
Rescheduling for Optimized SHA-1 Calculation

Ricardo Chaves1,2, Georgi Kuzmanov2, Leonel Sousa1, and Stamatis
Vassiliadis2

1 Instituto Superior Técnico/INESC-ID. Rua Alves Redol 9, 1000-029 Lisbon,
Portugal. http://sips.inesc-id.pt/

2 Computer Engineering Lab, TUDelft. Postbus 5031, 2600 GA Delft,
The Netherlands. http://ce.et.tudelft.nl/

Abstract. This paper proposes the rescheduling of the SHA-1 hash
function operations on hardware implementations. The proposal is mapped
on the Xilinx Virtex II Pro technology. The proposed rescheduling allows
for a manipulation of the critical path in the SHA-1 function compu-
tation, facilitating the implementation of a more parallelized structure
without an increase on the required hardware resources. Two cores have
been developed, one that uses a constant initialization vector and a sec-
ond one that allows for different Initialization Vectors (IV), in order
to be used in HMAC and in the processing of fragmented messages. A
hybrid implementation is also proposed. Experimental results indicate
a throughput of 1.4 Gbits/s requiring only 533 slices for a constant IV
and 596 for an imputable IV . Comparisons to SHA-1 related art suggest
improvements of the throughput/slice metric of 29% against the most
recent commercial cores and 59% to the current academia proposals.

1 Introduction

In current days, cryptography systems are the support for many innovations
in both the industrial and the private sectors, being used from high security
demanding applications, such as in banking transactions, to low security appli-
cations, like television. Three major classes of encryption algorithms exist: public
key algorithms, symmetric key algorithms, and hash functions. While the first
two are used to encrypt and decrypt data, the hash functions are unidirectional
and do not allow the processed data to be retrieved. They are however extremely
useful in data authentication and message integrity checks. Currently the most
common hash functions are the MD5 and the SHA-1.Collision attacks have been
found for both hash functions, however, while for MD5 they are computationally
feasible on a standard desktop computer [1], the current SHA-1 attacks still re-
quire a massive computational power [2] (around 269 hash operations), making
it unfeasible in practical attacks for the time being.

Hash functions have the particularity of generating a small fixed length out-
put value, the digest message or hash value, that is highly correlated with the
input data, which can be significantly larger (up to 264 bits). The most important
characteristics of these functions is the fact that virtually no information about

2

the input data can be obtained from the outputted hash value.An adequate hash
function has a very low probability of two different input data streams generat-
ing the same hash value. The Secure Hash Algorithm 1 (SHA-1) was approved
by the NIST in 1995 as an improvement to the SHA-0, and is currently used in
the main security applications, such as SSH, PGP, and IPSec.

As shown in the next section, the SHA-1 computational structure is quite
strait forward and with a big data dependency, not allowing for efficient pipelin-
ing. Some works improve the SHA-1 computational throughput by unrolling
the calculation structure, causing a significant increase on the required hard-
ware [3, 4]. The fully rolled architecture proposed in this paper, achieves a high
throughput of the SHA-1 calculation via the rescheduling of some operations,
with a minimal area increase. The proposed SHA-1 core has been implemented
within the reconfigurable co-processor of a Xilinx Virtex II Pro MOLEN proto-
type [5].Implementation results of the proposed SHA-1 core indicate:

– A throughput of 1.4 Gbits/s with 533 Slices (2.7 Mbps per slice);
– An efficiency improvement to related art by 29% to 59%.

The hybrid implementation results indicate:

– 150x speedup with respect to the software implementation;
– 670% improvement to related art;

The paper is organized as follows: Section 2 presents an overview on the
SHA-1 hash function and its computational characteristics. Section 3 describes
the proposed architecture and the computational rescheduling of the SHA-1 core
and the block expansion. Section 4 presents the obtained experimental results
and compares them to other state-of-the-art SHA-1 implementations, both from
academia and commercial companies. Section 5 concludes this paper with some
final remarks.

2 SHA-1 Hash function

In 1993 the Secure Hash Standard (SHA) was first publishes by the NIST,
however some weakness were found and in 1995 a revised algorithm was pub-
lished [6].This revised algorithm is usually referenced as SHA-1. The SHA-1
produces a single output message digest (the output hash value) of 160-bit from
an input message. The input message is composed by multiple blocks of 512 bits
each. Afterwards, the input block is expanded into 80 32-bit words (denoted
as Wt), one 32-bit word for each round of the SHA-1 processing. Each round
computation comprises additions and logical operations, such as bitwise logi-
cal operations (in ft) and bitwise rotations to the left (denoted by RotLi), as
depicted in Figure 1.

The function (ft) calculation depends on the round being executed, as well as

3

+ + +

RotL30

ft

E

D

C

B

A

E

D

C

B

A

Wt

Kt

32

32

32

32

32

32

32

3232

32

32

RotL5

32

Fig. 1. SHA-1 Round calculation

the value of the con-
stant Kt; the SHA-1 80
rounds are divided into
four groups of 20 rounds
each. Table 1 presents the
values of Kt and the logi-
cal function executed, ac-
cording to the round. In
this Table, ∧ represents
the bitwise AND opera-
tion and ⊕ represents the
bitwise XOR operation.

The initial values of
the A to E variables in the
beginning of each data
block calculation corre-
spond to the value of
the current 160-bit hash

value, H0 to H4. After the 80 rounds have been computed, the A to E 32-
bit values are added to the current Hash values. The Initialization Vector (IV)
of the hash value for the first block is a predefined constant value. The out-
put digest message is the final hash value, after all the data blocks have been
computed. To better illustrate the algorithm a pseudo code representation is
depicted in Figure 2. In some higher level applications such as the keyed-Hash

Table 1. SHA-1 functions and constants

Rounds Function Kt

0 to 19 (B ∧ C)⊕ (B ∧D) 0x5A827999
20 to 39 B ⊕ C ⊕D 0x6ED9EBA1
40 to 59 (B ∧ C)⊕ (B ∧D)⊕ (C ∧D) 0x8F1BBCDC
60 to 79 B ⊕ C ⊕D 0xCA62C1D6

Message Authentication Code (HMAC) [7] or when a message is fragmented, the
initial hash value (IV) may differ from the constant specified in [6].

Data block expansion: In the SHA-1 algorithm the computation described
in Figure 1 is performed 80 times (rounds), in each round an 32-bit word obtained
from the current data block is used. However, each data block only has 16 32-
bits words, resulting in the need to expand the initial data block to obtain the
remaining 64 32-bit words. This expansion is performed by computing (1), where
M

(i)
t denotes the first 16 32-bit words of the i-th data block.

Wt =





M
(i)
t 0 ≤ t ≤ 15

RotL1(Wt−3 ⊕Wt−8 ⊕Wt−14 ⊕Wt−16) 16 ≤ t ≤ 79
(1)

4

for for each data block do

Wt = expand(data block)
a = H0 ; b = H1 ; c = H2 ; d = H3 ; e = H4

for t= 0, t≤79, t=t+1 do
Temp = RotL5(a) + ft(b,c,d) + e + Kt + Wt

e = d
d = e
c = RotL30(b)
b = a
a = Temp

end for

H0 = a + H0 ; H1 = b + H1 ; H2 = c + H2

H3 = d + H3 ; H4 = e + H4

end for

Fig. 2. Pseudo Code for SHA-1 function.

In order to assure
that the input mes-
sage is a multiple of
512 bits, as required
by the SHA-1 algo-
rithm, it is necessary
to pad the original
message. This mes-
sage padding also
comprises the inclu-
sion of the origi-
nal message dimen-
sion to the padded
message, which can
be used to validate
the size of the orig-
inal message.

3 SHA-1 implementation

As depicted in Figure 1, the computational structure of the SHA-1 algorithm is
rather strait forward. However, in order to compute the values of one round the
values from the previous round are required. This data dependency imposes a
sequentiality in the processing, preventing parallel computation between rounds.
The only parallelism that can be efficiently explored is in the operations of each
round. Some approaches [3] attempt to speedup the processing by unrolling
the computation. With this technique, a speedup can be achieved, since the
computation is performed as soon as the data becomes available. However, this
approach carries with it a mandatory increase in the required circuit area. Other
approaches, like [4], even try to increase the throughput via the usage of a
pipelined structure. This however, makes the core unusable in real applications,
since one data block can only be processed when the previous one has been
concluded, due to the data dependency of the algorithm.

In this paper, we propose a functional rescheduling of the SHA-1 hardware
units, in order to obtain the throughput increase of the unrolled architectures,
while maintaining the hardware requirements identical to the fully folded ones.

Operations rescheduling: From Figures 1 and 2 it can be seen that the
bulk of the SHA-1 round computation is oriented for the A value calculation.
The remaining values do not require any computation, apart from the rotation
of B, there values are given by the previous value of the variables A to D.

Given that the value of A is calculated with the addition of the previous
value of A along with other values, no parallelism can be exploited due to the
data dependency, as depicted in (2).

At+1 = RotL5(At) + [f(Bt, Ct, Dt) + Et + Kt + Wt] (2)

5

CPA
+

ft

Et

Dt

Ct

Bt

M
U
X

MUX

KtWt

CSA

+

St-1 ßt-1

H0

0

St

ßt

Bt

Ct

Dt

H4

M
U
X

Dt+1

H3

At

M
U
X

Bt+1

H1

H0

M
U
X

Ct+1

H2

At

Et+1

Dt+1

Bt+1

Ct+1

At At-1

St-1

ßt-1

Et+1

+H3

M
U
X

Dt

IV3

H3

enb3

M
U
X

IV0 H0

enb0

+H4

M
U
X

Et

IV4

H4

enb4

+H1

M
U
X

Bt

IV1

H1

enb1

+H2

M
U
X

Ct

IV2

H2

enb2

RotL5

reset

reset

RotL30

RotL5

Fig. 3. SHA-1 rescheduling and internal structure

Nevertheless, since only the parcel RotL5(At) of (2) depends on the variable At,
and all remaining parcels depend on variables that require no computation and
do not depend on the value of At, some pre-computation can be performed. In 3
the parcel of (2) that does not depend of the value A is pre-computed, producing
the carry (βt) and save (St) vectors of the partial addition. The following holds:

St + βt = f(Bt, Ct, Dt) + Et + Kt + Wt (3)

The calculation of the value of At, when part of its value is pre-computed on the
previous computational cycle, as described in the following:

At = RotL5(At−1) + (St−1 + βt−1) (4)
St + βt = f(Bt, Ct, Dt) + Et + Kt + Wt

By splitting the value A computation and rescheduling it to different computa-
tional cycles, the critical path of the SHA-1 algorithm is significantly reduced.
Since the calculation of the function f(B,C, D) and the partial addition are no
longer in the critical path, the critical path of the algorithm is reduced to a 3 in-
put adder and some additional selection logic, as depicted in Figure 3. With this
rescheduling an additional clock cycles is required since in the first clock cycle
the value A is not calculated, since A−1 is not used) and in the last additional
cycle the values B81, C81, D81, E81 are also not used. This extra additional cycle
however, will be masked in the calculation of the value of the hash of each data
block, as explained below.

After the 80 rounds of the SHA-1 algorithm for each data block, the final value
of the internal variables (A to E) is added to the current hash value H, which
remains unchanged until the end of each data block calculation, as depicted in

6

Figure 2. This final addition is performed by one adder for each 32 bits of the
160-bit hash value. The addition of the value H0, however, is performed directly
in the round calculation, in the CSA adder. With this option, an extra full adder
is saved and the H0 value calculation, that depends on the value A, is performed
with less one clock cycle. Thus the calculation of all the hash value is concluded
in the same cycle and the additional clock cycle caused by the value A calculation
rescheduling is masked.

Hash value initialization: For the first data block the internal hash value
has to be initialized, this is performed by adding the Initialization Vector (IV)
with zero. This zero value is generated by resetting the internal values registers.
This value is afterwards loaded to the internal values (B to E), through a mul-
tiplexer. Once more the value A initialization is performed in a distinct form in
order to maintain the critical path as small as possible. In this case the value of
H0 is not set to the register A, instead the value A is set to zero and the value
of H0 directly introduced into the value A calculation, as described in (5).

S0+β0 =f(BH1 , CH2 , DH3)+EH4 +K0+W0+RotL5(H0)

A1 = RotL5(A0) + (S0 + β0) = RotL5 (0) + (S0 + β0) (5)

The IV can be the constant value defined in [6] or application dependent, e.g.
the HMAC or in hashing fragmented messages. In this first case the multiplexer
that does the selection between the IV and the current hash value, can be
removed and the constant value set with the set/reset signals of the hash value
registers.

In order to minimize the power consumption of the this SHA-1 core the
internal registers are disabled when the core is not being used, thus reducing the
amount of internal switching.

Data block expansion: As previously mentioned, the 512 bits of each data
block has to be expanded in order for the 80 32-bit words (Wt) to exist. Since
this expansion has to be performed for each data block,(1), it becomes more
efficient to perform this operation in hardware. The implementation of the data
block expansion described in (1), can be summarized to: delays, implemented by
registers, and XOR operations. Finally the output value Wt is selected between

Mt

MUX

Wt

LoadWi

...

Wt-1

Wt-6

Wt-12

Wt-14

RotL1

Fig. 4. Register based SHA-1 block expansion

the original data block,
for the first 16 words,
and the computed val-
ues, for the remaining val-
ues. Figure 4 depicts the
implemented structure. It
should be noticed that
part of the delay regis-
ters have been placed af-
ter the calculation, in or-
der to eliminate this com-
putation from the critical
path, since the value Wt

7

is connected directly to the the SHA-1 core. The 4-bit XOR computation is a
well suited operation for the 4-bit LUT, present in most CLBs of the Xilinx
FPGAs. The one bit left rotate operation can be implemented directly in the
routing process, not requiring additional hardware.

SHA-1 polymorphic processor: To create a practical platform to use and
test the developed SHA-1 core, a wrapping interface has been added in order
to integrate this units in the MOLEN polymorphic processor. The MOLEN

Power

PC

Main Data

Memory

XREG
Address

Data

64

Data Bus

Start

Stop

Address

64

Control

Unit

Arbiter

Instruction
Memory

SHA-1 CCU Molen

SHA-1
core

Data Block
Expansion

LoadWi

Wi

160

64

160

32

StartCore

Write IV

IV

finish

Hash

64

Control
signals

64

Fig. 5. SHA-1 polymorphic implementation

paradigm [5] is
based on the co-
processor architec-
tural paradigm, al-
lowing the usage
of reconfigurable
custom designed
hardware units. In
this computational
approach, the non
critical part of
the software code
is executed on a
General Purpose
Processor (GPP)
while the critical
part, in this case
the SHA-1 com-
putation, is exe-
cuted on the Cus-

tom Computing Unit (CCU).Since the hardware implemented function is called
as a standard software function, the software development costs are minimal.
Like in a software function, the code for the parameters passing though the
XREG is included by the compiler [5].

4 Performance analysis and related work

In order to compare the architectural gain of this operation rescheduling with the
current related art, the resulting core has been implemented in a Xilinx VIRTEX
II Pro (XC2VP30-7) using the ISE (6.3) Xilinx tools. A CCU using this SHA-1
core has also been designed for the MOLEN polymorphic processor [5]. This
polymorphic architecture uses the FPGAs embedded PowerPC running at 300
MHz, with a main data memory running at 100 MHz.

SHA-1 core: The SHA-1 core has also been implemented on a VIRTEX-E
(XCV400e-8) device (Our-Exp.), in order to compare the proposed core with the
folded and the unfolded design proposed in [3]. The presented results in Table 2
for the VIRTEX-E device are for the SHA-1 core with a constant initialization
vector and without the data block expansion module. When compared with the

8

Table 2. SHA-1 core performance comparisons

Design Lien [3] Lien [3] Our-Exp. CAST [8] Helion [9] Our–Cst. Our+IV

Device Virtex-E Virtex-E Virtex-E XCV2P2-7 XCV2P-7 XCV2P30-7 XCV2P30-7
Expansion no no no yes yes yes yes
IV cst. cst. cst. cst. cst. cst. yes
Slices 484 1484 388 568 564 533 596
Freq. (MHz) 103 73 135 127 194 230 227
TrPut.(Mbps) 659 1160 840 802 1211 1435 1420
TrPut/Slice 1.4 0.8 2.2 1.4 2.1 2.7 2.4

folded SHA-1 core proposed in [3], a clear advantage can be observed in both area
and throughput. Experimentations suggest 20% less reconfigurable hardware
occupation and 27% higher throughput, resulting in a 57% improvement on the
throughput/slice metric, by adopting the proposed SHA-1 core. When compared
with the unfolded architecture, the proposed core has a 28% lower throughput,
however the unrolled core proposed in [3] requires 280% more hardware, resulting
in a low throughput/slice, 2.75 times smaller than the core proposed in this
paper.

Table 2 also presents the SHA-1 core characteristics for the VIRTEX II Pro
FPGA implementation. Both the core with a constant initialization vector (Our–
Cst.) and the one a variable IV initialization (Our+IV) are presented. These
results also include the data block expansion block. The results are compared in
Table 2 with the related art, including the most recent and efficient commercial
SHA-1 cores known by the authors.

When compared with the leading market SHA-1 core from Helion [9], the
proposed architecture requires 6% less slices while achieving throughput 18%
higher. These two results originate a gain on the throughput/slice metric of
about 29%.

For the SHA-1 core capable of receiving a IV other than the constant spec-
ified in [6], a slight increase in the required hardware occurs. This is due to the
fact that the IV can no longer be set by the set/reset signals of the registers.
This however has a minimal effect in the cores performance, since this loading
mechanism is not located in the critical path. The decrease of the through-
put/slice metric to 2.4 caused by the additional hardware for the IV loading is
counterbalanced by the capability of this SHA-1 core (Our+IV) to be used in
Message Authentication applications, like the HMAC, and in the processing of
fragmented messages.

Polymorphic SHA-1 implementation: For this Polymorphic implemen-
tation of the SHA-1 hash function, the core (Our+IV) with Initial Vector loading
has been used.Implementations results of the SHA-1 CCU indicate a device occu-
pation of 813 slices (see Table 4). After receiving the start signal, the SHA-1 CCU
starts by reading from the exchange register the location in the main data mem-
ory of the initialization vector (IV) and after this the value of IV is read from
the memory. While reading the IV from the memory, the control units also reads
from the exchange register the begin and end addresses of the data to be hashed.

9

Table 3. SHA-1 polymorphic performances
Hardware Software

(Mbps) (Mbps) Kernel
Bits Cycles ThrPut Cycles ThrPut SpeedUp

512 396 389 38280 4.01 97
1024 642 479 76308 4.03 119
128k 63126 623 9766128 4.03 155

Once the SHA-1 CCU has
been initialized it goes into a
loop where, it reads a 512 bit
block from the main memory
and computes the hash func-
tion. This loop is repeated un-
til the current data address
becomes equal to the data
end address read from the
exchange register. Upon con-

clusion, the 160 bits of the digest message are written to memory. Since
the SHA-1 CCU is working at the main data memory maximum fre-
quency, which is approximately half of the SHA-1 maximum frequency. Ta-
ble 3 presents the comparison between the purely software implementa-
tion of the SHA-1 hash function and the MOLEN polymorphic approach.

Table 4. Hybrid SHA-1
Design Lu [10] Our+IV

Device XCV2P100 XCV2P30-7
Slices 34411 813
Freq. (MHz) 145 100
TrPut.(Mbps) 304 624
TrPut/Slice 0.1 0.77

Even though the SHA-1 algorithm
can be efficiently implemented in soft-
ware, achieving a throughput above 4
Mbit/s, the usage of this hybrid ap-
proach allows for a speedup up to 150
times. Note that for data streams with
only a few data blocks, a lower speedup
is obtained, this is due to the initial over-
head required for the SHA-1 CCU ini-
tialization. Even so, a speedup of ap-
proximately 100 times is still achieved

for the worst case usage. For data streams with several data blocks, the achieved
speedup tends to 150 times. If throughputs above 623 Mbit/s are required, the
SHA-1 core can operate at a different frequency than the main data memory.
Since the SHA-1 only reads from the memory 20% of the time, a buffer can be
used in order to compensate the lower frequency of the memory. This technique
requires a more complex hardware structure and additional hardware resources.

This hybrid computational approach is compared with the related art in [10].
As depicted in Table 4, the proposed implementation is able to achieve a 100%
higher throughput with significantly less hardware resources, thus a 670% better
throughput/slice metric is obtained.

5 Conclusion

The proposed rescheduling in the SHA-1 function operations allows the computa-
tion of each round of the algorithm in two distinct clock cycles. This reschedul-
ing permits the exploration of parallelization technics, without increasing the
required hardware. With the merging of the calculation of the final value of the
1 Synthesis results for the SHA-1 core only. An estimated value for the slice utilization

has been used, for a ratio of 0.58 Slices per LUT, obtained in our SHA-1 core.

10

lower bits of the digest message (H0) with the round computation of the value
A, the extra cycle created by the reschedule is concealed, thus not affecting the
average throughput. Two SHA-1 cores have been developed, one that uses a con-
stant IV and a second one that allows for different initialization vectors, in order
to be used in HMAC and in the processing of fragmented messages. The core
with the IV loading requires some additional hardware for the registers initial-
izations, this however does not influence the throughput since it is not located
in the critical path. A polymorphic SHA-1 processor has also been proposed,
capable of speeding up the hash function computation by 150%, when compared
to a fully software implementation running on a PowerPC at 300MHz, at a cost
of 5% occupation of a VIRTEX II Pro 30 (833 slices). When compared to a four
loop unfolded architectures, the proposed core is only 28% slower, compensated
by the fact that it requires 74% less logic, thus having a throughput/slice metric
172% higher. To our best knowledge the proposed core is 18% faster that any
commercial SHA-1 core and academia folded art, while achieving a reduction
on the required hardware. These two factors result in an improvement of the
throughput/slice metric of 29% when compared with commercial products and
59% to the current academia art. The proposed core achieves a throughput of
1.4Gbits/s with 4% occupation of the used device (533 slices).
Evaluation prototype: An evaluation prototype of the hybrid SHA-1 processor
is available for download at: http://ce.et.tudelft.nl/MOLEN/aplications/SHA/

References

1. Klima, V.: Finding MD5 collisions a toy for a notebook. Cryptology ePrint
Archive, Report 2005/075 (2005)

2. Wang, X., Yin, Y.L., Yu, H.: Finding collisions in the full sha-1. In Shoup, V., ed.:
CRYPTO. Volume 3621 of Lecture Notes in Computer Science., Springer (2005)
17–36

3. Lien, R., Grembowski, T., Gaj, K.: A 1 Gbit/s partially unrolled architecture of
hash functions SHA-1 and SHA-512. In: CT-RSA. (2004) 324–338

4. Sklavos, N., Alexopoulos, E., Koufopavlou, O.G.: Networking data integrity: High
speed architectures and hardware implementations. Int. Arab J. Inf. Technol. 1(0)
(2003)

5. Vassiliadis, S., Wong, S., Gaydadjiev, G.N., Bertels, K., Kuzmanov, G., Panainte,
E.M.: The Molen Polymorphic Processor. IEEE Transactions on Computers 53(11)
(2004) 1363–1375

6. NIST: Announcing the standard for secure hash standard, FIPS 180-1. Technical
report, National Institute of Standards and Technology (1995)

7. NIST: The keyed-hash message authentication code (HMAC), FIPS 198. Technical
report, National Institute of Standards and Technology (2002)

8. CAST: SHA-1 Secure Hash Algorithm Cryptoprocessor Core.
http://http://www.cast-inc.com/ (2005)

9. HELION: Fast SHA-1 Hash Core for Xilinx FPGA. http://www.heliontech.com/
(2005)

10. Lu, J., Lockwood, J.: IPSec Implementation on Xilinx Virtex-II Pro FPGA and
Its Application. In: Proceedings. 19th IEEE International Parallel and Distributed
Processing Symposium. (2005) 158b – 158b

