. by instruction (ILP) and loop-level parallelism (LLP)

or better called as software pipelining. The Architecture for Dynamically Reconfigurable
Embedded Systems (ADRES) [28] provides support for ILP and LLP acceleration with a
VLIW processor and a coarse-grained reconfigurable array, respectively. The pipelined
VLIW is comparable with the Trimedia architecture of which an extensive explanation is
given by Hennessy et al. [10] and Van de Waerdt [43]. This pipelined processor has five
operation slots of 32-bit instructions operating in parallel. The Trimedia architecture is
an example of the ILP success in enhancing performance and power (0.649 mW/MHz at
1V for TM3270) in the embedded and mobile markets.

ADRES basically extends the VLIW with a coarse-grained array (CGA) of functional
units. This array enhances performance by focussing on LLP, while the VLIW part
utilizes ILP and controls the array. The regular VLIW processors use a large global data
register file, which can become expensive to build. As noted by Bingfeng Mei [27], for
N functional units (FU) the power consumption and area of the register file increases
by N3 and delay is increased by N2/3. By clustering the register file these problems
are avoided. The FUs in the array are connected to small register files based on the
clustering principles. By using the array for loops expensive accesses to the large global
register files is avoided by using the smaller register files locally. These features combined
ensure a high-speed, low-power architecture as shown in this thesis.

This chapter first describes the overall top level processor architecture followed by
the description of the ADRES template in detail with all its components and intercon-
nections. The instruction cache and data memory interface in Sections 2.3 and 2.4 are
shortly described for completeness of the discussion, but are not a target for optimiza-
tions. Following, an appropriate architecture out of 14 different exploration architectures

5
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has to be selected as a basis for further optimizations as described in Section 2.5. The
exploration architectures are verified by the benchmark applications Inverse Discrete
Cosine Transformation (IDCT) and Fast Fourier Transformation (FFT) of which power
and performance figures are obtained.

2.1 Top Level Processor Architecture

The ADRES processor consists out of the ADRES core, instructions cache (ICache), data
memory (DMEM) and an Advanced High-Speed Bus (AHB) [14] interface as depicted
in Figure 2.1. The processor has the ability to operate stand alone or as part of a
System-on-Chip design.
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Figure 2.1: Processor overview of ADRES

Attached to the ADRES core are the data memory and instruction cache, which are
both scalable in size. The synchronous DMEM is utilized by the core as a scratch pad and
this also functions as a shared communication medium between the VLIW and Coarse
Grained Array (CGA) modes of operation of ADRES. Both DMEM and ICache contents
can be written externally through their respective AHB Slave interfaces (DM AHB Slave
and IM AHB Slave). Reading the DMEM contents externally is also done by the AHB
Slave interface. The AHB Master interface (DM AHB Master) accesses global AHB
addresses by memory load instructions. The Direct Memory Access (DMA) controller
makes it possible to access global data memory without interrupting the processor. The
configuration memories (CM) used in the core contain the configurations for the array
during CGA mode. The CMs have their contents loaded via the AHB Slave interface as
well. The next sections describe the components of the processor in more detail.
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2.2 ADRES Architecture Template

The coarse-grained reconfigurable architecture ADRES is not an actual fixed IP block,
but rather a template described in a XML based modeling language that can be utilized
by an engineer to created its own design. The ADRES architecture can have an arbitrary
dimension with any shape making it very versatile as noted by Kwok [24] and Bingfeng
Mei [27]. The XML architecture file is utilized by the compiler for proper scheduling
in and is the basis to create a top-level VHDL architecture file as will be explained in
Chapters 3 and 4.

2.2.1 XML Architectural Description

The XML architectural file consists of three major sections: resources, connections and
behaviour of which an elaborate example is depicted in Appendix A.

The resources section in the XML document describes among others the FUs, register
files and Transistion Nodes (TRN) to construct the ADRES core of which their simple
forms are depicted in Figure 2.2(b).

• The functional units (<FU>) can have their inputs, outputs and instruction groups
altered to create different FUs in the array. The configuration of the FUs is very
flexible, however, only one FU is allowed to branch and execute the CGA command
to enter CGA mode.

• The register files (<RF>) can either be predicate or data register files and also for
the VLIW and/or CGA section. The global register files vliw int rf and vliw pred
are compulsory and have their number of ports, port width and sizes defined. The
nonrotsize setting defines the size of the fixed size of the register file of which the
usage will be explained in Section 2.2.4. The local ireg X and pred X register files
(where X can be any number) are distributed on the array and are arbitrary in the
architecture. These are preferably rotating due to modulo scheduling [27].

• The constant values (<CONST>) contain immediate values for the application in
CGA mode and come from the configuration memories (CM) in Figure 2.2(b).

• The Transition Nodes (<TRN>) are utilized for creating connections between the
functional units, register files and constant values. These are multiplexors and
can also obtain a delay value creating registers at the output when this value is
larger than zero. The size of the TRN depends on the connections connected to
it. The compulsory ports loop start and loop stop are required to start and stop
CGA mode of ADRES. The loop start signal goes from the control unit to the
FUs, while the loop stop signals from the FUs in the array go to the VLIW control
unit (VLIW CU).

The connections section describes how the resources are connected with each other.
Each connection has a source (src) and destination (dst). As an example, the connections
section in Appendix A is depicted in in Listings 2.1.



8 CHAPTER 2. THE ADRES ARCHITECTURE

Listing 2.1: Connections Example

<connect ion>
<connect> < !−− Connection 1 −−>

<s r c en t i t y = ” cons t 0 ” />
<dst en t i t y = ” fu 0 ” port = ” s r c1 ”/>

</ connect>
<connect> < !−− Connection 2 −−>

<s r c en t i t y = ” fu 0 ” port = ”dst1 ” />
<dst en t i t y = ” i r e g 0 ” port = ” in1 ” />

</ connect>
<connect> < !−− Connection 3 −−>

<s r c en t i t y = ” i r e g 0 ” port = ”out1” />
<dst en t i t y = ” fu 0 ” port = ” s r c1 ” />

</ connect>
<connect> < !−− Connection 4 −−>

<s r c en t i t y = ” i r e g 0 ” port = ”out2” />
<dst en t i t y = ” fu 0 ” port = ” s r c2 ” />

</ connect>
<connect> < !−− Connection 5 −−>

<s r c en t i t y = ” fu 0 ” port = ”dst1 ” />
<dst en t i t y = ” ou t i r e g 1 0 ” />

</ connect>
<connect> < !−− Connection 6 −−>

<s r c en t i t y = ” ou t i r e g 1 0 ” />
<dst en t i t y = ” fu 1 ” port = ” s r c2 ” />

</ connect>
</ connect ion>

Connection 1 links the constant value const 0 to the first source port of fu 0. The
output of fu 0 is connected to the input of local RF ireg 0 with connection 2, while
connections 3 and 4 link the RF read ports to the source ports of the FU. Connection
5 connects the output of fu 0 to the TRN outireg1 0. Its output can be linked with the
input of fu 1 as created by connection 6. This procedure is iterated until the designer
has connected all necessary resources with each other.

The behaviour section defines the instruction sets available for the architecture and
the behavior of the functional units. The vliw section describes which components and
signals are for the VLIW section and operation. The FUs in vliw fus are designated to
operate in both VLIW mode and in CGA mode. The intrinsics for the FUs are defined in
intr op as will be placed in the instruction sets. The op section contain all the instruction
sets of the ADRES architecture. Each instruction set contains its own instructions with
the same delay. For example, the logic set only requires one delay cycle in a FU, while
the ldmem group requires 4 or 6 delay cycles depending if the data memory queue is
utilized or not (Section 2.4).
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Figure 2.2: Overview of ADRES architecture

2.2.2 ADRES Data Path

The ADRES architecture is a tightly-coupled architecture between two views: VLIW
and CGA. Note the difference between CGA view and CGA section, since the CGA
view is a combination of the functional units of both VLIW and CGA section. The
VLIW control unit directs the switching between VLIW and CGA modes. It also starts
and stops the CGA loops when initiated by a VLIW FU, accesses the instruction cache
for the next instruction for the VLIW section in the respective mode and calculates the
next Program Counter (PC) (if there are no branches made by a VLIW FU).

In the example depicted in Figure 2.2(a) the VLIW section has 4 FUs and the CGA
section has 4 by 3 FUs, however the size of the ADRES architecture instance can be
arbitrary as noted in Section 2.2.1. The FUs in the VLIW view communicate through the
a multi-port global Data Register File (DRF), while those in the CGA view communicate
through the available interconnections.

An example of a data path in ADRES is depicted in Figure 2.3. The explicit pipeline
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registers ensure timing of the data path. The local Data and Predicate Register Files
(PRF) are use for storage of variables and removal of branches in pipeline-able loops.
As part of the template’s flexibility the local register files do not have to be present or
could be shared among several FUs.

When the data path is operating in CGA mode the available FUs, local RFs and
TRNs have to be configured by the configuration memories. These hold the instruc-
tions and addresses for the FUs and RFs, respectively, and routing information for the
multiplexors to select the appropriate input. A different configuration is loaded on each
instruction cycle during CGA mode. In VLIW mode the configuration memories are
kept idle.
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Figure 2.3: Data path example of an ADRES Instance

All functional units have 1 write port and 3 read ports at most. The third source
port is only present when the FU is configured as a store unit for external access. An
example of an store operation is depicted in Figure 2.4.

ST_C  R5 , R32, R33

src3 src1 src2

Mem[Src1 + Src2]  | (8 bits)  R5

Figure 2.4: Example of Store Operation of a Byte

Source 1 of the FU holds to the base address of the memory located in register R32.
The offset is either an immediate value or obtained from a register in source 2. In the
example register R33 is used instead of an immediate value. Source 3 contains the value
to be stored as is located in register R5. When the FU does not have store capabilities
it only has 2 source port, which results in a 2:1 ratio for read and write ports. The
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instruction set architecture (ISA) operates in a register-to-register way requiring the
register file connected to the FU to have a 2:1 ratio for read and write ports. The source
3 port in a FU requires an additional read port in a register file or it can be shared with
another register file read port.

2.2.3 Functional Units

There are two types of functional units in the ADRES architecture: one for the VLIW
and one for the CGA section as depicted in Figure 2.2(a). The main difference between
them is in the ISA support where the VLIW FU has additional capabilities to perform e.g.
branch operations and subroutine call operations. Additionally, the pipelined ADRESv1
has different pipeline schemes for both types of which the VLIW FU has more pipeline
stages than a CGA FU. With the non-pipelined ADRESv0 the VLIW FUs can operate
in both modes, however, the VLIW FUs of ADRESv1 do not support different pipeline
latencies. Therefore, the FUs of ADRESv1 in the XML architecture file (Section 2.2.1)
designated to be VLIW FUs are duplicated, creating a CGA and VLIW FU. More details
on this will be provided later in this section. In both versions of ADRES the CGA FUs
can only operate in CGA mode and are idle in VLIW mode.

Instruction Set Architecture The ISA is a generic RISC instruction-set desired for
IMPACT’s intermediate code, LCode [17] of which a small explanation is provided in
Section 3.1. During the coarse of the thesis a non-pipelined functional unit of ADRESv0
evolved to a pipelined version ADRESv1. These had different instruction sets, but only
the latest version will be presented here. The ADRESv1 version has 8 different instruc-
tion sets as depicted in Table 2.1. The instructions in the instruction sets are depicted in
Figure 2.5. According to Hennessy et al. [10] an instruction set holds consecutive instruc-
tions with no register data dependencies, which mean they can be executed in parallel,
if hardware resources are available and dependencies through memory are preserved.

Table 2.1: Functional units operation types
Operation Type Description
ARITH 1 Basic arithmetic operations
ARITH 2 Regular compare instructions
ARITH X1 First intrinsic operations field
ARITH X2 Second intrinsic operations field
LOGIC Shift and boolean operations
PRED Predicate compare instructions
LDST Load and Store operation from memory to DRF and vice versa
SPECIAL Branch and Jump, Control Operation mode,

halt and special register instructions

The ARITH 1 set performs basic operations e.g. MOV, NOP and multiplication
instructions. The ARITH 2 set contains the comparison instructions of which the predi-
cated versions are located in the PRED set. The LOGIC instruction set contains modulo,
logical shift and boolean operations. The SPECIAL set holds instructions that can only
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be executed in VLIW mode e.g. branches and special VLIW register file instructions.
A control instructions to switch into CGA mode is also in this group, hence it is not
supported in the CGA FUs. The LDST set contains the load and store instructions.
FU specific instructions called intrinsics are placed in the ARITH X1 and ARITH X2
fields. Intrinsics collapse several lines of code into a single instruction [9]. They are very
effective at speeding up computations and consume less power compared to the individ-
ual instructions, since additional decoding operations and operand fetching are avoided.
The intrinsics are implemented in the ALU and only require the ANSI-C source code to
be adjusted.

ARITH_1 ARITH_2 ARITH_X1 ARITH_X2 LOGIC PRED LDST SPECIAL (*)
100 101 110 111 001 011 010 000

0000 MOV GT SUBABS CLIP1 LSL PRED_GT LD_UC SETLO_0
0001 NOP GT_U INNERSUM CLIP2 PRED_GT_U LD_C JMP_BR_0
0010 SHRMB GE AVGU4 MIN LSR PRED_GE LD_UC2 SETHI_0
0011 RPHI (*) GE_U ADD2 MIN_U PRED_GE_U LD_C2H MV2SR
0100 SHLMB EQ SUB2 MAX ASR PRED_EQ LD_C2 SETLO_1
0101 PACK2 AVG_E MAX_U LD_I JMPL_BRL_0
0110 PHI (*) NE SH_RND OR PRED_NE LD_I2 SETHI_1
0111 SPACK2 ADD AND HALT
1000 MUL LT SUB XOR PRED_LT ST_C SETLO_2
1001 MUL_U LT_U NOR PRED_LT_U ST_C2 JMP_BR_1
1010 SPACKU4 LE NAND PRED_LE ST_C2H SETHI_2
1011 MUL_SU LE_U NXOR PRED_LE_U ST_C2R MVFSR
1100 PRED_SET ST_I SETLO_3
1101 PRED_CLEAR ST_I2 JMPL_BRL_1
1110 SETHI_3
1111 MODULO CGA

(*) Not supported in CGA mode

Instruction Set

In
st

ru
ct

io
ns

Figure 2.5: Operation Code Table

Instruction Fields An example of the instruction fields for the VLIW and CGA FUs
are depicted in Figure 2.6. A complete overview of all the possibilities for the VLIW
instruction field and the complete ISA can be found in Appendix B. The VLIW instruc-
tion field is fixed at 32-bits wide where the CGA configuration field can be variable as
noted later. There are three bits for the operation types (or instruction set as previously
called) and 4 bits for the 16 instructions in the group as depicted in Figure 2.5. In the
VLIW section the Pred, Dest and Src fields point to register addresses for operation.
The CGA configuration field does not have a destination value. Instead, the output of
an operation is routed to its destination by the configuration line for the register file as
will be explained in Section 2.2.4. The sources for the CGA FU are selected by the port
selector field in the CGA configuration field. Multiple connections can be connected to
the FU source as is described by the connections section in the XML architecture file
(Section 2.2.1). These connections are routed by a multiplexor of which its sizes depends
on the number of connections to it.

The Pred field saves the output of an operation in one of the 32-bit predicate registers.
In VLIW mode any instruction can be predicated with the predicate registers, however
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Figure 2.6: Functional unit instruction fields

in CGA mode the predicate input for a FU is selected by the PredSel field. To ensure
the predicate outputs are generated at the pred dst1 and pred dst2 outputs in Figure 2.3
the Predicate Opcode bit has to be set in the CGA configuration field. The predicate
instructions also have the ability to remove epilogue and prologue when going into CGA
mode as will be explained in Section 2.2.6. A predicate output is routed as well by the
configuration line for the register file.

The immediate bit replaces one or more src values in the instruction field by an
immediate value. This bit is not available in the CGA instruction field, however, imme-
diate values from the constant memories as depicted in Figure 2.2(b) are routed by the
multiplexors to their FU’s source inputs. When the source multiplexors to the CGA FU
have different inputs the compiler might not be able to route the instruction operands to
the correct source with non-commutative operations (a− b 6= b−a). By setting the swap
bit the source inputs are swapped and the operands are routed to the correct source
input. The stop bit (st) in the VLIW field is utilized to decompress the instruction line
in the ICache after NOP compression as will be explained in Section 2.3.

Pipeline Stages This section primarily applies to the pipelined version of the FUs in
ADRESv1, however, when removing all of the registers between the pipeline stages the
non-pipelined version is recreated. The entire process of fetching, decoding, execution
and write back has a latency of a single clock cycle in ADRESv0. This makes the
relatively slow data memories a significant bottleneck in performance, which is the main
reason to apply pipelining. The FUs have different pipeline schemes for VLIW and CGA
mode of which the differences will be explained later.

The VLIW FU data path depicted in Figure 2.7 is similar to that of the MIPS archi-
tecture [10] of which the amount of pipeline stages varies between 5 and 10 depending
on the instruction executed and the functional unit type. A small description of all the
pipeline stages for a FU in the VLIW section is noted in Table 2.2. The FUs in the
VLIW have 5 - 10 stages depending on the instruction, while those in the CGA section
only have 3 - 8 stages. The CGA FU have a simple data-flow without the fetch2 and
decode stage requiring the compiler to explicitly create the operands for the CGA FU.

The instructions in the ICache are compressed by NOP compression to pack the
VLIW instructions in the cache and prevent switching activity. In the CGA FUs there
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Figure 2.7: Functional unit pipelined datapath in VLIW part

is no compression, hence the Fetch2 stage can be omitted. Fetching values from registers
in the instruction decoding (ID) stage differs as well. This is done automatically every
clock cycle in CGA mode omitting the ID stage entirely for the CGA FU. The compiler
places the operand explicitly during compilation at the correct source input of the FU.

Pipeline Stage Operations The operations of the pipeline stages apply to the
VLIW FU as depicted in Figure 2.7. It starts by fetching N × 32-bit instruction words
in the instruction cache in the instruction fetch1 (IF1) stage. Where N is the amount
of VLIW FUs. In the second fetch (IF2) stage the instruction line is decompressed by
placing NOP instructions after the instruction in the line that has its stop bit set. Since
this is done in the instruction cache more information can be found in Section 2.3. The
VLIW FUs’ execution stages become idle when obtaining a NOP instruction.

Instruction decoding in the ID stage obtains predicate and data results to be used for
calculation. This stage additionally calculates the next program counter value. When a
jump or branch instruction is decoded the appropriate new program counter (PC) value
is selected by the multiplexor and send to the VLIW CU (Figure 2.2(a)).

The execution stages vary from 1 to 6 cycles depending on the instruction as noted
in Table 2.2. These delays are the same as noted in the XML architecture file, since the
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Table 2.2: Pipeline stage for VLIW FU with highest latency
Stage Description
Fetch1 (IF1) Read instruction cache (n x 32-bits + 32-bits immediate)
Fetch2 (IF2) Decompress fetched instructions in cache
Decode & Read (ID) Decode n instructions in parallel

and read data and predicate register files. Adjust PC in
case a JMP or Branch instruction is fetched

Execute0 (EX0) Arithmetic operations e.g. ADD, SUB and intrinsics. First
stage of MUL and address modifications for Load operations

Execute1 (EX1) Last stage of MUL operation or sending address to the
corresponding queue in the DMEM interface

Execute2 (EX2) Send most timing critical request to memory
Execute3 (EX3) Reading data from memory for the Load instruction
Execute4 (EX4) Send data to the reorder buffer
Execute5 (EX5) Send data back from DMEM interface to the ADRES core
Write Back (WB) Write the results to the data register file

compiler requires these value for proper scheduling. A regular instruction with a delay
of one is executed in the first stage followed by an immediate storage in the register
file in the write back (WB) stage. Multiplications require two stages. A load operation
normally requires 6 stages, but this can be reduced to 4 if the memory queue is bypassed
omitting Execute stages 1 and 4 in Table 2.2. Reducing the memory queue latency can
only be done when no data memory conflicts can occur. The store instruction requires
a single clock cycle, since only the address and data have to be placed on the busses.
While the processor continues with other operations the data memory interface takes
care of the data storage.

The problem with such variable pipeline stages is the in-order completion and struc-
tural hazards when e.g. a load instruction returns its value while an arithmetic operation
returns its result. By default the load instruction has higher priority over the multipli-
cation operation followed by other instruction as depicted in Figure 2.5. The scheduler
is also expected to avoid a situation like this during compilation.

Functional Unit Forwarding The forwarding logic in [10] avoids data dependency
hazards and is implemented in the functional unit. With ADRES, however, it is im-
plemented in the global data register file or the compiler uses a routing resource from
the FU output to input in the CGA section. This forwarding mechanism avoids an
additional clock cycle if the data written in the Write Back stage to the register file is
required immediately for another instruction.

2.2.4 Registers Files

There are two different register files responsible for the correct operation of ADRES:
data and predicate register files. These can be subdivided for the VLIW and the CGA
sections giving global and local register files, respectively. The register files can have
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a fixed and register rotating section. Register rotating is a register renaming operation
used during software pipelining as explained in more detail later in this section. Utilizing
the XML architecture file as basis to generate the VHDL architecture file, the XML file
describes how the functional units are connected to the register files as well as their
sizes (Section 2.2.1). The depth of the global register files can be arbitrarily, but for
compiler friendly operation and optimal performance in array mode a fixed and rotating
part for register rotating should be available. Only during CGA mode both sections are
accessible, while in VLIW mode only the fixed part can be accessed. The sizes of the
local register files can also be arbitrary and can be either rotating or fixed. Rotating is
preferable for compiler friendliness and is an essential part for modulo scheduling [30].
Section 2.2.6 will explain the basics of modulo scheduling. Unlike the global register files
the local register files are not required in the architecture for correct operation and can
even be replaced by busses reducing area and power consumption.

The 32-bit wide data register files store data and can serve as communication medium
for functional units. The 1-bit predicate register files are used for predicate functions and
remove branches from pipeline-able loops [31], but are also essential to remove feedback
operations, prologue and epilogue as noted by Bingfeng Mei et al. [29]. The latter two
occur when a loop starts and stops and the array is not completely occupied as will be
explained in Section 2.2.6.

Instruction Fields The local DRFs and PRFs have to be controlled during CGA
mode. Just as with the functional units this is done by a register file configuration field
as depicted in Figure 2.8. The width of the register file configuration word depends on
the number of write and read ports, multiplexor size and the size of the register file. The
fields contain the selection bits for the register files input multiplexors and the read and
write addresses for the local register files in CGA mode. This omits the decoded stage
in the CGA FU as noted in Section 2.2.3.

CGA configuration field

InNinSel
Variable Variable

In1Sel
Variable Variable

WriteAddrNin

Variable

WeNinSel We1Sel...

...

...

...

...

...

WriteAddr1
Variable

ReadAddrNout

Variable

...

...

ReadAddr1
Variable

Figure 2.8: Configuration Field for CGA register file

The configuration field contains the read (ReadAddrNout) and write addresses
(WriteAddrNin) used to fetch the operands for the FU. Multiple connections can be
connected to a register file write port of which the correct one is selected by the InNinSel
signal. Writing the values to the register file requires a write enable of which the appro-
priate one is selected by the WeNin signal.

Register Rotating The registers can be overwritten by other loops while they are
still used with modulo scheduling. A register renaming type called register rotating [27]
is utilized to ease the allocation of registers with software pipelining. This method is
hardware based of which a simple schematic is depicted in Figure 2.9. This register file
has a rotating and fixed section of which the fixed section always comes first.
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Figure 2.9: Register Rotating

The address for the rotating register (Rrot addr) is calculated based on number of
rotating register (Nr) and non-rotating registers (Nn), a virtual address in the source
code (Nn ≤ Raddr < Nr) and the stage count (S). The stage count is incremented each
time an iteration of a loop completes ensuring the life-time of a variable remains intact.
The range of the stage counter depends on the number of iterations in a loop. The
physical, rotating address is calculated as:

Rrot addr = Nn + (Raddr + S) mod(Nr)

For example, if the generated code writes to register 13 in stage 2 and it wants to
read that same data in stage 3 it will read from register 12 to access the same physical
rotating register address. Therefore, it appears that the register is rotating downwards
until the top of the non-rotating registers is reached.

Global Data Register File Forwarding Logic The data forwarding in ADRESv1 is
relatively simple compared to the more complex one in Hennessy et al. [10]. Forwarding
is only done implicitly in the global DRF or externally from the output of a functional
unit to its inputs. The latter is visible for the DRESC compiler, which is treated as a
resource for routing. The forwarding logic in the global DRF compares the write with the
read addresses and forwards the data to the appropriate read port when there is a match
as is depicted in Figure 2.10. The disadvantage is the amount of comparators created due
to the multiple write and read ports. With a ratio of 2:1 for read vs. write ports and N
write ports the number of comparators will be #Read ·#Write ports = 2N ·N = 2N2

comparators. For example, with 8 write ports there would be 128 comparators. To
avoid this large amount of comparators the number of write ports should be as low as
possible. This could be done by sharing the ports among several FUs, but could reduce
performance, since only one FU can access the write port in one clock cycle.

This simple bypassing logic avoids an additional cycle when a register being written
and read in one clock cycle. An improvement on register forwarding is suggested by
Sami et al. [37] and [38] preventing writing/reading of short-lived variables to/from the
register files. This prevents unnecessary switching activity in the register files with an
expected reduction of power by 20 - 35% with IDCT. The compiler reads in a trace file to
determine which variables are short-lived for only a few clock cycles and generate write
and read inhibit bits for the register file. These inhibit bits are used during runtime of the
application and have to be stored somewhere during application execution. The inhibit
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Figure 2.10: Forwarding logic in the Global Data Register File

bits can either be (1) placed in unused instruction encoding bits in the ISA or (2) create
a specific location in the FU instruction field or (3) create dedicated hardware. The first
option does not guarantee unused locations are available in every instruction, as is the
case for most instructions of ADRES, while the second option does not require complex
encoding logic. The third option must check for write-after-write [10] dependencies
creating more logic. Therefore, the second option is a good optimization possibility to
be implemented in the future.

2.2.5 Configuration Memories

ADRES relies heavily on the configuration memories in the array and for the data and
the instruction memories. The configuration memories (CM) in the CGA section are
distributed providing memories for every functional unit and register file. These memo-
ries hold instructions for the functional units, routing information for multiplexors and
addresses for the register files. In CGA mode the memories are active every clock cycle
and the address changes constantly increasing power. The number of lines of the con-
figuration memories depends on the total amount of Initiation Intervals (II) of all the
loops in the programs combined. However, if a program only runs in VLIW mode the
configuration memories can be left empty and remain idle during the entire program.

If a different program has to be executed, of which its configurations are not available
in the CMs, the configuration data are loaded by the Configuration Memory Interface
(not depicted in Figure 2.1) when ADRES is idle or running in VLIW mode. It receives
32-bits words externally through the AHB Slave and forwards the data to a configuration
memory when a configuration line is ready. The configuration line width depends on the
size of the CGA configuration fields as depicted in Figures 2.6 and 2.8.
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2.2.6 Modulo Scheduling

Modulo scheduling is a form of software pipelining [10] which is entirely done by the
compiler. This section gives a small explanation how this works.

According to Hennessy et al. [10] software pipelining reorganizes loops such that
several instructions of different iterations of the original loop are executed simultane-
ously. This provides high parallelism among instructions without loop unrolling, while
preventing inter and intra dependencies in a single loop iteration. Modulo scheduling is
basically the same as software pipelining, but now each new iteration is scheduled on a
regular peace [36], [44] determined by the Initiation Interval (II). Just as with software
pipelining this prevents resource usage conflicts and dependency violations. The num-
ber of stages in an iteration is called stage count a.k.a. schedule length in the ADRES
architecture.

As with every software pipelining algorithm the pipeline/array has to be filled up.
Filling up the array occurs in the first few iterations of the loop, which is called prologue.
The prologue is followed by the steady state (or kernel) when the array is filled with a
maximum number of operations. After the steady state the last instruction have to
be finished until the array is empty. These last few instructions created the epilogue.
For maximum usage of the array the epilogue and prologue should be reduced to the
minimum increasing performance. An illustration with a 2x2 array is depicted in Figure
2.11 with courtesy to Binfeng Mei [27].

There are 3 stages and assuming FU3 is the only LD/ST unit and n1 and n2 are
memory operations. With this setup there is a constraint on resources increasing the II,
since n1 and n2 have to wait for each other. So, after 2 different configurations of the
FU a new loop can start until all iterations are completed. This would be different if
e.g. FU1 would also be a LD/ST unit creating more resources and making the II = 1.
When all the iterations are finished the epilogue is still remaining. The length is stored
by the schedule length in the ADRES architecture. When this value becomes zero it
signals that the epilogue is finished and the VLIW CU in ADRES has to switch back
from CGA to VLIW mode.

The constraint on resources based on the components in the XML architectural file
gives a Resource Minimal Initiation Interval (ResMII), while direct or indirect depen-
dencies with the same operation in a previous iteration gives a Recurrence Minimal
Initiation Interval (RecMII). Combining these gives a Minimal Initiation Interval (MII)
that the scheduler will start from to successfully place the operations on the array. If a
scheduling is not with the given MII this is simply increased and the compiler start over.
To address these Place&Route problems a Modulo Routing Resource Graph (MRRG) [27]
is created combining features of software pipelining and routing resource methodologies
utilized by FPGA P&R.

Modifications of the compiler is beyond the scope of this thesis, but it does support
intrinsics only requiring adjustments in the ANSI-C source code. By compacting different
instructions the scheduling should become easier and higher performance and less power
consumption can be obtained. Intrinsics are not available in the benchmark applications
neither were they implemented in the applications.
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Figure 2.11: Modulo Scheduling example on a 2x2 array

2.3 Instruction Cache

The ADRES instruction cache provides the 32-bits instructions to the functional units
in the VLIW section. The cache is direct mapped for its simplicity and performance,
but at the expense of miss rates and inefficiency. As depicted in Figure 2.12 it has 4
memory blocks with 512 words by N× 32-bits for each memory where N is the amount
of functional units in the VLIW section. In addition to this it has 2 TAG memories with
512 words by 17 bits due to the TAG address.

The first stage of the instruction cache is the same as depicted in Figure 2.7, which
fetches the instructions. The proper line is selected by the 17 MSBs of the program
counter while bits 3 and 2 select the correct bank holding the instructions. After com-
paring the tags the instructions are either send to the fetch2 stage or the ADRES core
is stalled depending if the instruction is in cache or not. In the latter case it fetches
one entire line from the external L2 memory after which the core and decompression
resumes. Due to the instruction compression (explained later) it might be necessary to
check two lines for presence of the instructions. If the program counter points to the end
of the instruction line TAG0 checks the current line, while TAG1 checks the next line.
If one of the TAGs miss a stall is created to fetch the instruction line.
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Figure 2.12: ADRESv1 Instruction Cache

Compression is performed by the compiler making sure no NOP instructions are
between two valid instructions to avoid clutter. It then removes all NOP instruction
and sets the stop bit (Figure 2.6) in the last instruction of the issue slot. Fetching
is the reverse procedure with a few exceptions. Since there are no NOP instructions
in a fetched instruction issue slot also instructions from the next slot can be included
as well. By using the stop bit in combination with multiplexors NOP instructions are
concatenated to the valid instruction(s) discarding the invalid ones. Depending on the
amount of NOP instructions added the program counter is increased and fetches the
next line. A regular increase can only be a maximum of N , but with only 2 selection
bits (bits 1 and 0 of PC), this is currently 4 limiting the size of the available functional
units in the VLIW section. Unfortunately, decompression requires a significant amount
of multiplexors increasing area and static power, however, the estimated reduction in
switching activity of signals between the ADRES core and instruction cache is between
30% - 40% [3], [6] and [23].
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2.4 Data Memory Interface

Besides a L1 instruction cache ADRES also has a L1 data memory that functions as a
scratchpad for applications and communication medium between the VLIW and CGA
sections of ADRES and with the external environment. Due to the register-to-register
architecture special Load and Store instructions are required to access the data memory
that can only be executed by Load/Store (LS) units. As depicted in Figure 2.13 the data
memory interface consists of an address decoder for every LS-unit, interconnection net-
works (X-bar), bypass logic, queue (FIFO), re-order buffers and pipeline registers. The
memory banks are externally connected to the interface. For simplicity the connection
to the external environment (DMEM AHB Master) is omitted, but operates in similar
way.

Addr
Dec

Addr
Dec

Addr
Dec

X
-b

ar

BY
PS

S
el

ec
t

Q
FIFO

FIFO

M
em

or
y 

B
an

k 
#0

X
-b

ar

BY
PS

S
el

ec
t

Q
FIFO

FIFO

M
em

or
y 

B
an

k 
#N

-1

BY
PS

R
O

B

BY
PS

R
O

B

Ex1/Ex2Ex0/Ex1 Ex4/Ex5Ex2/Ex3 Ex5/WBEx3/Ex4

From 
ADRES 

Core
To 

ADRES 
Core

clk clk clk clk clk

Design created by Sukjin Kim, Samsung and Allam Osman, IMEC/DESICS

Figure 2.13: ADRESv1 Data Memory Interface

Any request to memory is rerouted through the input X-bar to the bypass queue logic
first. This logic can bypass the queue when this is empty or when a low latency mode is
used (explained later). The memories have single read and write ports requiring a FIFO
to ensure that request to the same memory bank are placed in this FIFO and adds a
time tag. When the queue is full the ADRES core or AHB slave port is stalled until
some requests in the queue are handled. Based on the first-come-first-served principle
the most time critical request is forwarded to memory. In case of a read operation the
data is retrieved from memory and routed through the interconnection network to the
bypass logic and re-order buffer (ROB). The ROB rearranges read data according to
the time tag added in the memory queue and must have the same size as the maximum
latency minus 1 to be able to handle all requests. With the bypass logic it is possible to
bypass the ROB when the data reaches its deadline and should get priority.

The memory access can be done with low or high latency (latency is number of clock
cycles), which bypasses the memory queue and ROB or not. For clarity, the execution
stages in Table 2.2 are iterated for the data memory interface only in Table 2.3 with
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high latency. With low latency execution stages 1 and 4 can be omitted, but this is only
possible when no memory bank access conflicts can occur. If that happens the ADRES
core is stalled until the conflict is resolved.

Table 2.3: Data Memory Interface execution stages
Ex. Instruction type
Stage Store Load
Ex1 Send address and data to queue
Ex2 Send most timing critical request to memory
Ex3 Write memory Read memory
Ex4 Send data to the reorder buffer
Ex5 Send data back from DMEM to ADRES core

2.5 ADRES Base Architecture Selection

For this thesis power and performance optimizations have to be applied to an architec-
ture of choice. The versatility of ADRES, however, does not make the selection unam-
biguous, since different interconnection schemes can influence the results significantly.
Research has been conducted by Binfeng Mei et al. [31] to select the most appropriate
architecture in terms of performance per unit area compared to a fully interconnected
network. Although no immediate architecture could be selected as the most optimal,
one could conclude that variation in interconnections could have a significant impact
on performance and area. The architecture selection, therefore, is based on empirical
results obtained by synthesis and simulation of 14 different 4x4 non-pipelined architec-
tures ranging from a simple MESH to a completely interconnected network. These 14
different architectures are based on interconnection options as will be explained in the
next section. The empirical results with a frequency 100MHz are depicted in Figures
from 2.15 to 2.23. For verification we use the IDCT and FFT applications from Chapter
4 to obtain power and performance figures. A single functional unit with registers is also
synthesized for simple comparison.

2.5.1 Exploration Options

The 14 different architectures are based on 7 different architectural featured options as
noted in Table 2.4. The schematic representation of each option is depicted in Figure 2.14.
The Morphosys option was not evaluated for this exploration, however, it is explored in
Chapter 5 for optimizations.

For proper routing during Modulo Scheduling in Section 2.2.6 the Mesh architecture
is the minimum requirement as interconnection. The mesh plus and MorphoSys (not
used for the exploration) interconnections are based on Mesh, which just have more
interconnections. The reg con1 and reg con2 options are connected diagonally with their
neighboring functional units and register files. The advantage with this interconnection
is more routing, but also the possibility of sharing of data among FUs connecting directly
to the register files. The extra con option is created to bypass the functional unit to ease
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Figure 2.14: Interconnection Options for Architectural Experiments

routing for the DRESC compiler. The enhance rf option has shared read and write data
ports from the global DRF to all functional units in the same column except the last
row as is also used by Kwok et al. [24]. Although this is beneficial for communication
it also accesses the global DRF quite often increasing power consumption. Splitting up
the power-hungry DRF into smaller, local DRFs was one of the mean features of power
reduction as explained in the introduction of this chapter. For completeness, however,
the option is accounted for. The option has busses determines if predicate and data
busses are implemented of 1 and 32 bits wide, respectively. Connecting to the busses
is done via multiplexors and not via tri-state connections increasing area and power
consumption. On the other side, if switching activity is avoided in other components by
these ’high-speed’ connections, eventually power reduces.

For selection of the basis architecture the physical properties of register files and
functional units should be consistent. The local and global register files have 16 and 64
words, respectively. The data bus width between data register files, external memories
and functional units is 32-bits. Each functional unit is capable of regular additions and
multiplications, however, due to the Esterel simulator requirements, utilizing DRESC2.0,
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Table 2.4: Architectural Exploration Selection Options
Architecture mesh mesh reg reg extra enhance has

plus con1 con2 con RF busses
mesh X
mesh plus X X
xtra con X X X
reg con1 X X X
reg con2 X X X
reg con all X X X X
enh rf X X X
busses X X X
arch 1 X X X X X
arch 2 X X X X X
arch 3 X X X X
arch 4 X X X X
all X X X X X X X
ref X X X X X X

all inputs of the VLIW FUs have to be linked with the global DRF with a minimum
of three source ports. To reduce waste of space of the global DRF only the FUs in
the VLIW section have load/store capabilities, but these will also be utilized in CGA
mode. This gives the global DRF 12 read and 4 write ports, the global PRF 4 read and
write ports, the local DRFs 2 read and 1 write ports and for the local PRF 1 read and
write port. The configuration memories have 128 words to provide enough space for the
benchmark applications. Their bus sizes are variable and no memories are merged. We
use the Artisan 90nm general purpose libraries for standard cells and memories, since
these are most reliable as proved in Section 6.1. Although we base our findings on the
non-pipelined version of ADRES also data and instruction memories should be included.
However, we assume ideal external memories that only consume energy when we access
them. Since the amount of accesses to data memory is the same for all architectures
we can discard these results. For instruction memories this is a different case, since
the amount of instructions and cycles varies. A simple checkup showed the energy
consumptions of the instruction memories for different architectures do not differ that
much, discarding these memories as well for the exploration.

2.5.2 Instances Selection

The results after synthesizing the 14 different architectures and obtaining power figures
of the IDCT and FFT benchmarks are noted in this section.

Leakage power consumption and area are interlinked with each other as depicted in
Figure 2.15 and 2.16. Most area is accounted for by the configuration memories, global
DRF and the FUs in the CGA section and are similar for all architectures with a few
exceptions. The Synopsys synthesis tool is not always consistent in its synthesis results
creating a smaller global DRF for 4x4 ref as the others while the same parameters are
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Figure 2.16: Leakage Power of First Architectural Exploration @ 100MHz

Executing the IDCT and FFT applications at a frequency of 100MHz provide per-
formance, power and energy figures that all have to be looked at. When looking at
power alone (Figures 2.17 and 2.18) the most simplest one, the 1x1, would be selected
immediately, but the energy (power×time product) is of more significance as depicted in
Figure 2.19, since this determines how often you can run the application on one battery
life. Additionally, the ratios of the results are also important as depicted in Figures 2.20,
2.21, 2.22 and 2.23.

Figure 2.15 for area and Figure 2.21 for FFT performance show that the fully in-
terconnected architecture 4x4 all is not an efficient way for operation. The 4x4 mesh,
on the other hand, requires less area, but has the highest energy consumption for both
applications. The np 1x1 reg architecture has a relatively high MIPS/mW but has a
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Figure 2.17: IDCT Power consumption of First Architectural Exploration @ 100MHz
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Figure 2.18: FFT Power consumption of First Architectural Exploration @ 100MHz

drastic reduction in millions of instructions per second (MIPS) compared to the others.
The results also point out the bypass feature in 4x4 xtra con only has some advantage
for IDCT, but certainly not for FFT. This is typically an application that access data
registers files quite often, which is shown in Figure 2.21 by 4x4 enh rf and 4x4 reg con all
having a higher MIPS/mW factor compared to 4x4 xtra con due to the better accesses to
register files. Busses in the design does also not give much advantages, since it requires
more multiplexors, larger configuration memories and the data networks increase power.

Of all these architectures there is one that has the least amount of energy consump-
tion, an average area of 1.6 mm2 and one of the lowest values for area vs. perfor-
mance ratio: 4x4 reg con all. Figures 2.24 and 2.25 depict the energy-delay charts where
4x4 reg con all has the least amount energy with relatively low delay. Although perfor-
mance for FFT is not one of the highest it is for IDCT. Additionally, MPEG2 utilizes
IDCT giving it more ’weight’ than FFT. This 4x4 reg con all interconnection architec-
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Figure 2.19: Energy consumption of First Architectural Exploration @ 100MHz
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Figure 2.20: IDCT Performance of First Architectural Exploration @ 100MHz

ture as depicted in Figure 2.26 has connections between the FUs and register files directed
through multiplexors. This architecture will function as a basis for optimizations in this
thesis.

2.6 Summary

The ADRES architecture is a highly flexible coarse-grained reconfigurable array capable
of applications acceleration with instruction level parallelism on a VLIW like section and
loop-level parallelism on a coarse-grained reconfigurable array of ADRES. The combina-
tion of the pipelined ADRES core with a data memory interface used as a scratchpad and
instruction cache for the VLIW section provides a high-performance, low energy design
that can be tuned for specific designer requirements. The DRESC compiler compiles an
application and maps it on the array. To obtain high performance the ADRES architec-
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Figure 2.21: FFT Performance of First Architectural Exploration @ 100MHz
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Figure 2.22: Area vs. Performance of First Architectural Exploration @ 100MHz

ture speeds up the parallel fraction of the application and results in overall speedup of
the application.

The high flexibility of ADRES makes the selection for an architecture as a reference
cumbersome. Out of 14 different 4x4 non-pipelined architectures the most optimal in-
terconnection scheme is selected based on area, power, energy and performance results.
The selected architecture consists of a regular mesh and mesh plus interconnection topol-
ogy and diagonal connections through multiplexors between functional units and (local
and global) register files. Power and performance optimizations are to be applied to the
selected base architecture.
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Figure 2.23: Power vs. Frequency of First Architectural Exploration @ 100MHz
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Figure 2.24: IDCT Energy-Delay of First Architectural Exploration @ 100MHz
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Figure 2.25: FFT Energy-Delay of First Architectural Exploration @ 100MHz
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Exploration Methodology 3
This thesis focuses on power and performance optimizations for ADRES as explained
in Chapter 2, however, exploration of the architecture was only one of the first steps
for the project. Before the optimizations can be applied other issues e.g. analysis,
simulation, synthesis and power estimation flows have to be set up. We use DRESC,
Esterel, ModelSim and Synopsys tools for these flows. Working with these tools proved
to be quite challenging, since ADRES and DRESC were constantly in development that
influenced the compilation and simulation results. Also the actual hardware description
code of the processor and the tool’s capabilities had to be explored, which were both
significant issues during the coarse of the thesis.

This chapter describes all the steps made during the thesis and which decisions are
made. First, the tool flow is set up globally for analysis and creation of ADRES instances.
The next section depicts the possibilities of optimizations for ADRES and if they can be
implemented. Finally, all previous steps come together in the latest version of ADRESv1
with instruction cache and data memory interface with the benchmark applications FFT,
IDCT and MPEG2 simulated on them.

3.1 Tool Flow

To characterize the benchmark applications on the selected ADRES instances the tool
flow, as depicted in Figure 3.1, is needed. It can be split up in basically three parts:
1) Compilation and Assembly resulting in performance figures, 2) Simulation obtaining
power figures and 3) Synthesis resulting in physical characteristics e.g. area.

The application in the Compile and Assemble part is in ANSI-C code optimized for
ADRES, e.g. transformation of loops for efficient CGA usage. If this is not the case the
application has to be rewritten of which more details are described by Bennet et al. [27].
The optimized code is forwarded to IMPACT developed by the University of Illinios [17]
targeting instruction level parallelism (ILP) processors such as VLIW and superscalar
processors. In the compilation flow IMPACT transforms the source code to intermediate
code and performs additional optimizations for ILP. The DRESC compiler in Figure
3.1 then schedules for ILP, allocates registers, analyses and performs modulo scheduling
as described earlier. The resulting optimized DRE files are ready to be assembled and
transformed to binary files. These files are also used to create a high level simulator to
obtain basic performance parameters such as instructions per cycle (IPC).

The ADRES instance is synthesized in the Synthesize part to obtain the front-end of
a chip as a gate-level design. First, a XML2VHDL parser is utilized to create the top-
level VHDL architecture file. The VHDL descriptions of all individual components in
this file such as the functional units, register files and control units are already available
and are linked during compilation. The VHDL files are synthesized to a gate-level design

33
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Figure 3.1: Global overview of Tool Flow

based on state-of-the-art 90nm TSMC [20] libraries. From the gate level design, physical
characteristics e.g. area, capacitance and resistor values are extracted.

The Simulate section brings the synthesize and compile parts together. In the
ADRES environment there are three simulators with different levels of accuracy and
speed. The compiled simulator (marked as A in Figure 3.1) is a high-level simulator
that validates the code with symbolic accuracy based on the XML architecture files.
The performance results are accurate and it is also fast making it ideal for the large
amount of architecture explorations in this thesis. One level lower is the Esterel sim-
ulator (marked as B) created by the Applied Mathematics Center, Ecole des Mines de
Paris, and INRIA in Sophia-Antipolis [12] of which a language primer is available [2]. It
is a synchronous language dedicated to control-dominated reactive systems and describes
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the entire ADRES instance as a state machine. It can verify the ADRES instance at an
intermediate level as an instruction set simulator and uses the XML architecture file to
generate verification files for VHDL simulations.

Clock cycle accurate simulations are done by the ModelSim simulator, which verifies
the benchmarks on the ADRES architecture instance on RT level of VHDL code and
obtains switching activity of the nets. For maximum accuracy, gate level simulations
were the target at the beginning of this thesis, which did not work. When modifying
the top-level VHDL architecture file of ADRESv0 the RTL simulations failed as well.
This made the regular flow of RTL simulations unsuitable for architecture explorations.
To resolve this issue the Esterel simulator was adjusted by Andreas Kanstein to do the
same as ModelSim during RTL simulation, which was obtaining switching activity of the
nets. This was possible since the VHDL architecture file is generated out of the XML
architecture file, which have strong relations with each other. In addition the Esterel
simulator provided fast results compared to the ModelSim simulator.

The switching activities obtained after simulations are annotated on the gate level
design created in the synthesize part. The toggling file and the gate level design are
used by the power tool PrimePower to estimate power. The Esterel methodology has
an offset of 11% in CGA mode compared to the ModelSim simulator as will be proved
in Section 4.2.1.

3.2 Optimizations

Power and performance optimizations have numerous possibilities in a hardware design,
however, not all of them could be applied during the coarse of this thesis. After reviewing
all the original VHDL code of ADRES it became clear the code for the FUs was certainly
not optimized to be properly be synthesized as an ASIC. Adjusting the entire FU to be
proper for pipelining and ASIC synthesis was carried out by IMEC employees.

Dynamic optimizations like operand isolation focusses on the data path of the func-
tional unit and has been hard coded in the design. Another dynamic optimization is
clock gating to avoid unnecessary switching activity in nets and logic gates caused by
the clock input. This technique targets the registers in the ADRES instance.

Static optimizations are implemented during design phase of an architecture. Tech-
niques like splitting up the configuration memories, pipelining and top-level architectural
modifications are selected. Pipelining is implemented by the IMEC employees, but an
explanation is provided in Section 5.3.1. Architectural modifications consists of an explo-
ration similar as in Section 2.5, but now focussing on sharing register files and reduction
of the register sizes.

Besides design modifications the library used during synthesis has a significant impact
on performance and power. In Section 6.1 the appropriate library (Artisan or Synopsys)
based on 90nm TSMC technology is selected for both power and performance. During
the thesis only the Artisan standard cell libraries are utilized, since they are more reliable
and slightly better in power as explained in Section 6.1. ADRESv1, however, requires
faster logic like the Synopsys standard cell libraries to obtain maximum performance
results.
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3.3 Final Steps

All the optimizations techniques for power and performance are implemented in the final
design based on the latest version of ADRES available at that moment. The benchmark
applications FFT, IDCT and MPEG2 are used to obtain final power results of ADRES
and are compared to the base architecture. Additionally, an energy-delay chart is created
with variable ADRES instance dimensions: 2x2, 4x4 and 8x8. In order to show the
contribution of CGA the chart is compared to 2x1, 4x1 and 8x1 VLIW instances of
ADRES.

There are other optimizations possible for ADRES noted in the conclusions and
future work of this thesis, which were not implemented during this thesis period. These
optimizations are expected to reduce power consumption of ADRES even further, which
have to be investigated in the future.

3.4 Summary

The tool flow utilized in this thesis consists of compiling benchmark applications, synthe-
sis of an ADRES instance and simulation of the application on the ADRES architecture.
DRESC compiles the benchmark applications FFT, IDCT and MPEG2 onto the CGA
and are verified by the simulation flow. A simulation can be done by either the compiled
simulator, the instruction set simulator Esterel or the clock cycle-true simulator Model-
Sim. The ModelSim simulator was the regular flow of VHDL simulation and obtaining
switching activity of the ADRES architecture, but modifying the ADRESv0 architecture
made the RTL simulations fail. This regular method made architecture explorations im-
possible. The Esterel simulator is adjusted to obtain switching activities in the ADRES
architecture similar to the methodology utilized by ModelSim. This technique is faster
than ModelSim and was ideal for architecture explorations. The captured switching
activities are applied to the synthesized gate level design of ADRES after which power
estimations are obtained.

The optimizations are either dynamically implemented after the design has been
finished or statically during the design phase. The dynamic optimizations are operand
isolation and clock gating implemented to reduce switching activity in the architecture.
The static optimizations are pipelining, architectural modifications and segmentation of
the configuration memories. Pipelining is implemented by IMEC employees and improves
performance, but also increases power consumption. The architectural modifications
changes the base ADRES architecture and investigates the impact of register file sharing
on power and performance. Segmenting the configuration memories is a methodology to
reduce power in the memories.

The optimization techniques are merged with the selected ADRES instance after the
architectural modifications. The benchmark applications are simulated on the architec-
ture for verification and power estimations. In addition, a comparison is made with a
VLIW like ADRES instance to prove CGA contribution.



Synthesis and Simulation Flow 4
The target architectures as selected in Section 2.5 have to be synthesized and simulated
to obtain power and performance figures. The flow in Figure 3.1 is depicted in Figure
4.1 in a simpler form for convenience. As noted in Section 3.1, the C-source code is
first optimized for efficient CGA usage. The optimized code is transformed by IMPACT
to the intermediate LCode. Finally, it is compiled with DRESC 2.x and assembled
utilizing the XML architecture file resulting in binary files for simulation. The compiled
simulator provides the performance results for the code and conjunctive architecture.
The simulation flow validates the compiled code on an intermediate and/or hardware
RT level obtaining switching activity of the nets. The switching activity is annotated on
the synthesized design after power estimations are obtained on RT simulation level.
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Figure 4.1: Simple representation of Tool Flow in Figure 3.1

This chapter first describes in Section 4.1 the steps made to synthesize the VHDL
architecture file with Synopsys’ [19] synthesis tools: Design Compiler and Physical Com-
piler into a logically synthesized (front-end) design. The simulation flow and power cal-
culations are described in Section 4.2. The tools Esterel and ModelSim simulate the
benchmark applications and create switching information of the nets as noted before.
The accuracy between the Esterel and ModelSim is also investigated utilizing ModelSim
as a reference. PrimePower of the Synopsys tool flow is utilized to calculate the power of
the design on RT level. The power calculations and physical characteristics of the designs
are based on the utilized Artisan and/or Synopsys libraries based on 90nm TSMC tech-
nology. Several simulations are performed on register files and (non-)pipelined functional
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units selecting the most appropriate library as noted in Section 6.1. Global description
of the compiler was already available in Section 3.1.

4.1 Synthesis Flow

The purpose of the synthesis flow is to transform the XML architecture file into a front-
end, gate level netlist mapped to a specific technology. The flow starts by transforming
the XML file into a top-level VHDL architecture file using the XML2VHDL parser as
depicted in Figure 4.2.

The next steps are done by the Synopsys tools, which analyzes the VHDL code and
translates it to components extracted from the generic technology (GTECH) and Design-
Ware library [41] during elaboration. Both libraries are technology independent of which
GTECH contains basic logic gates and flipflops, while the DesignWare library contains
more complex components like adders and comparators. Clock gating is implemented
during synthesis and has to be set during the elaboration step. Design Compiler utilizes
the features of Power Compiler to analyze the HDL code for the specific structure to im-
plement clock gating as depicted in Listing 4.1. It uses the write enable signal (we) and
address (Address) from the code to create the control logic as depicted in Figure 5.5(b).
The clock signal is only forwarded when the WE and Address values direct the register
file. The AND-based clock gating elements in that figure are implemented automatically
by Power Compiler together with a latch to avoid glitches.

Listing 4.1: Example of register file VHDL code

Wr i t eReg i s t e rF i l e : process ( c l k )
begin

i f ( c lk ’ event and c l k = ’1 ’ ) then
i f ( we = ’1 ’ ) then

r e g i s t e r f i l e ( Address ) <= wr i t e va l u e ;
end i f ;

end i f ;
end process Wri t eReg i s t e rF i l e ;

After elaboration a RTL2SAIF file is created containing all the technology indepen-
dent components. It instructs the ModelSim simulator which modules’ in- and outputs
have to be monitored during simulation. The same method is also adapted in the Esterel
simulator as will be described in Section 4.2.

During logical compilation the design is optimized and mapped to a technology spe-
cific target library that will be selected in Section 6.1. When there is no floorplan
available during compilation Design Compiler creates its own, which is not optimal ex-
cept for the critical path. In the physical compilation step, the synthesis tool Physical
Compiler is capable of basic placement and routing, which is sufficient for the front-end
designs of all the tested architectures in this thesis. The Physical Compiler addition-
ally optimizes the design even further based on the wire load model for the capacitance
values, layout and timing constraints. The resulting gate-level netlist contains all the
resistors, capacitances and interconnection delay values. These can be back-annotated in
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Figure 4.2: Synthesis flow

the flow if the timing constraints are not met. The timing constraints are dependent on
the ADRES architecture instance, which target either 100MHz for ADRESv0 or 500MHz
for ADRESv1. The critical path determines the maximum frequency of the synthesized
architecture. If the design met the timing constraints or it can not be optimized any
further the gate level design is utilized for power estimation as described in the next
section. Physical (area, minimum clock period, etc.) attributes noted in this thesis are
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as well based on the gate level design.

4.2 Simulation Flow

The simulation flow has the purpose of validating the ANSI-C source code and obtaining
switching activity of the top-level nets in the VHDL architecture file to perform power
estimations. There are three different simulators available to validate the applications
and the architecture: compiled-code, Esterel and ModelSimv6.0a simulators as depicted
in Figure 3.1. The compiled-code simulator is in the Compile and Assemble part, while
Esterel and ModelSim are in the Simulation part. The simulators range from a high-
speed, symbolic accurate to the low-speed, clock cycles and bit-level accurate simulators.
As noted in Section 3.1 the compiled-code simulator is a high level simulator with excel-
lent simulation speed. Esterel is a synchronous, cycle accurate simulator [12], which can
create test vectors for the VHDL simulations. ModelSim is an event-based simulator as
is a common approach for VHDL simulators [18]. It is the lowest level for simulation
with bit-level accuracy, unlike Esterel, and can also have Z and X states in the simulation
waveforms.

The Esterel and ModelSim simulators are also used to obtain switching activity from
the nets to calculate power. The HDL simulations did not work properly anymore
with the non-pipelined version ADRESv0 when the architecture was changed. This
was actually an interlinked problem between the compiler, assembler and the ModelSim
simulator as well. The tool versions (DRESC1.x) for ADRESv0 and its HDL code were
not stable enough. As noted in Section 3.1 the Esterel simulator for DRESC2.x was
capable to resolve this issue and could be used for the architectural explorations as
described in Sections 2.5 and 5.3.2. For the pipelined version ADRESv1 the ModelSim
simulator is used, since it does not have the problems as in the previous version.

As depicted in Figure 4.3 Esterel parses the modules described in the XML architec-
ture file into the Esterel language [2], which is similar to the XML2VHDL parser. The
generated code consists of concurrent state machines communicating via synchronous
signals, with an interface to ANSI-C for data manipulation. The Esterel and ANSI-C
code are compiled together into one single, flattened state machine completely described
in C. After the compilation the Esterel simulator is obtained and is able to monitor the
inputs and outputs of the Esterel components. The switching activity obtained from the
nets is placed in a toggle data file, which is later transformed to PrimePower format.

The flow for the ModelSim simulator is shorter than that of Esterel and operates on
VHDL files instead of Esterel code. Compiling the VHDL files places the designs in a
library where the simulator will read from. After simulation and capturing the switching
activities from the nets a backward SAIF file is created to be read later by PrimePower
for power calculations.

4.2.1 Capturing Activity

Besides validation of the VHDL code another important feature of the Esterel and Mod-
elSim simulators is to obtain switching activity of the nets in the architecture.
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ModelSim utilizes the forward SAIF created in the synthesis flow to capture the
activities of the primary in- and outputs and other synthesis-invariant elements. For
ModelSim to be able to read the forward SAIF file a link between Synopsys files and
ModelSim is created by a DesignPower interface called DPFLI [42]. After simulation
the backward annotation file as depicted in Figure 4.3 is forwarded to PrimePower for
estimations. Figure 4.4 depicts an example how the activity of the nets are captured by
ModelSim. The simulator monitors the inputs and outputs of the FU, DRF and TRN
components as marked by the dashed lines. After simulation the obtained switching
activities are saved in the Toggle File and used for power estimations by PrimePower.

The activity values after ModelSim simulation consist of the time periods in logical
’0’, ’1’ and ’X’ (don’t care) state. The amount of glitches and toggling from 1 → 0 and
vice versa are also present in the backward SAIF file.
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Esterel captures the switching activities of the nets during simulation the same way as
depicted in Figure 4.4. After simulation the same kind of information should be created
as in the backward SAIF file for PrimePower to be able to work with. However, the
values during Esterel simulation can only be logically ones and zeros, while don’t care
states and glitches are not accounted for. Fortunately, simulations with the reference
version of ADRESv0 showed these values are minimally present and can be ignored at
this level.

Figure 4.5 depicts how Esterel saves the captured switching activity in the toggle
data file. The values time 0 and time 1 contain the number of cycles the signal was set
to logically zero and one, respectively. The values T01 and T10 contain the number of
0 → 1 and vice versa transitions, which are usually equivalent with a maximum difference
of 1. Based on these values the toggle rate, simulation period and static probability can
be determined for PrimePower. The static probability calculates the period the net was
set to logically one. It is required for statistical propagation when a interconnected signal
is not annotated.

The transformation to the set switching activity PrimePower command is required
to annotate the values properly on the gate level design in PrimePower as noted as well
in Figure 4.5.

set_switching_activity -toggle_rate (T01+T10) -period (time_0+time_1)*tclk_per
-static_probability (time_1/(time_0+time_1)) <signal_name>

….

Toggle Data: (0, 1, 0->1, 1->0)
<signal_name> time_0 time_1 T01 T10
….

PrimePower:

Esterel:

Figure 4.5: Transforming Esterel Toggle Data for PrimePower compatibility

With the Esterel methodology about 40 - 50% of the signals at RT-level are annotated
while the rest are outputs of individual registers. The outputs of the register files (where
the registers reside) are annotated by statistical propagation obtaining the full 100% of
annotation at RT-level. The signals that can not be annotated or propagated obtain a
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default value, which is higher than it should be after reviewing the PrimePower reports.
The differences between the Esterel and ModelSim simulation for power estimations

are noted in Table 4.1. The simulations are based on the ADRESv0 reference version
with a frequency of 100MHz.

Table 4.1: Differences between Esterel and ModelSim for ADRESv0
IDCT

VLIW only CGA
Simulator (mW) (mW)
ModelSim 46.5 59.16

Esterel 57.75 65.65
Difference 24.2% 10.9%

The empirical results based on an IDCT simulation on ADRESv0 show an overes-
timated offset of 11 - 24% when ran in CGA mode or VLIW mode only, respectively.
To keep maximum accuracy for power estimations with Esterel it is best to compile and
simulate the benchmarks on the CGA and not only on the VLIW section.

4.2.2 Power Estimation

Power calculation is performed by PrimePower of which the flow is depicted in Figure
4.6. The gate level design is read together with the physical TSMC libraries including
the memories. For power calculation all libraries are set to typical (25◦C, 1.0V supply
voltage) and linked together.

The toggle data file is read and annotated on the synthesized ADRES architecture.
PrimePower calculates the power estimated consumptions of all the components and
provides detailed reports of the static and dynamic power components. Static (or leak-
age) power is obtained from tables in the TSMC libraries where the value depends of the
input signals of a logic component. Dynamic power is calculated by the summation of
switching and internal power. The internal power is based on the toggle rate annotated
on the nets and calculated in a similar way as switching power. For this reason, only
the formula to calculate switching power is noted below. The total switching power is
calculated using the following formula.

Ptotal switching =
V 2

2
· f ·

∑
∀nets

αi · Cloadi

In the formula, αi describes the average switching activity per second for net i. It
is calculated by the summation of T01 and T10 (toggle rate) divided by the simulation
period. The T01 and T10 values are usually the same, hence the division by 2 in the
formula.

The capacitive value Cload can either be obtained from a Place&Route tool like En-
counter [15] or from a wire load model described in the libraries. Encounter obtains
the capacitance values after place&route, while the methodology with wire load models
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obtains the values from charts. This makes the wire load models less accurate as En-
counter, but it gives a simple and good overview for power. In the final version of the
created ADRESv1 architecture the capacitance values are obtained from Encounter as
will be presented in Chapter 6.

The supply voltage value V is set to 1V when the typical settings are utilized during
power calculations as is the case in this thesis. The frequency f is determined after
synthesizing the ADRES design.

4.3 Summary

For this thesis an analysis, simulation and synthesis flow was setup to validate the power
and performance optimizations applied to ADRES.

The synthesis flow synthesizes VHDL code into a front-end gate level design and
is utilized for power estimations. A place&route tool is also used for detailed routing
(back-end), but is only applied to the final ADRES architecture. Since routing of the
nets is done more accurately then with regular physical compilation the the capacitance
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and resister values are more reliable. This will create more accurate results during power
estimation.

The compiled-simulator of DRESC provides the performance results and simple ver-
ification. More detailed verification of the benchmarks on the ADRES architectures is
either done with the Esterel simulator or ModelSimv6.0a simulator.

Switching activity of the architecture nets is obtained at RT level to estimate power
by PrimePower. The Esterel simulator is utilized for the non-pipelined version ADRESv0
during the architectural explorations, while ModelSim is used for the pipelined version
ADRESv1 for obtaining switching activity files. The Esterel simulator has an overesti-
mated offset of 11% with the IDCT benchmark in CGA mode compared to ModelSim
simulation making it a good alternative for power estimation.

PrimePower reads in the switching activity file obtained from the benchmark simu-
lation and the gate level design after synthesis. Power is calculated based on these data
and 90nm TSMC technology.
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Optimization Techniques 5
Reducing power while maintaining performance is currently an important issue in
portable multi-media devices, since battery lifetimes can not keep up with today’s in-
creasing power consumptions of processors [8]. ADRES was designed to be power effi-
cient, however, additional optimization techniques could be applied. There are numerous
possibilities to reduce power and all are based on reducing Dynamic and Static power.
Dynamic power is created by signal changes on the architectural nets, while static power
depends on the physical characteristics of the design creating e.g. leakage. Static power
is always present whether the nets are switching or not.

Total Power = Dynamic Power + Static Power

Dynamic power is the largest component of total power with the assumption the
circuit is operational most of the time as is case with ADRES. When a design, however,
is idle for a long period of time dynamic power reduces and the gap between dynamic
and static power closes. Static power can become a significant component of total power
focussing power reduction techniques on this part.

Optimization techniques can either be implemented manually by adjusting the ar-
chitectural HDL code or automatically by tools on register transfer or gate level. Per-
formance relates to timing, while energy relates to power in addition to timing. In the
targeted application domain power is scares and has a higher optimization priority than
performance. The power optimizations could influence the performance results and have
to be investigated before implementing the optimizations.

This chapter starts by describing the components of power in an ADRES instance and
depicts what can be dynamically and statically optimized. These optimization types do
not refer to dynamic and static power. Dynamic optimizations are applied to the design
after it has been created. The dynamic optimization in this thesis consists of operand
isolation and clock gating modifying the VHDL code and/or utilizing Synopsys power
tools. Static optimizations are created during the design phase consisting of pipelining,
architectural modifications and memory segmentation. This thesis implemented the last
two static optimizations, however, pipelining was implemented in the latest ADRESv1
by IMEC employees. Each optimization will have its own improvement results where the
combination of the optimizations are implemented in the final design as noted in Chapter
6. The results in this chapter depend on the Artisan 90nm library used as selected in
Chapter 4.

5.1 Power Components

The dynamic power component consists of the first two terms in the formula below
[4]. The two terms are Switching and Internal power and are the two largest power

47
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components of ADRES during regular operation. Static power consists of the last two
terms in the formula, which are Leakage and Static power as is, consequently, the smallest
power component of ADRES.

Ptotal = α · 1
2
· C · V 2 · f︸ ︷︷ ︸

Switching

+ Ishort · V · f︸ ︷︷ ︸
Internal

+ Ileakage · V︸ ︷︷ ︸
Leakage

+ Istatic · V︸ ︷︷ ︸
Static

Switching power is represented in the first term where C is the capacitance of the
nets and connected components, f is the clock frequency, V is the supply voltage and
α is the switching activity factor, which is the amount of 0 → 1 and 1 → 0 transitions
in one clock period. According to Chen et al. [4] this is accounted for 70 - 90% of total
power. Internal power represented by the second term is caused by the short-circuit
current through the P and N type transistors and is between 10 and 30% of total power
consumption depending on the used library. Leakage power occurs when gate voltages
are just below the threshold value of the transistors and Static power is caused when the
circuit is not switching. Static power is also dissipated when current leaks between the
diffusion layers and the substrate of the circuit. For this reason, static power is often
called leakage power. The Synopsys tools use this terminology as well and will also be
used in this thesis. The leakage power accounts for 1 - 2% of total power. The power
figures for ADRES are a bit different where switching power is around 35%, internal
power is around 62% and the leakage power is 3% as depicted in Figure 5.1. This chart
is obtained after power estimation of the selected base architecture 4x4 reg con all with
Artisan 90nm Nominal Vt libraries (tsmc090nvt) as depicted in Figure 2.26. The total
power consumption and area are 80.45mW and 1.59mm2.

Internal Power
62%

Leakage Power
3%

Net switching Power
35%

Figure 5.1: Percentages Power Components 4x4 reg con all

Power reduction of a design can be done by modifying one of the four terms in
the formula e.g. switching power can be reduced by lowering the switching activity
factor (α). The capacitance is dependent on the design area and utilized technology
library. Lowering the capacitance usually requires minimizing the area by reducing the
sizes of the logic components. These components become slower and performance is
decreased. The same applies for voltage scaling increasing leakage, since the distance
between the gate level voltage and threshold values becomes smaller. Another possibility
for power reduction is to avoid the short-circuit in a circuit. Short-circuit occurs when
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input signals do not arrive simultaneously introducing a glitch at the output. Delay
balancing makes sure the input signals do arrive simultaneously avoiding glitches [25].
This can significantly reduce power, however, this method requires gate-level simulations
of ADRES, which was not possible (Section 3.1). The following chapter will therefore
only focus on reducing the switching activity.

ADRES has register files, functional units, multiplexors, interconnect networks and
memories all consuming power of which the distributions of total power are represented
in Figure 5.2 based on the base architecture.
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Figure 5.2: Power and Area distribution base architecture 4x4 reg con all @ 100MHz

The power chart in Figure 5.2(a) shows that the configuration memories (cu cga),
FUs and DRFs consume most of the power in the architecture. Interesting to note is the
low power consumption of less than 10% of the interconnections between modules as it
was assumed in a regular design to be 10 - 30% [26]. The array is larger than the DSP
processor design in [26] and not every FU of ADRES is always active. This results in
relatively lower switching activity and power consumption. The VLIW control unit and
predicate register files consume the least amount of power. As an optimization of the
PRFs they can be replaced by predicate busses to decrease, although not significantly,
area and power (Section 5.3.2).

The area chart in Figure 5.2(b) shows that the cu cga, FUs and DRFs require most
area. The area of the configuration memories have a fixed depth of 128 words during
the architectural explorations, however, the register files can be altered reducing area.
During the architectural modification we will investigate the effect of reducing the register
files size. The FUs in the base architecture are fixed as well, however, this might change
due to the optimizations implemented.

For power optimizations we focus on the configuration memories, functional units
and data register files. The size of the configuration memories is rather fixed depending
on the targeted applications, but by segmenting the memories power could be reduced
by disabling not used parts during operation as will be explained in Section 5.3.3. The
functional units can be improved by utilizing operand isolation, intrinsics and pipelin-
ing of which all require low-level modifications of the VHDL code. Operand isolation
reduces switching activity in the data paths. Intrinsics, however, are not available in the
benchmark applications FFT, IDCT and MPEG2 and are ignored as an optimization.
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Pipelining improves throughput of a design. The register files are optimized with clock
gating, which also reduces switching activity as with operand isolation.

5.2 Dynamic Optimizations

With dynamic optimizations the architecture is first created after which power and per-
formance results are obtained [11]. Based on these results logic is modified or added to
improve the results. The idea is to avoid unnecessary switching activity in components
when they are in a state of idleness for a certain period of time. Preventing switching
activity in components can be either done internally or externally. With internal pre-
vention signal changes at the input do not appear at the output of the components by
using e.g. blocking logic at the inputs or disabling clock inputs. Externally, the signal
changes at the output are prevented to propagate further on the data path. This can be
done with a multiplexor to select the proper output of the two components as depicted
in Figure 5.3.

Select = 1

B

A

Signals blocked

Q

MUL

ADD 0

1

Figure 5.3: Example of External Optimizations

Two dynamic optimizations are utilized to improve ADRES power consumption:
operand isolation and clock gating. Clock gating is a form of internal optimization,
since the clock input is blocked to avoid state change of the connected component like
a register. Operand isolation is a combination of internal and external optimizations
as the outputs are analyzed to determine when the respective component is idle after
which logic is added at its inputs to prevent signal propagation. The following subsection
describe these techniques in more detail.

5.2.1 Operand Isolation

Operand Isolation focuses on the combinatorial logic of the data path of a design to
avoid redundant computations. In an ALU there are several computational components
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(shifter, multiplier, adder, etc.) capable of operating in parallel while only one the out-
puts is required as selected by the output multiplexor. The unused outputs are blocked
by the output multiplexor, however, the inputs of all the computational components in
the ALU switch consuming unnecessary power. Operand isolation directs this problem
and reduces switching activity.

When focusing in more detail on the combinatorial data path of the ALU in
ADRESv1 there are five different operation groups as depicted in Figure 5.4 and can
also be found in Table 2.1. In this figure a Greater-Than (oGT) operation from the
ARITH 2 set is executed. Only the data inputs (data in 1 and data in 2) are connected
to this block, while the other inputs are kept silent by setting them to a fixed input
value, hence reducing switching activity.
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Figure 5.4: Operand Isolation

Isolation can be applied automatically utilizing Synopsys Power Compiler or man-
ually by describing it in the VHDL code. With automatic insertion the tool analyzes
the combinatorial data paths searching for observability don’t care (ODC) condition sets
[32]. The designer can also signal the tool where to apply operand isolation by using
the pragma keyword in VHDL. Optionally, the tool can utilize a Switching Activity In-
formation File (SAIF) as noted in Section 4.1 for better optimizations. Unfortunately,
automatic insertion creates pre-computation logic to control the isolation logic increas-
ing the area and delay. Since the instruction is already known at the moment the data
values arrive at the inputs, this is an unnecessary calculation. Manual insertion re-
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quires low level modification of the VHDL code. It operates in the same way as with
automatic insertion, but utilizes the operation type known prior to the start of the cal-
culations instead of the selection signal for the multiplexors. This is more efficient than
the pre-computation logic utilized by automatic insertion and relatively easy to program
in VHDL.

The isolation logic itself can be either done by AND/OR gates or latches. The former
forces the inputs to logical zero or one, respectively, when the components are idle making
it the simplest implementation. Latches keep their values and reduce power even with
one clock cycle. The AND/OR implementation requires multiple clock cycles to have
any power reduction as noted by Banerjee et al. [1] and Münch et al [33]. The latches
have the disadvantage of being more expensive in terms of area and power overhead
making the AND/OR-based implementation the most appropriate selection.

The results of applying operand isolation together with clock gating to the reference
version of ADRESv0 are located in Table 6.5. Automatic implementation of operand
isolation showed only a power reduction 1% in CGA mode even after applying the SAIF
file during synthesis. The power results with operand isolation were even worse than
without this feature. The reason was that Power Compiler was not capable of isolat-
ing all the data path input bits properly, which is avoided by manual implementation.
Therefore, with the latest version of ADRESv1 the manual approach is preferred by
setting the inputs of inoperable components to a fixed value. An OR-based isolation is
selected as it is most power efficient according to Münch et al. [33]. With ADRESv1
power was reduced by 30% in a single function unit and 30 - 40% in overall (Section 6.4.

5.2.2 Clock gating

Unlike operand isolation minimizing power in combinatorial circuits, clock gating focuses
on sequential components in a design disabling them when no value has to be written or
read. The only components in ADRES controlled by a clock are the registers files and
transition nodes (TRN) with a delay of 1 or more clock cycles.

An example of a register as it is implemented during synthesis is depicted in Figure
5.5(a). When the enable signal of the register is set to zero the value of the register is
rerouted through the multiplexor back to its input. Although the non-zero value of the
registers internal state is not changing the same value is loaded each time when the clock
is changing consuming power in the multiplexor, register and clock net. Additionally,
in pipelined designs clock trees with buffers are usually created to distribute the clock
and control the clock skew. Since the single clock net is connected to the vast amount
of buffers and registers it is highly loaded consuming a lot of power. Gating the clock
avoids the unnecessary switching of the registers and reduces the load on the clock as
depicted in Figure 5.5(b).

Utilizing the register file address and enable signals the clock gating control circuit
controls whether the clock is forwarded or not. Note that the clock is only connected to
the control circuit and not to all registers as with the traditional way. Clock gating also
has a positive effect on timing and area, since the multiplexor is removed. However, the
benefits are only present when applying clock gating to register banks of at least 3 bits
or more [42].
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Figure 5.5: Difference Between Traditional and Clock Gated Register

Applying clock gating on the data registers as noted in Section 6.1 proved to be very
effective on power with an average reduction of 50 - 80%. With the non-pipelined version
of ADRES the implementation was less effective due to the single clock architecture,
which was just between 6 - 8%. For ADRESv1, however, this resulted in a significant
power reduction of 20 - 25% (Section 6.3). The clock tree showed a reduction of 10% in
power due to the reduction in load of the design.

Clock gating can affect the testability of your design unless you add logic to enhance
testability [42]. A gated register cannot be included in a scan chain, because gating the
registers clock makes it uncontrollable for testing. Without the register in the scan chain,
test controllability is reduced at the register output and test observability is reduced at
the register input. If there are many gated registers, this can significantly reduce the
fault coverage of an ADRES instance. Fortunately, Synopsys Power Compiler provides
options to improve testability. Although the testability option is useful it was not the
focus of this thesis and is not used.

5.3 Static Optimizations

Static optimizations are determined during the coarse of development before actual re-
sults are obtained from the design. The designer applies the optimizations not only to
reduce power, but also to improve performance where dynamic optimizations primarily
reduce power only. The modifications are implemented on RT level, since it has to be
done manually in VHDL code.

Although several possibilities exist as noted by Hinrichs [11] only three techniques
are selected that could be successfully implemented: pipelining, architectural modification
and memory segmentation.

Pipelining is implemented to increase throughput with the same amount of energy
as without pipelining. Performance can be improved even more by utilizing intrinsics,
but is not utilized in the benchmark applications. These single cycle instructions are
implemented to enhance performance and reduce power consumption by collapsing in-
structions as is done with Pentium processors with MMX technology and DSPs.

The other two optimizations are architectural optimizations based on the base archi-
tecture of Section 2.5 and segmentation of the configuration memories. The architectural
optimizations looks at the possibilities of reducing area and power by sharing registers,
while maintaining performance. Also the local register file sizes are modified with the
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same objective. The memory segmentation option is implemented to reduce power, since
the memories consume a significant percentage of total power as shown in Figure 5.2(a).

5.3.1 Pipelining

The basic idea of pipelining is to increase throughput of a design by overlapping the
executing of multiple instructions each cycle (ILP). By dividing the single-cycle data
path into several stages the frequency and performance are increased, however, also
power. The power is even slightly higher, relatively, due to the overhead of registers and
control logic [10]. Energy, however, remains the same as with the non-pipelined version,
but with much higher throughput.

All the simulations of ADRESv0 are performed at 100MHz frequency as the designs
were synthesized. With a minimum of 5 stages ADRESv1 should be capable of 500MHz.
Unfortunately, due to the added logic, registers and delay in data memory interface this
is not possible unless more pipeline stages are added. Additional pipeline stages also in-
crease time when branches are miss predicted and the stages have to be flushed. Chapter
6 will note that the maximum clock frequency of the final architecture is about 250 -
350MHz depending on the architecture. 500MHz was the target frequency for ADRESv1,
however, due to interconnection and logic delays this was not possible resulting in the
lower frequencies.

Comparing the non-pipelined and pipelined power results is not fair, since the latter
is optimized at architectural level which reduced in power consumption. The modifica-
tions increased performance (MIPS/mW). In addition to this, the reference architectures
ADRESv0 and ADRESv1 in Section 6.2 are completely different of which the latter has
more resources. Performance of ADRESv1 is in the range of 15 - 20 MIPS/mW for IDCT
as will be noted in Chapter 6. To reach the target goal of 50 MOPS/mW in Figure 1.1
intrinsics have to be implemented resulting in speedups of more than 6× [9]. The bench-
mark applications do not use intrinsics, making it infeasible to reach the 50MOPS/mW
in this thesis.

With regular pipelining power increases linearly with frequency unless a power opti-
mization methodology e.g. operand isolation and clock gating is applied. Clock gating is
normally only addressed in the register files, but this can also be applied to the pipeline
registers. Individual figures are not available, but this method will be utilized in the
final architecture as selected in the next section.

Although beyond the scope of this thesis, another interesting optimization for future
implementation is noted by Jacobson [22] improving power with clock gating on trans-
parent pipelining. The registers of the pipelines are transparent by default meaning they
are only latched when data races have to be avoided and data values have to be sepa-
rated between adjacent stages. Based on a multiply/add-accumulate unit design power
reductions between 20 - 60% on top of regular clock gating are possible while maintaining
performance and clock frequency despite the cost of added control logic.

5.3.2 Architectural Modifications

The base architecture selected in Section 2.5 was the most optimal one in area vs.
performance, energy consumption and high performance for IDCT. The main difference
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with the other architectures was the diagonal connections between functional units and
local data register files. Without clock gating the power consumption of the local DRFs
with 16 registers each is about 15% of total power. The architecture has a local DRF
for each FU of which the DRFs are indirectly shared among diagonally, neighboring
FUs. Experiments by Kwok et al. [24] also prove that the size of the local DRFs can
be reduced significantly suggesting that the storage space is not utilized efficiently by
the scheduler. Since the writing of that paper the scheduler has been improved and the
results of Kwok et al. may not be correct for current version (DRESC2.0 and further).
That is why these experiments are repeated in the context of this work.

In addition to the reduction of sizes as an architecture modification, Bingfeng Mei [27]
suggests different interconnection topologies and replacing the local DRFs. Therefore,
we conduct a second architectural exploration in this section based on Bingfeng Mei’s
architecture suggestions followed by the reduction of the register file size on the selected
architecture to test Kwok’s assumptions. The architectural explorations are synthesized
at 100MHz as with the first exploration.

Interconnection Exploration There are two experiments suggested by Bingfeng
Mei: Distributing the local data register files and interconnection topologies. In total
there are 15 different architectures that will be used in the experiments. The names of
the architectures are quite long and are renamed in Table 5.1 for ease of discussion with
the results.

Table 5.1: Renaming Architectures of Second Exploration
Original Renamed
4x4 mesh plus arch 1
4x4 mesh plus pred bus arch 1 pred bus
4x4 reg con shared 2R 1W arch 2
4x4 reg con shared 2R 1W pred bus arch 2 pred bus
4x4 reg con shared 4R 2W arch 3
4x4 reg con shared 4R 2W pred bus arch 3 pred bus
4x4 reg con shared 8R 4W arch 4
4x4 reg con shared 8R 4W pred bus arch 4 pred bus
4x4 reg con all arch 5
4x4 reg con all pred bus arch 5 pred bus
4x4 reg con all mesh arch 6
4x4 reg con all mesh pred bus arch 6 pred bus
4x4 reg con all morphosys arch 7
4x4 reg con all morphosys pred bus arch 7 pred bus
4x4 reg con shared 2R 1W morphosys arch 8

The first experiment has a Mesh Plus architecture as basis while the local DRFs are
distributed over the array as depicted in Figure 5.6. The idea is to determine the impact
of creating a central storage location among four FUs (reg con shared) or even removing
the local DRFs completely (mesh plus). Notice the removal of the diagonal connections
between the first two rows in architecture reg con all in Figure 5.6 compared to the basis
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architecture in Figure 2.26. This is done to avoid connections from the second row FUs
with the global DRF, which was not the case for the basis architecture.
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Figure 5.6: Distributing the Local Data Register Files

The second experiment has the reg con all architecture as basis, while the horizontal
and vertical connections are modified: Mesh, Mesh Plus and Morphosys as depicted in
Figure 5.7. The last option is not tested in Section 2.5 and is based on the Morphosys
architecture as described by Singh et al. [40]. Note that the reg con all in Figure 5.6
and mesh plus in Figure 5.7 are similar and will only be depicted as 4x4 reg con all in
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the results.
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Figure 5.7: Interconnection Topologies

The architectures created in both experiments have local predicate register files or
predicate busses (noted with suffix pred bus). Since the predicates are only one bit wide
the replacement of the registers could have a positive effect on area and consequently
leakage, but do not have the capability to store values for later process. The effect of
replacing the local PRFs with busses is noted later in this section.

The results of Bingfeng Mei’s experiments are based on the same characteristics as
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the first architectural exploration as noted in Section 2.5.1. Again the np 1x1 reg is
depicted in the charts as a comparison, which is in terms in area and leakage most
optimal. MIPS/mW is also high, but with a drastic reduction in performance compared
to the other architectures.

The first ten bars (arch 1 to arch 5 pred bus) in the charts represent the distributed
register file experiment, while the others (arch 6 to arch 7 pred bus) are part of the
interconnection topology. The last bar is the select architecture with reduced register
sizes as explained later.

The architecture selected by the distribution of the local DRFs and interconnection
topologies experiments resulted in a power reduction of 24.5% and 27% for IDCT and
FFT, respectively. Energy was reduced by 25% and 22% for IDCT and FFT, respectively.
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Figure 5.8: Area of Second Architectural Exploration

Distributing Local Data Register Files Removing all the local DRFs as in
arch 1 result in lower power and low leakage, however, with bad performance. When
replacing the local PRFs with busses as well results in the highest energy consumption
of all architectures for FFT, since this application relies heavily on registers.

Sharing the registers can be considered as an additional interconnection between the
FUs with storage capabilities. By replacing four register files with one area and leakage
of the DRFs is reduced. Their number of ports are also varied from 1, 2 and 4 write ports.
Except for the FFT chart the shared register file with 1 write and 2 read ports (arch 2 )
is most optimal and is even better than the arch 5 architecture with fully distributed
local DRFs.

Interconnection Topology For the interconnection topology experiment (right
side of charts) it becomes immediately clear that more connections is better as noted
as well by Kwok et al. [24]. In general this is true and the effects of Morphosys have



5.3. STATIC OPTIMIZATIONS 59

0

1

1

2

2

3

np
_1

x1
_re

g

arc
h_

1

arc
h_

1_
pre

d_
bu

s

arc
h_

2

arc
h_

2_
pre

d_
bu

s

arc
h_

3

arc
h_

3_
pre

d_
bu

s

arc
h_

4

arc
h_

4_
pre

d_
bu

s

arc
h_

5

arc
h_

5_
pre

d_
bu

s

arc
h_

6

arc
h_

6_
pre

d_
bu

s

arc
h_

7

arc
h_

7_
pre

d_
bu

s

arc
h_

8

Le
ak

ag
e 

(m
W

)
Intercon. Misc.
Intercon. REGs.
Intercon. MUX
FU_VLIW
PRF_VLIW
DRF_VLIW
FU_CGA
PRF_CGA
DRF_CGA
VLIW_CU
CM

Figure 5.9: Leakage Power of Second Architectural Exploration @ 100MHz

become clear. Replacing the predicate register files with busses also have a positive effect
on performance and energy making the arch 7 pred bus the most optimal selection in the
interconnection topology experiment.
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Figure 5.10: IDCT Power consumption of Second Architectural Exploration @ 100MHz

Combining the two most optimal architectures of the previous paragraphs would re-
sult in an architecture with shared data register files, Morphosys connections and pred-
icate busses. The architecture arch 2 pred bus, arch 3 pred bus and arch 4 pred bus,
however, showed that the the predicate busses have a negative effect on energy and
performance. Therefore, the predicate register files are kept in the final architecture.
The results of the combination are depicted in the last bar in the charts marked as
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Figure 5.11: FFT Power consumption of Second Architectural Exploration @ 100MHz
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Figure 5.12: Energy consumption of Second Architectural Exploration @ 100MHz

arch 8. The architecture without the Morphosys option is minimally superior, however,
the connection is sustained in the 4x4 architecture for MPEG2 simulations due to the
higher load simulations and the 8x8 architecture for better routing. Figures 5.17 and
5.18 depict the energy-delay charts where arch 2 requires least amount of energy followed
by arch 8. Additionally, notice the large difference between arch 1 and arch 1 pred bus
for the FFT benchmark. It clearly shows the negative effect of predicate busses for
architectures without any local DRFs.

Table 5.2 shows the differences between the base architecture and arch 8. The figures
of arch 8 are all improved over the base architecture. Sharing the local DRFs reduces
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Figure 5.13: IDCT Performance of Second Architectural Exploration @ 100MHz
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Figure 5.14: FFT Performance of Second Architectural Exploration @ 100MHz

area as well by 14.4%. The energy consumption of the architectures are almost the same,
which is caused by the increased number of cycles with arch 8. Power consumption,
however, is reduced by 22% proving the effectiveness in power and performance for this
architecture. It is merged with the optimizations as explained in this chapter into the
final architecture. The results of that architecture will be provided in Chapter 6.
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Figure 5.15: Area vs. Performance of Second Architectural Exploration @ 100MHz
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Figure 5.16: Power vs. Frequency of Second Architectural Exploration @ 100MHz

Register File Size Modifications To validate the proposed register file reductions
by Kwok et al. [24] similar experiments are performed on the architecture selected in the
previous paragraph. The depth of the local PRFs is equal to that of the data register
files. Due to Esterel simulator restrictions the size of the global DRF is fixed to 64
registers. The empirical results we obtained after IDCT and FFT simulations are placed
in Table 5.3.

Looking at the number of instructions, cycles and IPC for both IDCT and FFT in
Table 5.3 the optimal number of register is 4 for a 4x4 architecture as marked in the red
shaded column. The results in the first column (2 registers) show an increase of cycles
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Figure 5.17: IDCT Energy-Delay of Second Architectural Exploration @ 100MHz
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Figure 5.18: FFT Energy-Delay of Second Architectural Exploration @ 100MHz

and instructions and a decrease of the IPC. Increasing the amount of registers showed no
improvements. Kwok et al. concluded that the local register files obtain optimal results
with just 1 or 2 registers. Although these tests are not as elaborate as Kwok’s method
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Table 5.2: Differences between 4x4 reg con all and arch 8 for IDCT and FFT
MIPS/mW mW/MHz Power Energy Area

Benchmark (mW) (uJ) mm2

IDCT
4x4 reg con all 17.51 0.81 80.45 37.72 1.59

arch 8 20.00 0.63 62.68 37.46 1.36
Improvement 14.22% 22% 22% 0.6% 14.4%

FFT
4x4 reg con all 9.40 0.72 73.28 0.62

arch 8 10.95 0.57 57.05 0.61
Improvement 16.5% 20.8% 22.1% 1.6%

Table 5.3: Reducing Register File Size arch 8
Local Register File Size

Application 2 4 8 16
IDCT
Instructions 974632 923940 923980 923960

Cycles 62924 59755 59762 59757
IPC 9.69 10.21 10.21 10.21

FFT
Instructions 11364 10532 11040 11060

Cycles 1087 1035 1063 1065
IPC 2.48 2.73 2.57 2.58

it proves that the scheduler has improved over time. However, the number of registers
in the register files is surprisingly low. For an 8x8 architecture it is suggested only to
utilize 1 register, however, the same amount of 4 is utilized assuming this provides better
results. The registers that are not utilized will not switch due to the clock gating feature.

5.3.3 Memory Segmentation

The configuration memories consume about 35 - 40% of the total power. This is quite sig-
nificant, however, with a simple adjustment power can be reduced according to Gadelrab
et al. [7]. The idea is to segment the single port configuration memories rowwise in equal
sizes as depicted in Figure 5.19. By disabling all the sections that are not active only the
section being accessed would consume power. This method has advantages for ADRES
due to the principles of modulo scheduling applied where a loop iterates through a range
of words (II) in the memories for the duration of the number of loop iterations. If the II
of a loop is low enough only one segment would be active while the others are inactive.

The outputs of the sections have to be connected to the data output bus by a multi-
plexor as depicted in Figure 5.19. The size of the multiplexor depends on the number of
memory sections connected to it. When the amount of memory sections double, so does
the size of the multiplexor. Power reduction is therefore dependent on the combined
power of the memory sections, multiplexors and additional logic until a point is reached
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where no more reduction is possible due to the additional circuitry.
A total of three configurations 8, 16 and 32kB memory sizes are created, which

are 128wx64b, 128wx128b and 256wx128b, respectively. Each memory is segmented
in 2, 4 and 8 sections in which a binary file is loaded. This binary file is used to
load the configuration memories for the MPEG2 application and has 53 lines. Since the
configuration memories are written once and read multiple times during CGA execution,
the simulation is constructed in the same way. Though the configurations are capable
of frequencies around 500MHz, the utilized simulation frequency is 250MHz to avoid
potential timing violations. The results of the gate-level simulations at this frequency
are depicted in Figure 5.20. Note that a write operation always requires more power
compared to a read operation, since the written data is always forwarded (write-through)
to the output port in the next clock cycle consuming power as well.

As expected, area and delay increase as noted in Figure 5.20 when splitting up the
memories due to the additional logic, multiplexors and column/row decoders. For area
this can be as high as 200% and 15% for delay when segmenting the memory in 8 parts.
Splitting up the memories in 2 and 4 sections themselves always reduce power for both
read and write operations as depicted in Figure 5.20(b). With small memories these
power savings are canceled due to the power consumption of the additional logic as de-
picted in Figure 5.20(c). Since the selected memories in Section 6.1 are already power
optimized segmentation of the small memory sizes do not give any improvements un-
like with bigger memories as the 256wx128b. With 4 segments read and write power
reduction is 28% and 23%, respectively, with an area increase of 89%. This area in-
crease is significant and an intermediate solution would be more proper. Partitioning
the 256wx128b into 2 segments gives a power reduction of 28% for a read and 18% for
a write operation at the cost of 27% increase in area.

The configuration memories have 128 words for a 4x4 ADRES instance, which is
sufficient for MPEG2 simulations. Memory segmentation is therefore not required in this
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instance. The successor standard of MPEG2 for verification of ADRESv1 is MPEG4 AVC
H.264 requiring at least 256 words in total, which would make the optimizations valuable.
The same idea can also be applied to the instruction cache and data memory interface
each having at least 512 words. Looking at Figure 5.20(a) the maximum frequency when
segmenting the memory in 2 part is around 500MHz. This is well above the maximum
frequency (312MHz) of the final architecture of ADRESv1 as will be noted in Section
6.5.

5.4 Summary

Power consists of dynamic and static components. The dynamic power component is
important when ADRES is operational most of the time. The static power component
becomes important if the chip is idle most of the time. In this thesis only the dynamic
power component of ADRES is considered.

Dynamic optimizations are applied after the design phase, which are operand isolation
and clock gating reducing switching activity. Operand isolation focusses on the data path
of a functional unit and resulted in power reductions of 30 - 50%. Clock gating focusses
on the clock signal and the registers connected to it. The load on the clock net is reduced
and unnecessary switching of the registers is avoided. Power reductions of 20 - 25% were
obtained.

Static optimizations are applied during the design phase, which are pipelining, archi-
tectural modifications and memory segmentation of the configuration memories. Pipelin-
ing improves throughput of a design while maintaining the energy level compared to non-
pipelining. The architectural modifications changed the distribution of the local register
files by sharing them among four diagonally neighboring FUs. Power reductions of 22%,
performance increase of 14 - 16% and area reduction of 14.4% are obtained compared
to the base architecture. Memory Segmentation splits up the configuration memories in
a rowwise fashion. Advantages are only noticeable with 256wx128b or larger sizes into
two sections resulting in power reductions of 18 - 28% for a write and read operation,
respectively. Area of the memory is increased by 27%.

The improvements on the dynamic power component proved to have significant ad-
vantages. They are applied to the base ADRES instance with minimum penalty in
performance. Pipelining and the architectural modifications will increase performance
even further when applied in the final architecture.
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Detailed Architecture Results 6
The dynamic and static optimization techniques described in Chapter 5 resulted in rea-
sonable improvements in both power and performance. The dynamic optimizations e.g.
operand isolation and clock gating were verified on two operational reference versions: the
non-pipelined (ADRESv0) and pipelined (ADRESv1) versions. The static optimizations,
architectural explorations and memory segmentation, were either evaluated individually
or compared to the base architecture as selected in Section 2.5.

The architecture as selected in Section 5.3.2 is to be augmented with the optimization
techniques providing the final power and performance results. The architectures during
the coarse of the project are used as ”milestones” to note the improvements obtained
with the optimizations.

All the synthesis and power results are based on 90nm TSMC technology of which
the appropriate library has to be selected based on power and performance. The two
libraries available are from Artisan and Synopsys.

This chapter starts by selecting the appropriate 90nm TSMC library used for synthe-
sis and power estimations. Next, the reference architectures and benchmark applications
are briefly described. The results of clock gating and operand isolation implementation
are depicted based on the reference architectures. The optimizations in Chapter 5 are
merged together creating the final architecture for the ADRES core as noted in Section
6.5. In addition, based on data sheets of memories and the results of the final ADRES
core power estimations are made for an ADRES processor consisting out of the ADRES
core, data memory interface and the instruction cache. Finally, a comparison is made
with a scalable VLIW.

6.1 Library Selection

Both the synthesis and simulation flows are dependent on 90nm TSMC libraries. There
were two vendors available to select from: Artisan (CLN90G) [13] and Synopsys
(tcbn90ghpnvt) [19]. Based on power and performance a selection between these has
to be made.

As depicted in Figure 5.2(a) the configuration memories, register files and functional
units consume most power. Therefore, these three components are used for library
selection where timing also has to be considered.

6.1.1 Configuration Memories

The configuration memories can be implemented by Artisan CLN 90nm generated macro
single-port register files, SRAMs and synthesized RFs of which the latter is synthesized
from Artisan standard cells. The Synopsys libraries do not have generated macro register

69
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file, but only standard cell libraries. In this section we only focus on Artisan libraries.
The generated macro SRAMs have a minimum depth of 256 words, while only 128 are
required for our benchmark applications. The SRAM application notes also revealed
that the SRAMs require more power and area compared to macro RFs. Since we want
to reduce power consumption as much as possible we don’t have to consider the SRAMs.

The synthesized RFs are more flexible in bit width, but the macro RFs are opti-
mized by the vendor for power and performance compared to what can be created by
synthesizing the RFs. Area, timing and power charts are created based on a variety of
bit widths as depicted in Figure 6.1 for only the generated and synthesized register files.
The register files are generate/synthesized at a frequency of 500MHz. The power and
performance figures in the Artisan data sheets are confidential, hence no absolute values
can be printed in this thesis. Instead, the differences relative to the generated macro
RFs are depicted in Figure 6.1.

The area and power charts show that the synthesized register files differ between 200
- 1100% compared to the macro RFs. Especially with large RF sizes the advantage of the
macro RFs is noticable. Comparing the read and write operations in Figure 6.1(c) show
that a write operation relative consumes more power than a read, however, this changes
when the bit width of the register file increase above 32 bits. The synthesized register
files showed better results with these sizes. This can also be noticed in the timing chart
in Figure 6.1(b) where the synthesized RFs obtained better timing results with a bit
width of 64 bits.

Except for timing the macro RFs are superior in both area and power. However,
the largest generated RF (256wx128b) is able to operate at 500MHz. With this high
frequency timing is not a problem in an ADRES instance. Based on power and area the
Artisan macro RFs are the most optimal selection to be utilized for the configuration
memories.

6.1.2 Register Files

The register files consume about 28 - 30% of total power according to Figure 5.2(a).
These have multiple ports ranging from 3 to 12 ports with a ratio of 2:1 for read and write
ports. The multi port register files are synthesized with standard cells. The empirical
experiments are based on the same methodology as utilized by Raghavan et al. [35].
The registers are all synthesized for the same clock frequency of 100MHz, which was the
target frequency for the non-pipelined version of ADRES at that moment. Frequencies
of 400 - 500MHz, however, are also possible for register files with 12 ports and 64 register
words.

The predicate and data register files can be divided in VLIW and CGA sections and
synthesized with or without clock gating. Since clock gating is to be utilized anyway the
selection for the register files are based on the synthesis results with clock gating. Section
5.2.2 mentions this feature has no advantage when bus widths are 3 bits or smaller, hence
the results of the PRFs are omitted.

Two different gate-level simulations are performed on the DRFs of which testbench1
(TB1) accesses all ports with a write and read operation, while TB2 only accesses the
first port of the register file. All the results are depicted in Appendix E due to vast
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Figure 6.1: Register File Type selection for Configuration Memories

amount of data obtained, but some of those figures based on TB2 are depicted in this
section. A positive value in the chart is in favor of Artisan, while a negative value is in
favor for Synopsis libraries.

The write and read results for the CGA DRFs as depicted in Figure 6.2 show that
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Artisan is only optimal for write operations. A write operation is also an asynchronous
read as with the macro RFs in Section 6.1.1. That makes the write power value larger
than a read focussing our attention at the write results. Although not shown in this
section, the VLIW DRFs with the Synopsys libraries are most optimal for six or more
ports, which is usually the case for an ADRES instance.
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Figure 6.2: CGA DRF differences between Synposis vs. Artisan for when accessing first
port only

The leakage and timing results in Figures 6.3(a) and 6.3(b) show that Artisan has
less leakage (10 - 30%) than Synopsys, but are slower as well (20 - 40%). Similar results
can be found for the VLIW DRF, however, with 6 or more ports the leakage power is
also in favor for Synopsys.
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Figure 6.3: CGA DRF differences between Synposis vs. Artisan

Based on the results the Synopsys libraries are preferred for both timing and leakage
power, while Artisan libraries are preferred for dynamic power of write operations. The
power values of the Synopsys libraries were not complete, which made the libraries
questionable. Since I wanted to have reliable figures, I selected the Artisan libraries
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for the architectural explorations with ADRESv0. The Synopsys libraries are selected
for ADRESv1, since maximum performance was preferred by IMEC/DESICS for this
instance.

The libraries are selected with clock gating already implemented. However, it is
interesting to know what the maximum power reduction is compared to a design without
clock gating. The maximum power reduction is obtained when accessing one port (TB2)
only. A write operation consumes more power than a read operation as noted earlier
and it is interesting to depict what the maximum power reduction could be (Figure 6.4).
The read operation and leakage are added as well for comparison in Figures 6.5 and 6.6.
The synthesis results are based on Synopsys standard cell libraries.
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Figure 6.4: Write power reduction with clock gating for VLIW DRF
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Figure 6.5: Read power reduction with clock gating for VLIW DRF

A write operation can be reduced in power as high as 80% when the register file
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Figure 6.6: Leakage power reduction with clock gating for VLIW DRF

has between 32 and 64 words. For a read operation power reduction is negligible or
even negative. Unlike a write operation, a read operation is not clocked, discarding the
clock gating feature. Figure 6.6 depicts the leakage reductions, which is negative due to
the added control logic. This was not expected, since area is reduced by removing the
multiplexors as noted in Section 5.2.2. The control logic became larger than the removed
multiplexors. Nevertheless, clock gating is proved to be a good dynamic optimization
technique.

6.1.3 Functional Units

Without any optimizations the functional units consume about 22 - 27% of the total
power as depicted in Figure 5.2(a). When the register files are clock gated reducing their
power consumption, this percentage will only increase. To counter act this effect operand
isolation as described in Section 5.2.1 is implemented in the pipelined functional unit
of ADRESv1. The selection of the library utilized for the functional units is based on
empirical results of the non-pipelined version at a frequency of 250MHz. The optimized,
pipelined version was not available at the moment of selection, but became available
later in the project. The pipelined FU is synthesized at 250MHz and compared with the
non-pipelined FU.

The results of the non-pipelined FU’s instructions for total and leakage power are
depicted in Figures 6.7(a) and 6.7(b), respectively. Both libraries have similar values
for total power except for the multiplication and (N)XOR operations, which are almost
double compared to Synopsys. On the other hand, Artisan has less leakage compared to
Synsopsys. Considering Figure 6.8 depicts the glitch power of the ALU in the CGA FU.
The glitch values of Synopsys are completely zero, which is not expected. The reason
could be the same as with the register files: incomplete Synopsys libraries. Therefore,
the Artisan libraries are selected for reliability reasons, but the Synsopsys libraries are
selected for maximum performance in ADRESv1.
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Figure 6.7: Power Results of Instructions for non-pipelined Functional Unit in CGA
Section

Operand isolation is only implemented in ADRESv1, since this feature reduces power
significantly in a multi-cycle design as with pipelining. The effect is less with ADRESv0
as noted in Section 5.2.1, but also it was more convenient to implement in the optimized
ALU. Figures 6.9(a) and 6.9(b) show the total and leakage power consumptions of the
functional unit with and without operand isolation.

Additionally, notice the large power reduction between Figures 6.7(a) and 6.9(a),
which can be as high as 60%. Operand isolation reduces power consumption of individual
instructions and leakage power. As noted in Section 5.1 true leakage occurs when gate
voltages are just below threshold values. Since OR gate implementation is utilized the
gate voltages are always above the threshold values reducing leakage by 3% as depicted
in Figure 6.9(b). Total power is slightly reduced for the individual instructions, but
significant advantages require multiple cycles. Empirical tests with sequential execution
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Figure 6.8: Glitch Power of a non-pipelined ALU in the CGA FU

of several CGA instructions showed a decrease of power in the FUs of about 30% with
just an area increase of 6% as noted in Table 6.1, which is quite promising.

Table 6.1: CGA FU Area Results between with and without Operand Isolation with
Synopsys Libraries

Without OI With OI
FU CGA 1296.89 1224.22
ALU 35985.55 38537.60
Miscellaneous 8713.45 8959.86
Total 45995.89 48721.68

Synthesis results showed a timing penalty of 60 - 70 pico seconds in the FU due to
the additional logic for operand isolation. The overall power reduction with operand
isolation will be noted in Section 6.4.

6.2 Verification Environment

The optimization techniques explained in Chapter 5 had to be validated on functional
operating architectures. The two architecture reference versions of ADRES are described
that were utilized for verification of the optimization techniques. Additionally, the bench-
mark applications are described briefly as well.

6.2.1 Reference Architectures

ADRESv0 had an array size of 3x4 and was the first demo architecture for a proof-of-
concept as depicted in Figure 6.2.1. This single cycle architecture consisted out of 3
rows and 4 columns of which FU2 was a load unit and FU3 a store unit, while FU0

controlled the array with the CGA command and was able to perform branches. The
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Figure 6.9: Power Results of Instructions for pipelined CGA FU

performance at 100MHz was not significantly high due to the lack LD/ST units, but
sufficed to execute applications like MPEG2 and IDCT.

The next version ADRESv1 was the first pipelined version with multiple LD/ST
units in an array of 4x4 elements. The architecture is similar to the one in Figure 2.2(a),
however, the architecture was constructed differently for debugging reasons. The VLIW
and CGA views where now completely separated from each other, however, connections
still existed between the VLIW and CGA views. Figure 6.2.1 depicts how this version was
constructed, basically. It has 3 VLIW FUs in the VLIW section of which two have LD/ST
capabilities. VLIW FU0 is capable of control instructions and branches. In the array
itself there are four LD/ST units and connected to the DMEM. This increased bandwidth
significantly compared to ADRESv0 and was tested with the MPEG2 benchmar. The
array does not contain predicate registers, but predicate busses instead. Additionally,
all FUs have connections to the VLIW DRF through registers. This array is utilized for
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Figure 6.10: ADRESv0 version for proof-of-concept

validation of clock gating in Section 6.3.
During the coarse of the project the ADRESv1 was modified by registering the out-

puts of the local DRFs. The ALU in the FUs of this instance was also improved by
rewriting the entire VHDL code. The performance was not improved by registering
the DRFs output, but was compensated by the optimization techniques and the new
ALU. This resulted in a synthesized architecture with a maximum frequency of 370MHz.
Power estimation, however, were determined at 500MHz. This was originally the target
frequency and requested by IMEC DESICS department. This ’pipelined CGA’ architec-
ture is utilized for validation of operand isolation.

6.2.2 Benchmark Applications

The applications used for verification are Fast Fourier Transformation [34], Inverse Dis-
crete Cosine Transformation [5] and MPEG2 [21]. Detailed explanation of the code
is beyond the scope of this thesis, but the algorithm documentation provide extensive
information.

The FFT application is based on radix-4 operating on 1024 samples. IDCT operates
on 396 macro blocks with a size of 8x8, which is utilized in the MPEG2 algorithm.
The MPEG2 algorithm itself starts by decoding an I-frame followed by either a B or
P-frame with a resolution of 176x144 pixels. The I-frame has more IDCT operations
and less motion compensation, while the second frame has less IDCT and more motion
compensation [21]. In the simulations only the first two frames are decoded to obtain
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Figure 6.11: ADRESv1 version

switching activity, however, more frames should be decoded to get more reliable power
figures. To validate the expected outcome of the power results we compared two frames
with each other in terms of power. The power figures of the two frames are from the
ADRESv1 version.

Table 6.2: MPEG2 Frame Power Results
Cycles Power (mW)

Frame 1 2659169 76.04
Frame 2 3624528 78.38

The results have an offset of 3% showing that the power consumption is more or less
reliable for MPEG2. Decoding the I-frame take about 2.6 million cycles compared to
the 1 million cycles for the second frame. Although the power consumptions are similar,
energy consumption for the first frame is twice as high as that of the second frame. For
even more accurate power figures, more frames should be simulated.
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6.3 Clock Gating Results

Clock gating is implemented in ADRESv0 and v1 during synthesis by the Synopsys tools
as depicted in the synthesis flow of Figure 4.2. The IDCT application is simulated on
both architectures, while MPEG2 is only simulated on ADRESv1. Tables 6.3 and 6.4
depict the results for ADRESv0 and ADRESv1, respectively. The FFT results are not
provided, since the benchmark did not work properly on the reference architectures.
Reliable results are required for validation of clock gating and are therefore omitted.
The clock gating results are compared to the not-optimized versions. Note that the
amount of IDCT data with ADRESv1 simulation is larger than ADRESv0 enlarging
energy consumptions, relatively.

Table 6.3 show a total power reduction of about 6% for ADRESv0, while leakage
power has increased by 4% due to the additional logic. With the same MIPS and
frequency values the MIPS/mW and nW/MHz improved as well as with 6%.

Table 6.3: Clock Gating improvements for ADRESv0
ADRESv0 Total Leakage MIPS MIPS/mW mW/MHz

Power Energy Power Energy
(mW) (uJ) (mW) (uJ)

IDCT
No opt. 59.16 2.80 2.29 0.108 643 10.87 0.59

Clock Gating 55.66 2.63 2.38 0.112 643 11.55 0.55
Improvement 5.9% 5.9% -4.0% -4.0% 0% 5.9% 5.9%

The results of clock gating with ADRESv1 showed a significant reduction in power
and energy of 14 - 21% for IDCT and MPEG2, respectively. The leakage power, showed
an increase of 13.3%, which is due to the additional logic as with ADRESv0. Additionally,
MIPS values remained the same and resulted in higher MIPS/mW and mW/MHz values.
Comparing the MIPS values of ADRESv0 and ADRESv1 (although not quite fair as
noted in Section 5.3.1) shows an increase of about 750%, which is significant. This is not
only due to pipelining, but also because of more resources in the ADRESv1 reference
architecture.

For correct arrival of the clock signal in a chip of the pipelined design, ADRESv1 has
a clock tree implemented. Power consumption of the clock tree is about 6 - 15% of total
power for IDCT and MPEG2, respectively. Table 6.4 shows that clock gating reduces
power of the clock tree by 10%, which is due to the reduction of the load on the clock
tree.

Comparing the Tables 6.3 and 6.3 show that clock gating has large advantages with
a multi-cycle than with a single-cycle architecture. In addition, the timing reports did
not show any significant timing penalties in the clock gated design.

6.4 Operand Isolation Results

Operand isolation is automatically inserted in ADRESv0 by the synthesis tools, while
this is done manually in ADRESv1 as noted in Section 5.2.1. During the coarse of the
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Table 6.4: Clock Gating improvements for ADRESv1
ADRESv1 Total Leakage MIPS MIPS/mW mW/MHz

Power Energy Power Energy
(mW) (uJ) (mW) (uJ)

IDCT
No opt. 373 45.18 3.171 0.38 5458.71 14.63 0.75

Clock Gating 319.9 38.75 3.59 0.43 5458.71 17.06 0.64
Improvement 14.24% 14.24% -13.21% -13.21% 0% 16.6% 14.24%
MPEG2

No opt. 166.1 1082.72 3.173 20.48 1066.27 6.42 0.33
Clock Gating 131.1 854.59 3.596 23.44 1066.27 8.13 0.26
Improvement 21.07% 21.07% -13.33% -13.33% 0% 26.6% 21.07%
Clock Tree

No opt. 21.39 0.015
Clock Gating 19.21 0.045
Improvement 10.19% -205.46%

thesis clock gating was first implemented and then operand isolation together with clock
gating. Therefore, the clock gated architectures in the previous section are utilized as
reference.

Tables 6.5 and 6.6 note the results of operand isolation combined with clock gating
for ADRESv0 and ADRESv1, respectively, compared to the architectures with only
clock gating. For completeness, we also compare with the original architecture in the
tables. All architecture are simulated at 500MHz for power estimations. Again, the
IDCT application is simulated on both architectures, while MPEG2 is only simulated
on ADRESv1. FFT did not work properly on the reference architectures.

Considering Table 6.5, operand isolation only has a positive effect when compared
to the original architecture. When comparing with clock gating alone it does not have
any positive effect for a non-pipelined architecture with automatic insertion of operand
isolation. When comparing the figures with the original version in Table 6.3 there is
an improvement of 1% only. The figures in Table 6.5 prove that automatic insertion of
operand isolation should be avoided.

As noted in Section 6.2.1 the architecture of ADRESv1 was modified as well as its
ALU. This enhanced version is utilized for implementation of operand isolation. The
results noted in Table 6.6 show power improvements of 30 - 40% when compared to
clock gating and even 40 - 52.8% when compared to the original architecture. Due to
the additional registers in the array the performance (MIPS) reduced by 19 - 26%. The
operand isolation and clock gating features reduced power by 30 - 40%. Combining the
performance and power consumption results actually increased MIPS/mW by 4 - 35%
when compared to the architecture with only clock gating. The modified architecture
also has a positive effect on the mW/MHz by 29 - 51% reduction and the clock tree
power reducing by 25 - 33%.

As expected, the leakage power is increased due to additional logic. Compared to the
original architecture leakage has increased by 13.45%, however, clock gating and operand
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Table 6.5: Operand Isolation + Clock Gating Improvements for ADRESv0
ADRESv0 Total Leakage MIPS MIPS/mW mW/MHz

Power Energy Power Energy
(mW) (uJ) (mW) (uJ)

IDCT
No opt. 59.16 2.80 2.29 0.108 643 10.87 0.59

Clk Gating + OI 58.45 2.76 2.45 0.115 643 11 0.58
Improvement 1.2% 1.2% -7.0% -6.5% 0% 1.2% 1.2%

IDCT
Clock Gating 55.66 2.63 2.38 0.112 643 11.55 0.55

Clk Gating + OI 58.45 2.76 2.45 0.115 643 11 0.58
Improvement -5% -5% -2.9% -2.9% 0% -5% -5%

isolation target reduction of switching power and not leakage power.

Table 6.6: Operand Isolation + Clock Gating Improvements for ADRESv1
ADRESv1 Total Leakage MIPS MIPS/mW mW/MHz

Power Energy Power Energy
(mW) (uJ) (mW) (uJ)

IDCT
No opt. 373 45.18 3.171 0.38 5458.71 14.63 0.75

Clk Gating + OI 226.2 35.86 3.591 0.57 4009.99 17.72 0.45
Improvement 39.36% 20.6% -13.25% -50.00% -26.54% 21.12% 40%

IDCT
Clock Gating 319.9 38.75 3.59 0.43 5458.71 17.06 0.64

Clk Gating + OI 226.2 35.86 3.591 0.57 4009.99 17.72 0.45
Improvement 29.29% 7.45% -0.03% -30.92% -26.54% 3.87% 29.7%

MPEG2
No opt. 166.1 1082.72 3.173 20.48 1066.27 6.42 0.33

Clk Gating + OI 78.38 568.18 3.6 26.10 860.51 10.98 0.16
Improvement 52.81% 47.52% -13.46% -27.44% -19.30% 71.03% 51.52%

MPEG2
Clock Gating 131.10 854.59 3.596 23.44 1066.27 8.13 0.26

Clk Gating + OI 78.38 568.18 3.600 26.10 860.51 10.98 0.16
Improvement 40.21% 38.06% -0.11% -11.35% -19.30% 35.06% 38.46%

Clock Tree
No opt. 21.39 0.015

Clk Gating + OI 14.34 0.01023
Improvement 32.96% -31.80%

Clock Tree
Clock Gating 19.21 0.045

Clk Gating + OI 14.34 0.01023
Improvement 25.35% 77.31%
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The combination of clock gating and operand isolation proved to enhance power
results by 39 - 53% for a pipelined design compared to the original architecture of
ADRESv1. As noted earlier power estimations are performed at 500MHz. However, the
actual frequency obtained after synthesis decreased from 370MHz (2.70nsec) to 340MHz
(2,94nsec) due to the added blocking logic in the data path.

6.5 Milestone Architectures

The ADRES instances selected during the architectural explorations and modifications
are considered as milestones of which the results are depicted in this section. The
first architecture is the base architecture 4x4 reg con all selected in Section 2.5 with
an array size of 4x4. Next, is 4x4 reg con shared morhposys 64G 16L in Section 5.3.2
with the shared register files among the functional units (4x4 reg con shared), the Mor-
phosys option (morphosys) as depicted in Figure 2.14 and with 64 registers for the
global DRF (64G) and 16 for the local DRFs (16L). In the same section the number
of registers of the local RFs are reduced from 16 to 4 of which the results are noted
by 4x4 reg con shared morhposys 64G 4L. These non-pipelined architectures were com-
pliant with DRESC2.0 of which switching activity for power calculations is obtained by
the Esterel methodology as explained in Section 4.2.

The dynamic and static optimizations described in Chapter 5 are implemented in the
lastly named architecture, compliant with DRESC2.4 and simulated with the ModelSim
v6.0a simulator. For this final step three array dimensions are created: 2x2, 4x4 and
8x8. The architectures in the text are called 2x2 final, 4x4 final, 8x8 final for ease of
discussion and are all pipelined. The maximum clock frequencies for these architectures
are 322, 312 and 294MHz, respectively. A total overview of the frequencies is noted in
Table 6.7.

Table 6.7: Milestones Frequencies
Architecture Frequency (MHz)
4x4 reg con all 100
4x4 reg con shared morhposys 64G 16L 100
4x4 reg con shared morhposys 64G 4L 100
4x4 reg con shared morhposys 64G 4L final 312
2x2 reg con shared morhposys 64G 4L final 322
8x8 reg con shared morhposys 64G 4L final 294

Memory segmentation did not provide improvements for memory sizes less than 256
words as already noted in Section 5.3.3. The 2x2 array, however, has less resources for
scheduling increasing the initiation interval (II) to 223 configuration lines for MPEG2
justifying segmentation.

6.5.1 Results

The area results of the architectures are depicted in Figure 6.5.1. Starting from
4x4 reg con all the areas of the local DRFS are reduced and are hardly noticeable in
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the 4x4 reg con shared morhposys 64G 4L architecture. The areas of the FUs in the
final architectures are larger than those of the non-pipelined versions. This was ex-
pected, since the improved FU in Table 6.1 showed an increase of area due to pipelining
and operand isolation. The 8x8 architecture requires a large amount of area for the
configuration memories and CGA FUs.
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Figure 6.12: Milestones Area

Comparing the area results with leakage power as depicted in Figure 6.13 we see there
is consistency between the two charts, except for 4x4 reg con shared morhposys 64G 4L.
Normally, leakage power is equivalent to area as Figures 2.15 and 2.16 depict. This is
caused by bad results of the synthesis tool. The pipelined designs show an increase of
leakage power in the FUs due to operand isolation logic compared to the non-pipelined
designs. The np 1x1 reg requires less area and less leakage, however, 2x2 final is also a
good choice.

In this section the IDCT results are utilized for discussion, while the results of the
FFT and MPEG2 benchmarks can be found in Appendix G.

The power results in Figure 6.14 show a gradual decrease in power for the first three
4x4 architectures after which power increases due to the higher clock frequencies. Power
consumed by the local DRFs is reduced due to the small register file sizes. The Global
DRFs is not reduced in size, however, their power is reduced by the clock gating feature.

The power results of the configuration memories in architectures
4x4 reg con shared morhposys 64G 4L and 4x4 final appear to have the same val-
ues despite the increase of frequency. The difference between the two architectures is
caused by the different ADRES versions. With ADRESv0 the configuration memories
of 4x4 reg con shared morhposys 64G 4L are in total 1144 bits wide, while those of
the 4x4 final (ADRESv1) are 729 bits wide, while the top-level architecture files are
basically the same. In addition to this, there are more CMs in the first architecture
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Figure 6.13: Milestone IDCT Leakage

increasing area and power for decoding logic. Figure 6.5.1 depicts the decrease of area
for the CMs between the two architectures. Due to the smaller sizes the CMs consume
less power, however, by increasing the frequency from 100MHz to 312MHz, as with the
4x4 final architecture, the power values are increased to a value similar to that of the
CMs of 4x4 reg con shared morhposys 64G 4L.

Interesting to note is the power consumption in the CGA FUs, which is higher than
expected. For example, the FUs in 4x4 reg con shared morhposys 64G 4L consumes
about 11.7mW. When multiplying this with 312/100 = 3.12 the expected power con-
sumption is 37.44mW. However, this is 41.8mW in the final 4x4 architecture. Sections
6.3 and 6.4 proved that clock gating and operand isolation reduce power, however, the
problem is caused by the benchmark simulations themselves. After the applications went
into CGA mode, they did not return to VLIW mode producing more switching activity
than should, since in VLIW mode the CGA is idle. Although output data was cor-
rupted, the activity results were utilized to calculate power in a worst case like scenario
of operation.

The energy results in Figure 6.15 decrease with every milestone except for the
8x8 final architecture. This is due to the high power consumption and relatively long
simulation times. The 4x4 final architecture is almost the same to the 2x2 final architec-
ture. The 4x4 final architecture consumes more power than the 2x2 final, but requires
less cycles for IDCT. The 2x2 final architecture has less energy consumption, however,
the 4x4 final architecture is preferred, since it has higher throughput with the same
amount of energy.

The performance results in Figure 6.16 show that the highest MIPS with a relatively
high MIPS/mW is accounted for the 4x4 final architecture. Although, the 2x2 final has
low MIPS results the MIPS/mW is similar to the 4x4 final architecture. The low MIPS
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Figure 6.14: Milestone IDCT Power
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Figure 6.15: Milestone IDCT Energy

of the 2x2 final is due to the lack of routing resources increasing II and number of cycles
to execute an iteration in the loop. The MIPS results influence the um2/MIPS where
the 4x4 and 2x2 final architectures are as well most optimal as depicted in Figure 6.17.

Since the 2x2 final architecture has the lowest power consumption with a high fre-
quency at 322MHz, the mW/MHz is also low as depicted in Figure 6.18. This effect
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Figure 6.17: Milestone IDCT Area vs. Performance

applies to every benchmark and is even as low as that of the single functional unit
np 1x1 reg.

Combining the energy charts and simulated time (Total time for simulating bench-
mark) for the applications creates the energy-delay pareto points of the architectures as
depicted in Figure 6.19. The np 1x1 reg architecture is omitted, since the delay was too
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Figure 6.18: Milestone IDCT Power vs. Frequency

large to display it properly on the charts. The energy-delay charts show the scalability of
ADRESv1 for the 2x2, 4x4 and 8x8 architecture and their impact on energy and delay.
The 8x8 architecture requires most energy consumption as was expected, however, in
the MPEG2 simulation the simulation time was even longer than that of the 2x2 sim-
ulation. It appeared that the scheduler failed to map a loop of IDCT onto the array,
which reduced performance considerably. The same thing happened with FFT where a
loop could not be mapped properly resulting in longer simulation time. Therefore, it is
important to map an application as much as possible on the array.

Combining the results and especially looking at the pareto points the
4x4 reg con shared morphosys 64G 4L final architecture is selected as most optimal and
final architecture based on power, performance and energy-delay. Table 6.8 depicts the
absolute figures of the base architecture 4x4 reg con all with the proposed architecture.

The results in Table 6.8 show a moderate improvement in power, but also a increase
in power with IDCT. However, total energy results are more important as noted in
Section 2.5.2 ranging from 49 - 64%. The same applies to leakage where no improve-
ments are for leakage power, but energy is improved significantly due to high increase
of performance results. The area was improved from 1.59mm2 (544k gates) to 1.08mm2

(370k gates), which is equal to 32%. In overall, the base 4x4 reg con all is improved
significantly in energy, performance and area compared to the proposed architecture
4x4 reg con shared morphosys 64G 4L final.
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Table 6.8: Comparing base with final architecture
ADRESv1 Total Leakage MIPS MIPS/mW mW/MHz Freq.

Power Energy Power Energy
(mW) (uJ) (mW) (uJ) (MHz)

FFT
Base 73.28 0.619 2.307 1.947E-02 759 10.35 0.7328 100
Final 67.29 0.307 2.337 1.066E-02 1190 17.68 0.2153 312

Improvement 8.17% 50.4% -1.3% 45.25% 56.78% 70.82% 70.62% 212%
IDCT

Base 80.45 37.72 2.312 1.084 1409 17.51 0.8045 100
Final 81.99 19.14 2.333 0.545 2318 28.27 0.2624 312

Improvement -1.91% 49.25% -0.91% 49.72% 64.51% 61.45% 67.38% 212%
MPEG2

Base 64.35 1944 2.297 69.41 338 5.25 0.6435 100
Final 63.87 702.7 2.341 25.76 674 10.56 0.2043 312

Improvement 0.75% 63.85% -1.92% 62.89% 99.4% 101.14% 68.25% 212%

6.6 Total ADRES Processor Power

The power measurements of ADRES are based on the core architecture only, but for a
total overview the entire processor should be looked at. Therefore, application notes of
Artisan SRAMs are utilized to predict the power consumption of the memories in the
ADRES processor with a 4x4 core.

The four memories connected to the data memory interface are 32bx2048w SRAMs
with a typical consumption of 0.03mW/MHz. The instruction cache has 4 banks of
32bx512w SRAMs with 0.022mW/MHz making it 0.088mW/MHz for all. There are
3 VLIW FUs in any ADRESv1 instance meaning only 96 bits are required of each
bank. With a maximum of two banks active the power consumption becomes: 2× 3/4×
0.022mW/MHz = 0.033mW/MHz. The TAG memories are 17bx512w SRAMs with
2×0.014mW/MHz = 0.028mW/MHz, since both are always active. Combining the TAG
and data memories results in 0.061mW/MHz for the ICache. According to Artisan data
sheets the power consumptions of the memories are negligible when they are not used.

Table 6.9 depicts the theoretical total powers for the verification programs where
αdmem is the percentage of LD/ST instructions of total amount of cycles. The ICache is
only accessed in VLIW mode of which the average activity is noted by αicache. Figure 6.20
depicts the distribution of all the components in the processor for the IDCT benchmark.

Table 6.9: ADRES processor 4x4 reg con shared morphosys 64G 4L at 312MHz
App. Pcore αdmem Pdmem αicache Picache Ptot Etot mW/MHz MIPS/mW

(mW) (mW) (mW) (mW) (mJ) Total Total
FFT 67.29 0.61 16.85 0.520 9.980 94.12 0.429·10−3 0.30 12.64

IDCT 81.99 1.00 27.46 0.043 0.936 110.39 25.77 0.35 21.00
MPEG2 63.87 0.60 16.54 0.750 14.35 94.76 1042.53 0.30 7.11
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Figure 6.20: Overview of ADRES Processor Power Consumption with IDCT

The chart in Figure 6.20 shows that the CGA FUs, data memory and configuration
memories (cu cga) consume most of the total power. The FUs are already optimized
with operand isolation and segmenting the configuration memories does not have any
positive effect with this configuration. The Data Memory Interface is the only compo-
nent that could be optimized by memory segmentation, which could be done in future
developments. The MUX value in the chart is set to 0.00%. ADRES utilizes a lot of
multiplexors, however, higher frequencies can be obtained during synthesis when the uti-
lization of these is disabled. The Synopsys Design and Physical Compiler optimizes the
architecture better without multiplexors and uses standard logic components instead.

Although these calculation are theoretical, compared to the performance of the Tri-
media processor TM3270 with 0.649mW/MHz [43] the improvement is 46 - 53%, which
is quite considerable indicating the power efficiency of ADRES. A complete gate level
simulation with DMEM, ICache and ADRES core should be performed to validate these
assumptions.

The final 4x4 reg con shared morphosys 64G 4L architecture is synthesized with
Synsopsys Design Compiler and place&routed by Encounter [15]. The verilog netlist
and SPEF file (capacitance and resistor values) are utilized for the power calculations
as with the 2x2 and 8x8 architectures. The architecture after place&route is depicted in
Figure 6.21(a) of which the amoeba view is depicted in Figure 6.21(b). The configuration
memories are placed on the side of the area, since this is better for timing. The rest of
the area is filled with the FUs, DRFs and PRFs.

6.7 Comparison with LISATeK VLIW Architecture

Schuster et al. [39] created a scalable sub-word-parallelism-enabled VLIW architecture
targeting 100Mbps Software Defined Radios [9] (SDR) created with LISATEK [16]. A
64 points FFT radix-4 kernel is utilized for verification. The number of FUs varied from
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(a) Physical View (b) Amoeba View

Figure 6.21: 4x4 reg con shared morphosys 64G 4L ADRES Core Layout Views

2, 4, 6 to 8 to obtain a energy-delay chart similar to Figure 6.19(a). The architecture
with 4 FUs, intrinsics, pipelining and modulo scheduling has its energy and performance
figures depicted in Table 6.10 based on the Synopsys TSMC library tcbn90ghpnvt.

Table 6.10: FFT Figures of VLIW instance from [39] and final 4x4 ADRES instance
4FUs VLIW 4x4 ADRES

Energy 167.82nJ 307.10nJ
Simulation Time 1.64usec 4.6usec

mW/MHz 0.28 0.22
Frequency 360MHz 312MHz

FFT Points 64 1024

The 4x4 ADRES architecture consumes more energy, but it also operates on more
FFT points. The number of FFT points is equal to 4V where V is the number of steps
required to process the values. Therefore, the 64 FFT points require 3 steps, while 1024
points require 5 steps. Modifying the results of the 1024 points to 64 points gives the
following outcome: 184.26nJ and 2.76usec. The VLIW has better results compared to
ADRES, however, the VLIW does not have configuration memories as ADRES does.
The FFT benchmark also had a low IPC of 5.58 on the ADRES architecture, which is
relatively low compared to the entire array of 16 FUs.

6.8 Summary

Based on the configuration memories, functional units and data register files the ap-
propriate TSMC library is selected. The Artisan generated macro RFs are utilized for
the configuration memories. Artisan TSMC standard cell libraries are used during the
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architectural explorations based on ADRESv0 due to reliability issues with power, while
Synopsys TSMC standard cell libraries are used for ADRESv1 for maximum perfor-
mance.

The dynamic optimizations in this thesis are verified using two reference versions
of ADRES: v0 and v1 with FFT, IDCT and MPEG2 simulations. ADRESv0 was a
non-pipelined 3x4 architecture with a single load and store unit, while ADRESv1 was a
pipelined 4x4 architecture with multiple LD/ST units, hence better performance.

The clock gating and operand isolation optimizations were applied to the architec-
tures and verified at RT level with ModelSimv6.0a. Clock gating was applied with the
synthesis tools in both versions. With ADRESv0 power was reduced by 6% compared
to 14 - 21% for ADRESv1 with clock gating. Operand isolation was automatically ap-
plied in ADRESv0 and manually in ADRESv1. Combining automatic implementation
of operand isolation with clock gating in ADRESv0 increased power by 5% compared
to the architecture with only clock gating. Therefore, automatic implementation of
operand isolation should not be utilized. Manual implementation in the pipelined design
ADRESv1 reduced power by 30 - 40%.

The optimizations are merged in the architecture with shared register files as selected
in Section 5.3.2. The energy-delay chart depicted that the pipelined 4x4 architecture
(4x4 reg con shared morphosys 64G 4L) is most optimal for the targeted benchmarks.
The architecture consumes 64 - 82mW at 312MHz with an operating voltage of 1V
(Synopsys TSMC library tcbn90ghpnvt). The area is 1.08mm2 for the core which is
equivalent to 370k gates. Compared to the base architecture, power is improved by 8%,
energy by 49 - 65%, MIPS/mW by 61 - 70% at a frequency of 312MHz.
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Conclusions and Future Work 7
7.1 Conclusions

The purpose of this thesis was to evaluate the performance and power consumptions
of a basis ADRES architecture using a set of benchmark applications and optimize the
architecture balancing power and performance. A synthesis, simulation and power cal-
culation flow has been created to obtain power and performance results of a variety
of benchmarks: FFT, IDCT and MPEG2. For the synthesis flow we utilized Synop-
sys synthesis tools and 90nm TMSC libraries. A simulation flow is composed verifying
the benchmarks and obtained switching activity of the nets at RT level. The regular
methodology of capturing switching activity is with a RT/gate level VHDL simulator
(ModelSim v6.0a). In addition to this a cycle true instruction set simulator Esterel
was used to capture switching activity of the nets of the synthesis invariant components
as well. The composed power flow annotated the switching activities of the nets onto
the synthesized gate level design and calculated power with detailed information of the
components’ consumptions. The much faster Esterel simulation resulted in power esti-
mations of the ADRES instances within 11% accuracy compared to RT level simulation
with ModelSim.

A number of optimization techniques were applied and evaluated: operand isolation,
clock gating, pipelining, architectural modifications and memory segmentation. Operand
isolation reduced dynamic power by 30 - 40% with an absolute timing penalty of ap-
proximately 0.24nsec (8.8% of a 2.7nsec clock period) for a pipelined reference architec-
ture. Clock gating reduced power by 14 - 21% without any noticeable timing penalty.
Pipelining increased performance and power, but energy consumption was reduced. This
feature could not be compared to a non-pipelined design, since the ALUs and FUs were
completely redesigned. The architecture modification profited of sharing the local regis-
ter files among four functional units. Compared to the base architecture by using this
technique power consumption was reduced by 36% and energy by 18 - 21%. Memory
segmentation only has a positive effect on power when the memories are larger than
128bx256w.

An architecture was proposed that incorporated shared registers among the FUs,
clock gating, operand isolation and pipelining. Due to the higher clock frequency power
increased, but energy was decreased. The architecture reduced energy consumption by
49.5 - 64% compared to the base architecture at a frequency of 312MHz.

7.2 Future Work

The power optimizations in this thesis are only some of the many available. A few were
mentioned in the thesis and are noted below together with other possibilities.
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• Prohibit read and write operations to a register file when not required. This reduces
power significantly without any significant impact on timing.

• Utilize transparent pipelining to avoid unnecessary switching of the pipeline stages.
With this technique the pipeline stages are transparent for data when in absence
of hazards. For this the clock gating principle is utilized with an expected power
reduction of 20 - 60%.

• Segmenting the instruction cache and data memories will result in significant power
reductions, since these are accessed quite often. However, this will impact the
maximum frequency of the ADRES processor possibly. The impact on performance
should be looked at more closely when investigating this option.

• Using multiple libraries with different Vt (Multi-Vt) during synthesis is expected
to have an impact on both power and performance. The critical data paths are
synthesized with low Vt libraries increasing speed, while those off the non-critical
path are synthesized with high Vt libraries lowering power. This could produce
new critical paths, but Multi-Vt libraries are inevitable to meet performance and
power goals, while minimizing leakage power.

• Apply power gating to reduce leakage power. Leakage, however, is only 3 - 4% of
total power. Total power will not be decreased significantly with this technique

The proposed ADRES architectures had some problems with the benchmarks during
VHDL RTL simulations. This problem should be resolved or power analysis would
become impossible to justify properly. In addition, to validate the RT level simulations
a working gate level simulation should be performed.
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XML Architectural File A
Listing A.1: XML Architectural File

< !−− This par t d e f i n e s a v a i l a b l e r e source s −−>
<r e s ou r c e>

< !−− Funct iona l Units −−>
<FU name = ” fu 0 ”>

<in name = ” s r c1 ” width = ”32” /> < !−− Inputs −−>
<in name = ” s r c2 ” width = ”32” />
<in name = ” s r c3 ” width = ”32” />
<out name = ”dst1 ” width = ”32” /> < !−− Outputs −−>
<op>

<opgroup name = ”ldmem”/>
<opgroup name = ”stmem”/>
<opgroup name = ” a r i t h ”/>
. . .

< !−− Operation Groups −−>
</op>

</FU>
< !−− Descr ibe a l l FUs . . . −−>
<FU name = ” fu 15 ”>

<in name = ”pred” width = ”1” />
<in name = ” s r c1 ” width = ”32” />
<in name = ” s r c2 ” width = ”32” />
<out name = ” pred dst1 ” width = ”1” />
<out name = ” pred dst2 ” width = ”1” />
<out name = ”dst1 ” width = ”32” />
<op>

<opgroup name = ” a r i t h ”/>
<opgroup name = ” l o g i c ”/>
<opgroup name = ” s h i f t ”/>
<opgroup name = ”comp”/>
<opgroup name = ”pred”/>
<opgroup name = ”phi ”/>

</op>
<param area = ” 0 .01 ” c o n f b i t s = ”9” />

</FU>
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< !−− Globa l Reg i s t e r s −−>
<RF name = ” v l i w i n t r f ” width = ”32” s i z e = ”64”

non ro t s i z e = ”32”>
<in name = ” in1 ” we = ”we1” />
. . .

<in name = ” in4 ” we = ”we4” />
<out name = ”out1” />
. . .

<out name = ”out8” />
</RF>
<RF name = ” v l iw pred ” width = ”1” s i z e = ”64” non ro t s i z e = ”32”>

<in name = ” in1 ” we = ”we1” />
. . .

<in name = ” in4 ” we = ”we4” />
<out name = ”out1” />

. . .
<out name = ”out4” />

</RF>
< !−− Local Reg i s t e r s −−>
<RF name = ” i r e g 0 ” width = ”32” s i z e = ”4”>

<in name = ” in1 ” we = ”we1” />
<out name = ”out1” />
<out name = ”out2” />

</RF>
<RF name = ”pred 4 ” width = ”1” s i z e = ”4”>

<in name = ” in1 ” we = ”we1” />
<out name = ”out1” />

</RF>
< !−− Constant va l u e s −−>
<CONST name = ” cons t 0 ” width = ”15” de lay = ”0” />
. . .

<CONST name = ” cons t 15 ” width = ”15” de lay = ”0” />
< !−− Trans i t ion Nodes −−>
<TRN type = ”mux” name = ” ou t i r e g 1 0 ” width = ”32” de lay = ”1” />
<TRN type = ”mux” name = ” outpred1 0 ” width = ”1” de lay = ”1” />
<TRN type = ”mux” name = ” outpred2 0 ” width = ”1” de lay = ”1” />
. . .

<TRN type = ”mux” name = ” out i r e g1 15 ” width = ”32” de lay = ”1” />
<TRN type = ”mux” name = ” outpred1 15 ” width = ”1” de lay = ”1” />
<TRN type = ”mux” name = ” outpred2 15 ” width = ”1” de lay = ”1” />
. . .

<TRN type = ”mux” name = ” l o o p s t a r t ” width = ”1” de lay = ”0” />
<TRN type = ”mux” name = ” loop s top ” width = ”1” de lay = ”0” />

</ r e s ou r c e>
< !−− This par t d e f i n e s t h e i r connec t ions −−>
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<connect ion>
< !−− Connection 1 −−>
<connect>

<s r c en t i t y = ” cons t 0 ” />
<dst en t i t y = ” fu 0 ” port = ” s r c1 ”/>

</ connect>
< !−− Connection 2 −−>
<connect>

<s r c en t i t y = ” fu 0 ” port = ”dst1 ” />
<dst en t i t y = ” i r e g 0 ” port = ” in1 ” />

</ connect>
< !−− Connection 3 −−>
<connect>

<s r c en t i t y = ” i r e g 0 ” port = ”out1” />
<dst en t i t y = ” fu 0 ” port = ” s r c1 ” />

</ connect>
< !−− Connection 4 −−>
<connect>

<s r c en t i t y = ” i r e g 0 ” port = ”out2” />
<dst en t i t y = ” fu 0 ” port = ” s r c2 ” />

</ connect>
< !−− Connection 5 −−>
<connect>

<s r c en t i t y = ” fu 0 ” port = ”dst1 ” />
<dst en t i t y = ” ou t i r e g 1 0 ” />

</ connect>
< !−− Connection 6 −−>
<connect>

<s r c en t i t y = ” ou t i r e g 1 0 ” />
<dst en t i t y = ” fu 1 ” port = ” s r c2 ” />

</ connect>
</ connect ion>
< !−− This par t d e f i n e s the i n s t r u c t i o n s e t and behav iours −−>
<behaviour>

< !−− s e c t i on to d e s c r i b e VLIW view o f the a r c h i t e c t u r e −−>
<v l iw s e c t i o n>

<v l i w i n t r f s>
<v l i w i n t r f name = ” v l i w i n t r f ”/>

</ v l i w i n t r f s>
<v l iw p r e d r f s>

<v l iw p r e d r f name = ” v l iw pred ” />
</ v l i w p r e d r f s>
<v l iw f u s>

<v l iw fu name = ” fu 0 ”/>
<v l iw fu name = ” fu 1 ”/>
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<v l iw fu name = ” fu 2 ”/>
</ v l iw f u s>
< !−− where to d e t e c t the s top s i g n a l o f the loop −−>
< s t a r t s i g name = ” l o o p s t a r t ” />
<s t o p s i g name = ” loop s top ” />

</ v l iw s e c t i o n>
< !−− I n t r i n s i c f unc t i on s −−>
< i n t r op>

<op name = ” int r00 gp min ” commutative = ” true ”/>
<op name = ” in t r01 gp min u ” commutative = ” true ”/>
. . .

<op name = ” intr18 gp modulo ” commutative = ” f a l s e ”/>
</ i n t r op>
< !−− I n s t r u c t i on Group −−>
<op s e c t i on>

<opgroup name = ” l o g i c ” de lay = ”1”>
<op name = ”or ” />
<op name = ”and” />
<op name = ”xor ” />
<op name = ”nor” />
<op name = ”nand” />
<op name = ”nxor” />

</opgroup>
. . .

<opgroup name = ”ldmem” delay = ”4” queuedelay=”6”>
< !−− l oad opera t i ons −−>
<op name = ” l d c ” />
<op name = ” ld c2 ” />
<op name = ” l d i ” />
<op name = ” ld uc ” />
<op name = ” ld uc2 ” />

</opgroup>
</ op s e c t i on>

</ behaviour>



Instruction Set Architecture B
ARITH_1 ARITH_2 ARITH_X1 ARITH_X2 LOGIC PRED LDST SPECIAL (*)

100 101 110 111 001 011 010 000
0000 MOV GT SUBABS CLIP1 LSL PRED_GT LD_UC SETLO_0
0001 NOP GT_U INNERSUM CLIP2 PRED_GT_U LD_C JMP_BR_0
0010 SHRMB GE AVGU4 MIN LSR PRED_GE LD_UC2 SETHI_0
0011 RPHI (*) GE_U ADD2 MIN_U PRED_GE_U LD_C2H MV2SR
0100 SHLMB EQ SUB2 MAX ASR PRED_EQ LD_C2 SETLO_1
0101 PACK2 AVG_E MAX_U LD_I JMPL_BRL_0
0110 PHI (*) NE SH_RND OR PRED_NE LD_I2 SETHI_1
0111 SPACK2 ADD AND HALT
1000 MUL LT SUB XOR PRED_LT ST_C SETLO_2
1001 MUL_U LT_U NOR PRED_LT_U ST_C2 JMP_BR_1
1010 SPACKU4 LE NAND PRED_LE ST_C2H SETHI_2
1011 MUL_SU LE_U NXOR PRED_LE_U ST_C2R MVFSR
1100 PRED_SET ST_I SETLO_3
1101 PRED_CLEAR ST_I2 JMPL_BRL_1
1110 SETHI_3
1111 MODULO CGA

(*) Not supported in CGA mode

Instruction Set

In
st

ru
ct

io
ns

Figure B.1: Operation Code Table
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Figure B.2: Instruction Set Architecture ADRESv1
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Figure C.1: Interconnection Options for Architectural Experiments
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Figure D.1: Distributing the Local Data Register Files
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DRF Library Selection E
This appendix depicts the differences between Artisan and Synopsys libraries for data
register files. The difference is referenced from the Artisan libraries and calculated
as: Synopsys values−Artisan values

Artisan values So, a negative percentage value is in favor of Synopsys
libraries and consequently a positive value is in favor of the Artisan libraries.
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Figure E.1: CGA DRF differences between Synposis vs. Artisan for when accessing all
ports
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Figure E.2: CGA DRF differences between Synposis vs. Artisan for when accessing first
port only
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Figure E.3: CGA DRF differences between Synposis vs. Artisan
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Figure E.5: VLIW DRF differences between Synposis vs. Artisan for when accessing
first port only
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Figure E.6: VLIW DRF differences between Synposis vs. Artisan
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Figure F.1: Power Results of Instructions for non-pipelined Functional Unit in CGA
Section

Table F.1: CGA FU Area Results between Artisan and Synopsys Libraries
Artisan Synopsys

FU CGA 457.23 630.81
ALU 22951.75 20523.08
Miscellaneous 8860.22 8834.82
Total 32269.20 29988.71
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Figure F.2: Power Results of Instructions for non-pipelined ALU in FU CGA Section
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Figure F.3: Power Results of Instructions for pipelined Functional Unit in CGA Section

Table F.2: CGA FU Area Results between without and with Operand Isolation with
Synopsys Libraries

Without OI With OI
FU CGA 1296.89 1224.22
ALU 35985.55 38537.60
Miscellaneous 8713.45 8959.86
Total 45995.89 48721.68
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Figure G.6: Milestones Area vs. Performance
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Figure G.7: Milestones Power vs. Frequency
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