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ABSTRACT 
 
In this paper we present the design and implementation of 
a dynamically reconfigurable system for packet queue 
scheduling. Two widely accepted queue schedulers have 
been implemented in reconfigurable logic in a way that can 
be interchanged based on the number of active queues and 
the Quality of Service (QoS) requirements. The first 
algorithm is the Deficit Weighted Round Robin (DWRR) 
that is used to support up to 2K queues. The second 
algorithm is the Worst-case Fair Weighted Fair Queuing 
(WF2Q+) algorithm that is more accurate and closer to the 
ideal scheduling but the computation and memory 
requirements are higher. This scheme is used when the 
number of active queues is up to 341 queues or classes of 
services (CoS). The performance evaluation shows that we 
can exchange these algorithms, thus obtaining higher 
accuracy, depending on the variant and the characteristics 
of the network traffic with negligible performance 
degradation due to the dynamic reconfiguration overhead. 
 

1. INTRODUCTION 
 
The exponential increase of the bandwidth in the Internet 
has created the need for congestion management and 
congestion avoidance in the network devices. In addition, 
the requirements in terms of latency, jitter and bandwidth 
are different for each application in the Internet (e.g. the 
video and the voice traffic has higher priority over non-
time critical applications such as file transfers traffic.). 
Hence, simple algorithms for the scheduling of packets 
(such as the round robin algorithm) are being abandoned in 
favor of more advanced scheduling algorithms that can 
support queues with different weights.  

There are several algorithms that have been proposed 
for the scheduling of queues with different priorities [1-3]. 
Each algorithm has its own advantages and disadvantages 
such as the complexity of the algorithm, the latency and 
the error in bandwidth allocation. For example, the Deficit 
Weighted Round Robin (DWRR) can be easily 
implemented both in hardware and in software, it can 
support a large number of queues but it has the drawback 
that it does not provide end-to-end delay guarantees as 

precise as other scheduling schemes. On the other hand, a 
more accurate algorithm, called Worst-case Fair Weighted 
Fair Queuing (WF2Q+) can achieve better results in terms 
of quality (lower delay, and end-to-end delay guarantees) 
but it does not scale well for large number of queues [5].  

The analysis of the Internet traffic in [9] shows how the 
number of queues, the average packet size and the type of 
applications with different requirements (jitter, latency, 
and bandwidth) changes over time. One of the figures 
shows a detailed traffic analysis of how the number of 
flows change over 24-hour and 7-day time range. Using 
dynamically reconfigurable systems in the network devices, 
we can match the configuration of the network device to 
the network traffic (in this case to the number of active 
queues). In this work, we have chosen to use the DWRR 
algorithm when the number of active queues is large. In the 
case, that the number of active queues is smaller, the more 
accurate but more complex in terms of hardware resources 
WF2Q+ algorithm is used. Hence, the dynamic reconfigu-
ration of the queue scheduler in a network device can be 
used to achieve better QoS requirements depending on the 
number of active queues with negligible performance 
degradation in terms of bandwidth allocation. The main 
contributions of this paper are: 
• The efficient mapping of two widely used packet 

schedulers (DWRR, WF2Q+) in reconfigurable logic 
• The implementation of the scheduler into a partially 

dynamic reconfigurable scheme 
• The performance evaluation of a system that can use 

two queue scheduler (taking into account the 
reconfiguration overhead) depending on the number of 
active queues 

This paper is organized in the following way. Section 2 
presents the design and the implementation of the 
dynamically reconfigurable scheduler. Section 3 presents 
the performance evaluation and the results in terms of QoS 
for the proposed scheme. Finally, Section 4 presents the 
conclusions of the proposed scheme.  
 

2. DESIGN ORGANIZATION 
 
The block diagram of the system is shown in Fig. 1. The 
system consists of a Queue Table Controller, a Queue 
Table that holds the queue information and a Queue     *This work was supported by Sandbridge Technologies, Inc.



Scheduler that can be partially reconfigured either as a 
DWRR scheduler or as a WF2Q+ scheduler. Furthermore, 
a FIFO is used that contains the QueueID of the active 
queues and it is used by the DWRR scheme. The scheduler 
can be either the DWRR or the WF2Q+ depending on the 
number of active queues. The Queue Table Controller 
receives the information from a Queue engine such as the 
Queue Manager Reference Design form Xilinx [6]. This 
Queue Manager can support up to 64K queues and eight 
traffic classes. The current implementation of the dynamic 
queue scheduler is targeting mainly network access devices 
and not high-performance core routers (that usually 
supports thousands of queues) and it is designed to exploit 
the efficiency of dynamic reconfiguration in the schedulers, 
hence it can support up to 2K queues (the QueueID is 11 
bits). The Queue Table (a 2-port 2Kx64bits RAM) holds 
the information for each queue: the size of the packet in the 
head of the queue (16 bits), the number of packets there are 
in each queue (16 bits), the DWRR weight (16 bits), and 
the WF2Q+ weight (16 bits). Using 16-bits weight we can 
support up to 64K distinct weights, enough for most of the 
applications. When the queue scheduler selects a queue, 
the QueueID is sent to the Queue Table Controller which 
updates the Queue Table. In the case of the DWRR the 
scheduler reads the next active queue from the FIFO. If the 
queue is eligible then the Table Controller checks if it is 
the last one. Otherwise, it writes the queue back to the 
FIFO of the active queues. 
 
2.1 Deficit Weighted Round Robin Scheduling 
 
The Deficit Weighted Round Robin (DWRR) was 
proposed by M. Shreedhar and G. Vargeshe in 1995 [7] 
and it was initially designed to address the limitations of 
the Weighted Round Robin and the Weighted Fair 
Queuing models. In DWRR queuing, each queue is 
configured with two parameters: 
• A weight that defines the percentage of the output port 

bandwidth allocated to the queue 
• A Deficit Counter that specifies the total number of 

bytes that the queue is permitted to transmit each time 
that it is visited by the scheduler.  

Hence, the algorithm of the system is rather easy to 
implement. Each time a queue is visited by the scheduler 
the deficit counter of the corresponding queue is 
accumulated with the weight of the specific queue. If the 
new deficit counter is bigger than the size of the packet at 
the head of the queue then the packet is transmitted and the 
size of the packet is subtracted from the deficit counter. 
Otherwise, the scheduler visits the next active queue 
(active queue is a queue that has at least one packet to 
send). The implementation of this scheduler is straight 
forward. It only needs an adder and a comparator and a 
table that holds the deficit counter for each queue (in our 
case a 2Kx16bits RAM). The drawback of this algorithm is 

that many queues can be visited that are not eligible to be 
transmitted if the counter is less than the size of the packet. 
Hence, the time it takes for the scheduler to decide which 
queue will be transmitted is unknown when the weight of 
the queue is smaller than the size of the packets. To 
overcome, this drawback, a number of queues can be 
examined at the same time and then use a priority encoder 
to decide which queue will be transmitted.  

 
2.2 Worst-case Fair Weighted Fair Queuing+ 
Scheduling 
 
The Worst-case Fair Weighted Fair Queuing+ algorithm 
was proposed by J. Bennett and H Zhang in 1996 [4]. The 
Weighted Fair Scheduling algorithm tries to allocate 
services more accurately than the other algorithms and it is 
closer to the ideal case of Generalized Processor Sharing 
(GPS). In the case of the GPS all the queues are sliced into 
bits and each queue is allocated exactly the corresponding 
bandwidth. Since, the slicing of packets into bits can not 
been implemented efficiently, the WFQ algorithm assigns 
a finish time, to each packet, equal to the virtual time that 
the packet should be finished transmitted if the algorithm 
was the GPS. In this case, the finish time of each packet 
arriving at the Queue Manager should be stored. Instead, in 
the Worst-case Fair Weighted Fair Queuing+ algorithm, 
the scheduler assigns a start time and a finish time only to 
the packet that it is in the head of the queue. Hence, for 
each queue the following parameters are used: 

• The weight of the queue 
• The start time of the head packet of the queue 
• The finish time of the head packet of the queue 
• The virtual time 

The WF2Q+ algorithm works in the following way. 
Each time a new packet is assigned as a head packet of a 
queue, the start time of this packet is configured to be 
either the current virtual time if the scheduler is idle or the 
time at which the packet that is being sent will be finished. 
The finish time of the packet is assigned as the start time 
plus the time to send this packet using the weight of this 
queue, as it is shown in the following equations (Eq. 1, 
Eq.2).  
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Fig. 1. Overview of the system
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The scheduler selects the queue with the minimum 

finish time and then updates the virtual time using either 
the minimum start time of the queues or the current virtual 
time plus the time to transmit the selected packet as it is 
shown in Eq.3. The main advantage of this scheme is that 
the system operates without a priori knowledge of the 
traffic or assumptions about the packet size. The main 
disadvantage is the required computations and the state 
information that should be stored in a memory [5]. The 
algorithm requires finding the minimum start and finishing 
time for the active queues. If the number of active queues 
is large then the minimum functions can slow down the 
performance of the scheduler if we examine each queue 
separately (O(N)). On the other hand, if we use a tree 
structure the area in hardware would be too big. Hence, we 
use a heap sort scheme, which is a more efficient 
implementation, to find the minimum start and finish time 
from a number of active queues.  

The heap sort scheme that is has been designed can 
compare 4 different values at the same time. To map 
efficiently the heap sort algorithm in the current design the 
following scheme was used. A 128x128bits RAM is used 
to store 4 words as it is shown in Fig. 3. Each word 
contains the QueueID (16 bits) and the finish time (16 bits). 
The minimum finish time is stored at address 0x0. At 
address 0x1 is stored the next level of the heap sort (4 
values), at addresses 0x2, 0x3, 0x4 and 0x5 are stored the 
3rd level, etc. Using this scheme we need 1 cycle to find the 
queue with the minimum finish time and 5 clock cycles to 
update the heap sort table.  

Each time a new entry has to be inserted into the heap 
memory, the scheme depicted in Fig.2 is used. The new 
finish time is inserted into the 16-bits “level register” and 
the memory data from the same level is loaded. If any of 
the four entries is empty (‘E’ bit in the scheme) then this 
space is selected to store the new data. Otherwise, it 
compares the value of the new entry with the other 4 finish 
times and if any of them is smaller (and the lower entries 
are not full; ‘F’ in the scheme) then the new entry is 
inserted into this space and the previous one is forwarded 
to the next-level register. If the new entry is bigger than all 
of the values in the memory then the new entry is 
forwarded to the next-level register. The current design can 
support up to 341 queues (1+4+16+64+256 =341 elements; 
each row of the table holds 4 elements). A similar heap 
sort has been used to sort the start time of the queues. But 
in this case, the minimum start time does not have to be 
extracted from the table. 
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Fig. 2. The WF2Q+ address generator 
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Fig. 3. The WF2Q+ scheduler 

Table 1. Resource allocation 

Unit Slices BRAMs 
Table Controller 127 8 
DWRR 86 1 
WF2Q+ 2206 5 

 
The scheduler only reads the minimum start time but it 

does not extract it from the table. Each time a queue is 
selected from the Finish Time Table, the corresponding 
Start time entry must be deleted from the Start time table. 
Hence, a small Look-Up Table is used to map the QueueID 
to the address of the Start time Table as it is shown in Fig. 
3. Thus, the time to update the Start Time Table takes 1-5 
clock cycles.  

The current design has been implemented into a Xilinx 
Virtex-II Pro XC2VP30 Platform. The design methodology 
for partially dynamically reconfigurable designs was used 
to floorplan the system [8]. The system was partitioned 
into a static and a reconfigurable area. The signals that are 
used for the communication of the static and the 
reconfigurable area have to be placed using specific tri-
state buffers (bus macros). The signals that are used in this 
design are the signals for the second port of the Queue 
Table, the signals to read the active queue FIFO and the 
selected QueueID (12 bits). Table 1 illustrates the 
resources that each unit occupies.  



3. PERFORMANCE EVALUATION 
 
The main drawback of dynamic reconfiguration is the 
timing overhead, because during the reconfiguration the 
part of the device that is being reconfigured can not be 
used. This overhead would cause too much delay in the 
packets waiting to be transmitted. In addition, the 
implementation of the schedulers shows that the DWRR 
occupies much less area than the WF2Q+ scheduler. Hence, 
when the DWRR scheme is selected, the remaining area 
would be empty. Thus, in our design the DWRR scheme is 
used in the static area, while the WF2Q+ scheme is placed 
in the reconfigurable area as a page-able IP module. When 
the DWRR is used this spare area can be used for other IP 
modules such as encryption or compression units used in 
common network processing applications. In this case we 
examine the overhead of the dynamic reconfiguration in 
the allocation of the bandwidth, during the transfer of the 
scheduler from DWRR to WF2Q+ and vice versa. In the 
first case, when the system switch to the WF2Q+ algorithm 
then the scheduler configures all the active queues as if 
they have just arrived in the system (virtual time = 0, start 
time=0, finish time = start time + size/weight). In the 
second case, the DWRR counter for all the active queues is 
set to zero.  

Fig. 4 shows the impact of the dynamic reconfiguration 
overhead in the allocation of the bandwidth for the DWRR 
and the WF2Q+ scheduler for several active queues (32-
256 for the WF2Q+ and 100-1000 for the DWRR) using 
uniform distributed random packet sizes. The figure shows 
the difference in the band-width allocation between the 
ideal allocation (GPS) and the real allocation for several 
thresholds of reconfiguration. In the case of the DWRR 
scheduler, when the dynamic reconfiguration takes place 
after 1000 or 2000 packets then the error in bandwidth 
allocation varies from 0.02% to 0.06%. If the network is 
more stable, e.g. the number of active queues does not 
change very often, the error in bandwidth allocation 
becomes almost negligible. For example, if the number of 
active queues changes at least every 5000 packets then the 
error in bandwidth allocation is almost 0.01% which is 
almost the same to the static version in which a DWRR 
scheduler is always used. 

In the case of the WF2Q+ scheduler, the impact of the 
reconfiguration is also negligible (0.01% to 0.04%) in the 
bandwidth allocation, as it is shown in Fig. 4.  This scheme 
also shows that both of the scheduler can allocate quite 
accurately the bandwidth, since the error in bandwidth 
allocation for the static version is almost 0.01% compared 
to the ideal case, although in terms of latency the WF2Q+ 
outperforms the DWRR according to [1]. It is obvious that 
a network topology in which the number of active queues 
changes more rarely (more than every 10000 packets, 
which is a logical assumption according to [9]) then the 
impact of the reconfiguration would be infinitesimal. 
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Fig. 4. Bandwidth allocation error 

4. CONLUSIONS 
 
In this paper we investigate the use of dynamic 
reconfiguration to adapt the queue scheduler of a network 
processing unit to the requirements of the active queues. 
As it is shown, the overhead of the reconfiguration causes 
almost no performance degradation in terms of bandwidth 
allocation, while the use of different schedulers has a 
major impact on the delay and the jitter for several 
applications [1, 2]. The timing overhead of the dynamic 
reconfiguration can be overcome using the DWRR as a 
static scheduler, hence the transfer of the scheduler from 
the DWRR to the WF2Q+ scheduler can be achieved in 
only one clock cycle, when the reconfiguration of the 
module will be over. This paper shows that the dynamic 
reconfiguration of the current FPGAs can improve the 
performance of the network devices in terms of scheduling 
accuracy when they are used efficiently by trying to adapt 
to the varied number of active queues. 
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