
A DYNAMICALLY RECONFIGURABLE QUEUE SCHEDULER

Christoforos Kachris, Stamatis Vassiliadis*

Computer Engineering Laboratory
Delft University of Technology

The Netherlands
{kachris, stamatis}@ce.et.tudelft.nl

ABSTRACT

In this paper we present the design and implementation of
a dynamically reconfigurable system for packet queue
scheduling. Two widely accepted queue schedulers have
been implemented in reconfigurable logic in a way that can
be interchanged based on the number of active queues and
the Quality of Service (QoS) requirements. The first
algorithm is the Deficit Weighted Round Robin (DWRR)
that is used to support up to 2K queues. The second
algorithm is the Worst-case Fair Weighted Fair Queuing
(WF2Q+) algorithm that is more accurate and closer to the
ideal scheduling but the computation and memory
requirements are higher. This scheme is used when the
number of active queues is up to 341 queues or classes of
services (CoS). The performance evaluation shows that we
can exchange these algorithms, thus obtaining higher
accuracy, depending on the variant and the characteristics
of the network traffic with negligible performance
degradation due to the dynamic reconfiguration overhead.

1. INTRODUCTION

The exponential increase of the bandwidth in the Internet
has created the need for congestion management and
congestion avoidance in the network devices. In addition,
the requirements in terms of latency, jitter and bandwidth
are different for each application in the Internet (e.g. the
video and the voice traffic has higher priority over non-
time critical applications such as file transfers traffic.).
Hence, simple algorithms for the scheduling of packets
(such as the round robin algorithm) are being abandoned in
favor of more advanced scheduling algorithms that can
support queues with different weights.

There are several algorithms that have been proposed
for the scheduling of queues with different priorities [1-3].
Each algorithm has its own advantages and disadvantages
such as the complexity of the algorithm, the latency and
the error in bandwidth allocation. For example, the Deficit
Weighted Round Robin (DWRR) can be easily
implemented both in hardware and in software, it can
support a large number of queues but it has the drawback
that it does not provide end-to-end delay guarantees as

precise as other scheduling schemes. On the other hand, a
more accurate algorithm, called Worst-case Fair Weighted
Fair Queuing (WF2Q+) can achieve better results in terms
of quality (lower delay, and end-to-end delay guarantees)
but it does not scale well for large number of queues [5].

The analysis of the Internet traffic in [9] shows how the
number of queues, the average packet size and the type of
applications with different requirements (jitter, latency,
and bandwidth) changes over time. One of the figures
shows a detailed traffic analysis of how the number of
flows change over 24-hour and 7-day time range. Using
dynamically reconfigurable systems in the network devices,
we can match the configuration of the network device to
the network traffic (in this case to the number of active
queues). In this work, we have chosen to use the DWRR
algorithm when the number of active queues is large. In the
case, that the number of active queues is smaller, the more
accurate but more complex in terms of hardware resources
WF2Q+ algorithm is used. Hence, the dynamic reconfigu-
ration of the queue scheduler in a network device can be
used to achieve better QoS requirements depending on the
number of active queues with negligible performance
degradation in terms of bandwidth allocation. The main
contributions of this paper are:
• The efficient mapping of two widely used packet

schedulers (DWRR, WF2Q+) in reconfigurable logic
• The implementation of the scheduler into a partially

dynamic reconfigurable scheme
• The performance evaluation of a system that can use

two queue scheduler (taking into account the
reconfiguration overhead) depending on the number of
active queues

This paper is organized in the following way. Section 2
presents the design and the implementation of the
dynamically reconfigurable scheduler. Section 3 presents
the performance evaluation and the results in terms of QoS
for the proposed scheme. Finally, Section 4 presents the
conclusions of the proposed scheme.

2. DESIGN ORGANIZATION

The block diagram of the system is shown in Fig. 1. The
system consists of a Queue Table Controller, a Queue
Table that holds the queue information and a Queue *This work was supported by Sandbridge Technologies, Inc.

Scheduler that can be partially reconfigured either as a
DWRR scheduler or as a WF2Q+ scheduler. Furthermore,
a FIFO is used that contains the QueueID of the active
queues and it is used by the DWRR scheme. The scheduler
can be either the DWRR or the WF2Q+ depending on the
number of active queues. The Queue Table Controller
receives the information from a Queue engine such as the
Queue Manager Reference Design form Xilinx [6]. This
Queue Manager can support up to 64K queues and eight
traffic classes. The current implementation of the dynamic
queue scheduler is targeting mainly network access devices
and not high-performance core routers (that usually
supports thousands of queues) and it is designed to exploit
the efficiency of dynamic reconfiguration in the schedulers,
hence it can support up to 2K queues (the QueueID is 11
bits). The Queue Table (a 2-port 2Kx64bits RAM) holds
the information for each queue: the size of the packet in the
head of the queue (16 bits), the number of packets there are
in each queue (16 bits), the DWRR weight (16 bits), and
the WF2Q+ weight (16 bits). Using 16-bits weight we can
support up to 64K distinct weights, enough for most of the
applications. When the queue scheduler selects a queue,
the QueueID is sent to the Queue Table Controller which
updates the Queue Table. In the case of the DWRR the
scheduler reads the next active queue from the FIFO. If the
queue is eligible then the Table Controller checks if it is
the last one. Otherwise, it writes the queue back to the
FIFO of the active queues.

2.1 Deficit Weighted Round Robin Scheduling

The Deficit Weighted Round Robin (DWRR) was
proposed by M. Shreedhar and G. Vargeshe in 1995 [7]
and it was initially designed to address the limitations of
the Weighted Round Robin and the Weighted Fair
Queuing models. In DWRR queuing, each queue is
configured with two parameters:
• A weight that defines the percentage of the output port

bandwidth allocated to the queue
• A Deficit Counter that specifies the total number of

bytes that the queue is permitted to transmit each time
that it is visited by the scheduler.

Hence, the algorithm of the system is rather easy to
implement. Each time a queue is visited by the scheduler
the deficit counter of the corresponding queue is
accumulated with the weight of the specific queue. If the
new deficit counter is bigger than the size of the packet at
the head of the queue then the packet is transmitted and the
size of the packet is subtracted from the deficit counter.
Otherwise, the scheduler visits the next active queue
(active queue is a queue that has at least one packet to
send). The implementation of this scheduler is straight
forward. It only needs an adder and a comparator and a
table that holds the deficit counter for each queue (in our
case a 2Kx16bits RAM). The drawback of this algorithm is

that many queues can be visited that are not eligible to be
transmitted if the counter is less than the size of the packet.
Hence, the time it takes for the scheduler to decide which
queue will be transmitted is unknown when the weight of
the queue is smaller than the size of the packets. To
overcome, this drawback, a number of queues can be
examined at the same time and then use a priority encoder
to decide which queue will be transmitted.

2.2 Worst-case Fair Weighted Fair Queuing+
Scheduling

The Worst-case Fair Weighted Fair Queuing+ algorithm
was proposed by J. Bennett and H Zhang in 1996 [4]. The
Weighted Fair Scheduling algorithm tries to allocate
services more accurately than the other algorithms and it is
closer to the ideal case of Generalized Processor Sharing
(GPS). In the case of the GPS all the queues are sliced into
bits and each queue is allocated exactly the corresponding
bandwidth. Since, the slicing of packets into bits can not
been implemented efficiently, the WFQ algorithm assigns
a finish time, to each packet, equal to the virtual time that
the packet should be finished transmitted if the algorithm
was the GPS. In this case, the finish time of each packet
arriving at the Queue Manager should be stored. Instead, in
the Worst-case Fair Weighted Fair Queuing+ algorithm,
the scheduler assigns a start time and a finish time only to
the packet that it is in the head of the queue. Hence, for
each queue the following parameters are used:

• The weight of the queue
• The start time of the head packet of the queue
• The finish time of the head packet of the queue
• The virtual time

The WF2Q+ algorithm works in the following way.
Each time a new packet is assigned as a head packet of a
queue, the start time of this packet is configured to be
either the current virtual time if the scheduler is idle or the
time at which the packet that is being sent will be finished.
The finish time of the packet is assigned as the start time
plus the time to send this packet using the weight of this
queue, as it is shown in the following equations (Eq. 1,
Eq.2).

Queue Table
Controller

.

.

.

Size

.

.

.

Queue
Counter

.

.

.

.

.

.

DWRR
weight

WF2Q+
weightQueueID

64 bits

Queue Table
2-Port

2K x 64bits

0

7FF

Queue
Manager
Status

Queue
Scheduler

DWRR
86 Slices
1BRAM

2K queues

WF2Q+
2206 Slices

5BRAM
341 Queus

Active
Queues

FIFO

QueueID

QueueID

Selected
QueueID

Queue
Scheduler
Manager Size of the

FIFO
Fig. 1. Overview of the system

⎩
⎨
⎧

≠
=

=
idleschedulertfinish
idleschedulertvirtual

tstartiqueue
,_
,_

_).((1)

weightiqueue

isize
tstartiqueuetfinishiqueue

).(

)(
).().(+= (2)

}}_min{),(_max{)(_ tstartttimevirtualttimevirtual τ+= (3)

The scheduler selects the queue with the minimum

finish time and then updates the virtual time using either
the minimum start time of the queues or the current virtual
time plus the time to transmit the selected packet as it is
shown in Eq.3. The main advantage of this scheme is that
the system operates without a priori knowledge of the
traffic or assumptions about the packet size. The main
disadvantage is the required computations and the state
information that should be stored in a memory [5]. The
algorithm requires finding the minimum start and finishing
time for the active queues. If the number of active queues
is large then the minimum functions can slow down the
performance of the scheduler if we examine each queue
separately (O(N)). On the other hand, if we use a tree
structure the area in hardware would be too big. Hence, we
use a heap sort scheme, which is a more efficient
implementation, to find the minimum start and finish time
from a number of active queues.

The heap sort scheme that is has been designed can
compare 4 different values at the same time. To map
efficiently the heap sort algorithm in the current design the
following scheme was used. A 128x128bits RAM is used
to store 4 words as it is shown in Fig. 3. Each word
contains the QueueID (16 bits) and the finish time (16 bits).
The minimum finish time is stored at address 0x0. At
address 0x1 is stored the next level of the heap sort (4
values), at addresses 0x2, 0x3, 0x4 and 0x5 are stored the
3rd level, etc. Using this scheme we need 1 cycle to find the
queue with the minimum finish time and 5 clock cycles to
update the heap sort table.

Each time a new entry has to be inserted into the heap
memory, the scheme depicted in Fig.2 is used. The new
finish time is inserted into the 16-bits “level register” and
the memory data from the same level is loaded. If any of
the four entries is empty (‘E’ bit in the scheme) then this
space is selected to store the new data. Otherwise, it
compares the value of the new entry with the other 4 finish
times and if any of them is smaller (and the lower entries
are not full; ‘F’ in the scheme) then the new entry is
inserted into this space and the previous one is forwarded
to the next-level register. If the new entry is bigger than all
of the values in the memory then the new entry is
forwarded to the next-level register. The current design can
support up to 341 queues (1+4+16+64+256 =341 elements;
each row of the table holds 4 elements). A similar heap
sort has been used to sort the start time of the queues. But
in this case, the minimum start time does not have to be
extracted from the table.

<

<

<

<

PE

Level
Register

Mem
Fin_t_1

Mem
Fin_t_2

Mem
Fin_t_3

Mem
Fin_t_4

E2

F1

F2

F3

F4

E3
E4

E1

Addr1
Addr2
Addr3
Addr4

Addr

Fig. 2. The WF2Q+ address generator

. . . .

. . . .

WF2Q+
Controller

Queue Finish
Heap

Memory
0

86

QueueID

Queue Start
Heap

Memory
0

86

QueueID

.

.

.

QueueID
to MemAddr

0

86

QueueID

Addr

Queue
Table

Min
Finish
Time

Min
Start
Time

Selected
QueueID

min

&5&4&3&21

- - -

&6 &7 &8 &9

QueueID Finish Time

16bits 16bits

. . . .

. . . .

min

&5&4&3&2

- - -

&6 &7 &8 &9

Fig. 3. The WF2Q+ scheduler

Table 1. Resource allocation

Unit Slices BRAMs
Table Controller 127 8
DWRR 86 1
WF2Q+ 2206 5

The scheduler only reads the minimum start time but it

does not extract it from the table. Each time a queue is
selected from the Finish Time Table, the corresponding
Start time entry must be deleted from the Start time table.
Hence, a small Look-Up Table is used to map the QueueID
to the address of the Start time Table as it is shown in Fig.
3. Thus, the time to update the Start Time Table takes 1-5
clock cycles.

The current design has been implemented into a Xilinx
Virtex-II Pro XC2VP30 Platform. The design methodology
for partially dynamically reconfigurable designs was used
to floorplan the system [8]. The system was partitioned
into a static and a reconfigurable area. The signals that are
used for the communication of the static and the
reconfigurable area have to be placed using specific tri-
state buffers (bus macros). The signals that are used in this
design are the signals for the second port of the Queue
Table, the signals to read the active queue FIFO and the
selected QueueID (12 bits). Table 1 illustrates the
resources that each unit occupies.

3. PERFORMANCE EVALUATION

The main drawback of dynamic reconfiguration is the
timing overhead, because during the reconfiguration the
part of the device that is being reconfigured can not be
used. This overhead would cause too much delay in the
packets waiting to be transmitted. In addition, the
implementation of the schedulers shows that the DWRR
occupies much less area than the WF2Q+ scheduler. Hence,
when the DWRR scheme is selected, the remaining area
would be empty. Thus, in our design the DWRR scheme is
used in the static area, while the WF2Q+ scheme is placed
in the reconfigurable area as a page-able IP module. When
the DWRR is used this spare area can be used for other IP
modules such as encryption or compression units used in
common network processing applications. In this case we
examine the overhead of the dynamic reconfiguration in
the allocation of the bandwidth, during the transfer of the
scheduler from DWRR to WF2Q+ and vice versa. In the
first case, when the system switch to the WF2Q+ algorithm
then the scheduler configures all the active queues as if
they have just arrived in the system (virtual time = 0, start
time=0, finish time = start time + size/weight). In the
second case, the DWRR counter for all the active queues is
set to zero.

Fig. 4 shows the impact of the dynamic reconfiguration
overhead in the allocation of the bandwidth for the DWRR
and the WF2Q+ scheduler for several active queues (32-
256 for the WF2Q+ and 100-1000 for the DWRR) using
uniform distributed random packet sizes. The figure shows
the difference in the band-width allocation between the
ideal allocation (GPS) and the real allocation for several
thresholds of reconfiguration. In the case of the DWRR
scheduler, when the dynamic reconfiguration takes place
after 1000 or 2000 packets then the error in bandwidth
allocation varies from 0.02% to 0.06%. If the network is
more stable, e.g. the number of active queues does not
change very often, the error in bandwidth allocation
becomes almost negligible. For example, if the number of
active queues changes at least every 5000 packets then the
error in bandwidth allocation is almost 0.01% which is
almost the same to the static version in which a DWRR
scheduler is always used.

In the case of the WF2Q+ scheduler, the impact of the
reconfiguration is also negligible (0.01% to 0.04%) in the
bandwidth allocation, as it is shown in Fig. 4. This scheme
also shows that both of the scheduler can allocate quite
accurately the bandwidth, since the error in bandwidth
allocation for the static version is almost 0.01% compared
to the ideal case, although in terms of latency the WF2Q+
outperforms the DWRR according to [1]. It is obvious that
a network topology in which the number of active queues
changes more rarely (more than every 10000 packets,
which is a logical assumption according to [9]) then the
impact of the reconfiguration would be infinitesimal.

BW allocation error for WF2Q+, DWRR

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07

32 64 128 256 100 200 500 1000

Active Queues

%
 B

W
 D

iff
er

en
ce

1000
2000

5000

Static

WF2Q+ DWRR

Fig. 4. Bandwidth allocation error

4. CONLUSIONS

In this paper we investigate the use of dynamic
reconfiguration to adapt the queue scheduler of a network
processing unit to the requirements of the active queues.
As it is shown, the overhead of the reconfiguration causes
almost no performance degradation in terms of bandwidth
allocation, while the use of different schedulers has a
major impact on the delay and the jitter for several
applications [1, 2]. The timing overhead of the dynamic
reconfiguration can be overcome using the DWRR as a
static scheduler, hence the transfer of the scheduler from
the DWRR to the WF2Q+ scheduler can be achieved in
only one clock cycle, when the reconfiguration of the
module will be over. This paper shows that the dynamic
reconfiguration of the current FPGAs can improve the
performance of the network devices in terms of scheduling
accuracy when they are used efficiently by trying to adapt
to the varied number of active queues.

REFERENCES

[1] C. Semeria, “Supporting Differentiated Service Classes:

Queue Scheduling Disciplines, White Paper, Juniper
Networks, Inc. Dec. 2001

[2] “Congestion Management Overview”, White Paper, Cisco,
Inc.

[3] “Bringing Comprehensive Quality of Service Capabilities to
Next-Generation Networks”, White Paper, Freescale
Semiconductors, Inc.

[4] J.C.R. Bennet, H.Zhang, “Hierarchical Packet Fair Queuing
Algorithms”, in Proc. ACM SIGCOMM’96, pp. 675-689,
August 1996

[5] D. Comer, “Network System Design using Network
Processors”, Pearson Prentice Hall, 2004

[6] H. Fallside, “Queue Manager Reference Design”,
Application Note 511, Xilinx Inc., March 2004

[7] M. Shreedhar, G. Varghese, “Efficient Fair Queuing using
Deficit Round Robin”, in Proc. ACM SIGCOMM’95, Vol.
25, No. 4, pp.231-242, October 1995

[8] “Two flows for partial reconfiguration: Module based or
Difference Based”, Application Note, Xilinx Inc., September
2004

[9] K. Thompson, G. Miller, R. Wilder, “Wide-Area Internet
Traffic Patterns and Characteristics”, IEEE Network, vol. 11,
no.6, Nov.-Dec. 1997

