
SAD Prefetching for MPEG4 Using Flux Caches

Georgi N. Gaydadjiev and Stamatis Vassiliadis

Computer Engineering Laboratory,
Electrical Engineering, Mathematics and Computer Science Dept.,

EEMCS, TU Delft, The Netherlands
G.N.Gaydadjiev, S.Vassiliadis@ewi.tudelft.nl

http://ce.et.tudelft.nl

Abstract. In this paper, we consider flux caches prefetching and a me-
dia application. We analyze the MPEG4 encoder workload with realistic
data set in a scenario representative for the embedded systems domain.
Our study shows that different well known data prefetch mechanisms
can gain little reduction in the cache miss ratios when applied on the
complete MPEG4 application. Furthermore, we investigate the potential
improvement when dedicated prefetching strategies are applied to the
sum of absolute differences (SAD) kernels in MPEG4. We propose a flux
cache mechanism that dynamically invokes cache designs with dedicated
prefetching engines that can fully utilize the available memory band-
width. We show that our proposal improves the cache miss ratios by a
factor close to 3x.

Keywords: Flux caches, Prefetching mechanisms, Reconfigurable archi-
tectures, Multimedia.

1 Introduction

Flux caches [1] have been proposed as a microarchitectural alternative hardware
mechanism for improving the performance of memories when compared to the
hardwired caches. They are based on two main assumptions. The first assump-
tion regards the availability of technologies that can be reconfigured before and/or
during program execution. The second assumption regards the changing memory
access behavior from program to program and during program execution. Flux
caches are cache hierarchy designs that change dynamically their hardware orga-
nization to capture the memory access requirements of a given program/program
execution. Flux caches assume implicit and explicit dynamic cache calls to
“redesign and place” new hardwired caches instead of having permanent and un-
changeable caches. In order to establish the validity of the approach, this paper as-
sumes a real application and considers prefetching- one of the cache design aspects.
Our experiments with some well know prefetching mechanisms and dynamic exe-
cution suggest that the above conjunctures hold true. For the mechanisms consid-
ered we also provide guidelines of how to design a Flux cache for sum of absolute
differences (SAD) prefetching in MPEG4. It is noted that our investigation is not
intended to propose a novel cache prefetching mechanisms but it is rather focusing
on cache adaptation to ”fit” the application behavior.

S. Vassiliadis et al. (Eds.): SAMOS 2006, LNCS 4017, pp. 248–258, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



SAD Prefetching for MPEG4 Using Flux Caches 249

The contributions of this paper can be summarized by the following:

– A careful investigation of the memory behavior of a real-life MPEG4 encod-
ing application working on a representative workload;

– Identification of potential kernels that can benefit from a dedicated prefetch
method;

– Special Flux cache organization to fully utilize the available main memory
bandwidth;

– Improvement of the cache miss ratios by a factor close to 3x.

The rest of this paper is organized as follows: Section 2 briefly reviews the
most relevant related work on prefetching. Section 3 describes our experimental
methodology and introduces the MPEG4 flux cache design for optimal prefetch-
ing of SAD8 and SAD16 data. In Section 4 the performance results that support
our idea are described. Finally, the discussion is concluded in Section 5.

2 Background

Fig. 1. Flux cache

In this section we will provide only the background in-
formation needed directly in the reminder of this paper.
It introduces the two major parts used in our work: the
flux cache concept and a very brief classification of cache
data prefetch mechanisms. This is mainly due to space
limitations and the fact that cache prefetching techniques
have been a topic of research for numerous years. The in-
terested reader can refer to overview papers such as [2, 3]
where an elaborated discussion is presented. In addition,
due to the subject we investigate, our background infor-
mation on cache prefetching will be limited to the data
cache prefetching only.

Flux caches: Flux caches are fully customizable memory
levels, envisioned for reconfigurable hardware implemen-
tation, that can be instantiated on demand. The flux cache reconfiguration can
be performed before or during program execution. Implementations of arbitrary
hardware cache design can be ”programmed” under software or hardware con-
trol at runtime. The specific flux cache implementations are pre-determined at
hardware/software co-design stage, i.e. by using application partitioning, moni-
toring, profiling or else. In its general form flux caches would require additional
ISA support, however it has being shown that this is not always necessary, e.g.
as in the MOLEN [4] polymorphic processor case (see [1]). The reconfiguration
of the intended cache design is expected to introduce some reconfiguration over-
head, although the benefits of using the flux cache during program execution
are likely to compensate for it. The general flux cache organization is depicted
in Figure 1.

The three main components of a flux cache are: the arbiter, the control unit and
the reconfigurable HW area available for different cache instantiations. The flux
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cache parameters are usually implicit, however explicit calls (as it will be shown
later in this text) can also be used. There is essentially a single put phase initiated
by the arbiter after detection of a put instruction that interrupts the processor
program flow until the hardware configuration is completed. The put instruction
will be redirected to the control unit and interpreted accordingly. More precisely,
the configuration microcode located at the targeted address will be loaded into
the configuration memory to ensure the flux cache hardware structure. After the
cache reconfiguration is completed (and all valid tags of the ”new” cache are in-
validated) the execution of the processor will continue with the execution of the
next instruction keeping the processor execution consistency intact.

Prefetching for Data Caches classification: Prefetching has been exten-
sively considered to improve cache performance. Data cache prefetching mecha-
nisms the subject of our investigation can be divided into three major classes:
Software, Hardware and Hybrid HW/SW data prefetching schemes. The soft-
ware data prefetching has the potential of issuing requests for only the data that
is expected to be used. This is due to the ability to have an application wide
(compiler) view. The major drawbacks of the software data prefetching are the
additional prefetch instructions overhead, the inability of the compiler to esti-
mate run-time cache miss latencies and difficulty with prefetching of addresses
unknown at compile time, e.g. pointer references. The hardware approaches have
a zero processor overhead and direct access to run-time (latency) information.
In addition, it has been shown that problems inherent to hardware prefetching
such as memory bandwidth contention and cache pollution can be addressed ef-
fectively [5]. On the other hand, the hardware has no direct knowledge of future
references and usually operates within a very limited scope. Furthermore, the
hardware based mechanisms always trade between accuracy and coverage and
can only exploit structured data access patterns. As expected, the hybrid hard-
ware/software data prefetching approaches gain in popularity lately. A variety
of schemes have been proposed ranging from prefetching of very specific access
patterns to more generally applicable approaches [6, 7, 8, 9]. It should be noted
that work in this area is often focused on multiprocessor machines.

The application of the flux caches for prefetching can benefit from the advan-
tages of both the software and the hardware approaches. More precisely they can
combine the compiler knowledge on references far ahead of the SW techniques
with the zero processor overhead and run-time latencies awareness of the hard-
ware approaches. Because flux caches will be called on demand (dynamically)
multiple HW/SW schemes can coexist for single program execution. In addition,
in respect to the proposed hybrid approaches, our proposal do not involve any
additional ISA extension (see [1] for more information) and can instantiate any
of the previously proposed schemes. In the next section we will show how specific
memory intensive MPEG4 kernels can benefit form our approach. It should be
noted that although here we focus on regular array accesses only, similar schemes
can be applied for speeding up memory access to complex pointer structures
(i.e. recursive pointers), sparse matrices or for support of novel vectorization
mechanisms [10, 11].
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3 MPEG4 Encoder Prefetching Investigation

In this section, before focusing on the envisioned solution we provide discussion
of the methodology we used to perform our evaluation.

Methodology: We base our study on memory traces and the dinero IV [12]
trace driven cache simulator for L1 and L2. Although the traces used in this
study became rather huge (hundreds of gigabytes), we did not have the means
to perform direct hardware measurements - widely accepted as the second pre-
ferred method for cache performance evaluation [13]. The dinero style application
traces for this study where obtained using a modified in-order SimpleScalar 4.0
simulator [14].

As our benchmark we selected a complete MPEG4 encoder application and
a set of representative workloads. This in contrast with the widely used Medi-
abench and EEMBC benchmark suites that concentrate on small kernels and
limited datasets. In order to avoid library calls overhead we created a single sta-
tically linked executable based on xvidcore v.1.1.0 library and xvid encraw.c raw
format MPEG4 encoder. As dataloads we used five of the widely used video con-
ferencing test sequences: foreman, carphone, claire, miss america and grandma.
We obtained those from the Stanford Center for Image Systems Engineering web
site [15]. All video sequences used are in raw format, YUV concatenated with
sub-sampled UV components. The image dimensions are 144 lines x 176 pix-
els per line (or Quarter Common Intermediate Format (QCIF)) with 30 frames
per second as specified by ITU H.261 video conferencing standard [16]. The se-
quence lengths are: 400 (for foreman), 382 (carphone), 494 (claire), 150 (miss
america) and 870 (grandma) frames respectively. The produced MPEG4 output
is in ”raw” format m4v that was found sufficient for our study. We validated
the correctness of the compressed output by using ffmpeg [17]. We limited our
study to only five out of nine available sequences after we found that the data
loads play a minor role for the data miss ratios. As an example, the miss ratios
found vary from 0.26 (foreman) to 0.32 (claire) for exactly the same 2k direct
mapped data cache configuration. This is why only the best performing fore-
man.qcif encoding scenario will be considered in this study. This to investigate
our proposal under worst case conditions.

For our experimental cache we use 2k split instruction and data direct mapped
cache with 16 byte lines with no sub-blocks. This in attempt to evaluate the
effects of the proposed mechanisms instead of working at the noise levels. In
addition, we aim at a solution for simple embedded processors (without any
SIMD extensions) and MPEG4 encoding. The findings in the text hereafter are
general and will show similar relative improvements on arbitrary chosen realistic
data cache sizes, applications and workloads.

Performance Evaluation: To identify the potential targets that may benefit
from prefetching ”on demand” we used both code execution profiling as well
as memory trace analysis. Profiling results show that SAD8 and SAD16 are
responsible for 35.58% and 9.07% of the application cumulative execution time.
In addition, the memory trace analysis indicated that 39.7% of the total data
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Table 1. MPEG4 encoder cache miss ratios and memory fetches

miss ratios fetches
demand prefetch total prefetch total

always 0.265 0.2501 0.2582 1,754,619,345 3,822,878,836
load 0.2682 0 0.2682 0 2,068,259,491
miss 0.2649 0.8399 0.3717 471,670,789 2,539,930,280
OBLa 0.2682 0 0.1451 1,754,619,345 3,822,878,836
tagged 0.2645 0.84 0.3756 494,668,112 2,562,927,603
on demand 0.2682 - 0.2682 - 2,068,259,491

a in dinero VI prefetch distance 1 with sub-block placement disabled

Fig. 2. SAD8 and SAD16 cache impact

memory reads are due to SAD8 (and 11.06% for SAD16) that makes both kernels
primary candidates for prefetch optimizations.

We first started with evaluation of the existing prefetch techniques imple-
mented in dinero IV. Table 1 depicts the miss ratios of a 2k/16bytes direct
mapped data cache for our executable and video sequence (MPEG4 encoder
and foreman.qcif). This table shows that the traditional prefetch strategies do
not have significant impact on the miss ratios for the considered workload. The
only strategy that shows some improvement (reduction from 26.8 down to 14.5
%) is the one block look ahead (OBL). This scheme initiates a prefetch of block
a + 1 when block a is accessed. Such behavior fits well with the memory access
patterns of the investigated MPEG4 kernels as will be shown later in this paper.
A major drawback of OBL (as in the case with always prefetch) is the doubled
number of main memory accesses compared to the ”no-prefetch” scheme pre-
sented in the last row of Table 1. The always prefetch (25.8%) performs very
similar to a cache design without any prefetch (26.8%), while the prefetch on
miss (37.2%) and the tagged prefetch (37.5%) show degradation in the miss
ratios for this particular application. The prefetch on load (26.8%) is applying
essentially the demand fetch policy (no prefetch) since we have not defined any
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sub-blocks in our experimental data cache. The latter fact will cause disabling of
the sub-block placement and respectively the load-forward-prefetch as explained
in the dinero IV documentation.

uint32_t sad8_c(const uint8_t * const cur,
const uint8_t * const ref,
const uint32_t stride)

{
uint32_t sad = 0;
uint32_t j;
uint8_t const *ptr_cur = cur;
uint8_t const *ptr_ref = ref;
for (j = 0; j < 8; j++) {

sad += abs(ptr_cur[0] - ptr_ref[0]);
sad += abs(ptr_cur[1] - ptr_ref[1]);
sad += abs(ptr_cur[2] - ptr_ref[2]);
sad += abs(ptr_cur[3] - ptr_ref[3]);
sad += abs(ptr_cur[4] - ptr_ref[4]);
sad += abs(ptr_cur[5] - ptr_ref[5]);
sad += abs(ptr_cur[6] - ptr_ref[6]);
sad += abs(ptr_cur[7] - ptr_ref[7]);
ptr_cur += stride;
ptr_ref += stride;

}
return sad;

}

Fig. 3. SAD8 C code

Next, we produced par-
tial memory traces to investi-
gate the relative behavior of
the SAD8 and SAD16 ker-
nels compared to the ”re-
minder” of the application
code. Again, we based out ex-
periments on the same cache
organization and size for the
sake of a common reference
for comparison. The main
question was how the differ-
ent parts of the investigated
workload will influence the
cache performance. The re-
sults are summarized in Fig-
ure 2. As it can be seen
on this figure, the identified
kernels perform worse than
the full application when us-
ing the same cache size. In
general, the ”overall” code
(/SAD16, read as not SAD16,
and /SAD8 on Figure 2)
shows a very minimal im-
provement of a couple of per-

cents compared to the complete application figures. Considering the significant
contribution of both kernels to the total number of MPEG4 encoder memory
reads, we took a closer look at their internal structure.

Fig. 4. SAD8 execution diagrams

The C-code of the SAD8
kernel is shown on Figure 3.
SAD16 loop has a similar
structure with twice as long
body and doubled number
of iterations. As it can be
seen the memory accesses
of the SAD operation are
predominately reads of ar-
ray elements. In addition, the
memory access pattern of the
complete loop is 100% deterministic and is basically predefined by the three
input parameters. This is an advantage that should be exploited.
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Please note that all software prefetching techniques will fail to fully schedule
the complete loop access pattern, since the stride is continuously adjusted from
call to call and not known at compile time. Although this loop can be optimized
by applying specific SIMD instructions (for ISA extensions like MMX, AltiVec
and 3DNow!), the memory bandwidth requirements will remain unchanged.

The solution: SAD Flux Cache. Taking into account that the stride is usually
much bigger than the cache line size, the SAD8 and SAD16 execution is envi-
sioned to involve many stall cycles due to the main memory latency as indicated
on Figure 4(a).

Fig. 5. SAD8 prefetch flux cache

In such case the proces-
sor is supposed to wait for
the main memory to provide
the requested data that is of-
ten not resident in the cache.
Please note that by process-
ing we mean the execution of
all instructions involved in a
single loop iteration. The ref-
erence to the ptr cur[0] and
ptr ref [0] will bring all of the
elements needed (and maybe
more data) into the cache line
(indicated as ”memory delay”
in our figure).

The optimal case will be
to have a prefetch strategy
in hardware (prefetch engine)

that mimics the memory access patterns of both SAD8 and SAD16 kernels. Con-
sidering the fact that the start addresses and the stride are changed dynamically,
it should be possible to pass this information to the prefetch engine on run-time
(every time the procedure call is initiated). This ideally should be done without
any additional burden for the processor ISA.

It should be noted that all of the above can be done fairly easy by applying a
specialized flux cache (a very small cache installed/deinstalled on demand). The
proposed organization is shown in Figure 5. It consists of two stream buffers that
are filled from the main memory locations indicated by the values stored in R1
and R2. The flux cache control is not only responsible for incrementing the two
pointers but will also check for the loop boundaries and apply the stride offset
when necessary. We apply the two stream buffers to fully utilize the available
main memory bandwidth by exploiting properties like interleaving. Since the
prefetching is completely decoupled from the program execution and there are
two ”channels” applied, the memory accesses can be performed in a back to back
fashion as shown in Figure 4(b).
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uint32_t sad8_c(const uint8_t * const cur,
const uint8_t * const ref,
const uint32_t stride)

{
uint32_t sad = 0;
uint32_t j;
uint8_t const *ptr_cur = cur;
uint8_t const *ptr_ref = ref;
__asm("movtx xr1,cur");
__asm("movtx xr2,ref");
__asm("movtx xr3,stride");
__asm("movtx xr4,#8");
__asm("set $SAD_prefetch_flux");
for (j = 0; j < 8; j++) {

sad += abs(ptr_cur[0] - ptr_ref[0]);
... ... ... ... ... ... ... ... ...
sad += abs(ptr_cur[7] - ptr_ref[7]);
ptr_cur += stride;
ptr_ref += stride;

}
__asm("set $2k_16_DM_LRU");
return sad;

}

Fig. 6. Modified SAD8 C code

This is possible since both
data addresses are known at
advance (and are usually far
away from each other), so the
location of each memory read
can be perfectly predicted
and pre-scheduled. This all
results in a highly effective
prefetch strategy that in ad-
dition has a limited hardware
cost.

The proposed flux cache
will be installed before the ex-
ecution of the SAD loop and
its interface works as follows.
The R1 and R2 are the two
address pointers to the cur-
rent (cur) and the reference
(ref) arrays. These pointers
are passed to the hardware
prefetch engine together with
the stride (stride) and the
loop length (N = 8 or 16)
parameters on subroutine call
boundary. We envision an im-

plementation of the proposed engine in the MOLEN polymorphic processor sce-
nario: flux cache plus exchange registers bank for parameters passing. Please
note that this is a slightly more complicated MOLEN utilization than the one
described in [1]. The stream buffers size is limited and envisioned to be no more
than two loop iterations, e.g. 32 entries in case of SAD16. The required buffer
length can be estimated from the ratio of the average memory latency and the
expected loop execution time (both measured in processor cycles). In addition,
very limited control logic for scheduling of the fetches from the main memory is
required. The hardware complexity of such control logic is in the order of four
binary counters and one multiplexor. Please note that any specific memory burst
mode can be implemented into the prefetch controller to exploit the particular
memory bandwidth and resources (e.g. DMA controllers) available in the specific
targeted system. The latter does not necessarily increase the complexity of the
proposed control hardware.

The modified SAD8 loop for the MOLEN programming paradigm [18] is shown
in Figure 6. The four additional movtx MOLEN instructions at the beginning
are to ”instruct” the SAD prefetch engine about the array access pattern and
the loop boundaries as described earlier. We added the inline assembly code by
hand, however the generation and the scheduling process can be integrated in
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the MOLEN compiler [19]. Please note the mapping of the flux cache put onto
the MOLEN set instructions as previously proposed in [1].

As indicated earlier the same flux cache can be used for both SAD8 and
16 without any future modifications. The selection between the two kernels is
done by the constant stored in xr4 (8 or 16). After loop completion the cache
configuration used for the ”overall” MPEG4 application code is to be restored by
the second set instruction. Please note that the reconfiguration latency is not a
major point of concern. Assuming sufficient hardware resources are available, and
considering the limited size of the proposed SAD flux cache, both flux caches
(SAD prefetch flux and 2k 16 DM LRU) can be resident in the configuration
memory (the reconfigurable hardware) at the same time. This will reduce the
configuration overhead of the two set operations down to a trivial multiplexer
switch of the address and the data busses. In addition, such scenario will prevent
the cold start effects for the flux cache used for the ”overall” code. For the SAD
flux cache the cold start is a minor concern, since such a behavior is inherent to
its functionality, e.g. the pointers and the stride are reused in very rare situations
among two subsequent calls. The only overhead of the proposed flux cache will
remain the four additional register to register transfer movtx instructions that
have no impact on the main memory bus utilization.

4 Results

The improvements of the cache miss ratios of the proposed design are shown in
Figure 7. The four bars (from left to right) represent the following cases: no flux
cache (the base for the comparison), flux cache for SAD16 only, SAD8 flux cache
and general SAD (8 and 16) flux cache as proposed in Section 3. The ”remainder”
of the code is using a similar 2k/16 direct mapped data cache as in the reference
case (complete application without flux cache). It is interesting to note that 2k

Fig. 7. MPEG4 encoder 2K DM cache and flux cache for the kernels
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direct mapped cache without prefetch in combination with a SAD flux cache for
the SAD8 kernel only performs better (cache miss ratio of 13%) than a 2k DM
cache with OBL prefetch strategy (14.5%) that is the best performing standard
prefetch mechanism for the complete application. In addition, when our flux
cache is applied to both kernels the miss ratios are reduced down to the range
4.5% (for OBL) - 9.5% (for tagged prefetch). That is an improvement by near
3x. When our flux cache is applied the number of prefetches (and their impact
on the main memory bus) will be reduced by a number close to the cumulative
SAD8 and SAD16 memory read accesses. This forms one additional advantage of
our proposal especially in the envisioned constrained embedded system context.

5 Conclusions

In this paper, we investigated the data memory access behavior of xvid MPEG4
encoder, identified kernels that can benefit form a dedicated prefetch mechanism
and proposed a flux cache design to cope with it. More precisely, we studied the
memory patterns of SAD8 and SAD16 during the MPEG4 encoding process. We
proposed a flux cache design that optimally utilizes the main memory bandwidth
with a trivial hardware complexity. We showed that our approach can reduce the
data cache miss ratios by a factor close to 3x and expect to significantly reduce
the number of main memory accesses when the proposed prefetching is applied.
Our study focused on rather small data cache sizes (the case for very small,
power constrained embedded systems) however similar relative improvements
are envisioned for any realistically chosen configuration.
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