
Throughput optimization via cache partitioning for embedded multiprocessors

A.M. Molnos
�������������

S.D. Cotofana
�����

M.J.M. Heijligers
�������

J.T.J. van Eijndhoven
�������

�����
Delft University of Technology

Mekelweg 4, 2426 CD Delft, The Netherlands
molnos@natlab.research.philips.com

�������
Philips Research Laboratories

High Tech Campus 5, 5656 AE
Eindhoven, The Netherlands

Abstract

In embedded multiprocessors cache partitioning is a
known technique to eliminate inter-task cache conflicts, so
to increase predictability. On such systems, the partition-
ing ratio is a parameter that should be tuned to optimize
performance. In this paper we propose a Simulated An-
nealing (SA) based heuristic to determine the cache parti-
tioning ratio that maximizes an application’s throughput. In
its core, the SA method iterates many times over many par-
titioning ratios, checking the resulted throughput. Hence
the throughput of the system has to be estimated very fast,
so we utilize a light simulation strategy. The light simu-
lation derives the throughput from tasks’ timings gathered
off-line. This is possible because in an environment where
tasks don’t interfere with each other, their performance fig-
ures can be used in any possible combination. An applica-
tion of industrial relevance (H.264 decoder) running on a
parallel homogeneous platform is used to demonstrate the
proposed method. For the H.264 application 9% throughput
improvement is achieved when compared to the throughput
obtained using methods of partitioning for the least number
of misses. This is a significant improvement as it represents
45% from the theoretical throughput improvement achiev-
able when assuming an infinite cache.

1. Introduction

State-of-the-art media applications are characterized by
high requirements with respect to computation and mem-
ory bandwidth. On the computation side, the embedded
domain low power and low cost demands make the use of
general purpose architectures with clock frequencies in the
order of several GHz inappropriate. Instead, on-chip multi-
processor architectures are preferred. On the memory side,
media applications process large amounts of data residing
off-chip. The availability of these data at the right moments
in time is critical for the application performance, therefore

a common practice is to buffer parts of the data in an on-
chip memory.

A possible organization of the on-chip memory which
alleviate the data availability problem is based on hierarchi-
cal caches. In such a context each and every processor core
has associated its private cache memory (called L1 cache in
this paper). As these L1 caches cannot provide the required
application bandwidth [15], shared level two (L2) caches
are used [12], [22]. The advantage of an L2 is that large
part of the data is kept on chip, where the access is at least
10 times faster than an off chip access [5]. The disadvan-
tage of such a shared L2 cache is that different tasks may
flush each others data out of the cache, leading to an unpre-
dictable number of L2 misses. As a consequence, the sys-
tem’s performance cannot any longer be derived from the
individual task’s performance (property addressed as com-
positionality).

For media applications guaranteeing the completions of
tasks before their deadlines is of crucial importance. There-
fore, predictability and compositionality are among the
main required properties in this domain. A solution for
the predictability problem is to use static partitioning of the
cache as proposed in [10]. In this approach, the composi-
tionality is induced by allocating parts of the L2 cache, ex-
clusively, to each individual task in the application. Hence,
the cache partitioning ratio is an important parameter that
can be tuned to optimize the application performance.

The existing methods for optimizing the partitioning ra-
tio [9] [19] [11] minimize the overall number of misses.
However, for media applications throughput is a more suit-
able optimization criterion. We consider applications con-
sisting of a graph of communicating tasks. The throughput
of such an application is bounded by the longest path in
the task graph that has to be executed sequentially due to
data dependencies (critical path). Minimizing the overall
number of misses, does not necessarily minimize the criti-
cal path (improve the application throughput) and therefore
the existing methods are less suitable for media task graphs.

In this paper we propose a method to determine the cache

partitioning ratio corresponding to the maximum through-
put. This is a resource partitioning (allocation) problem,
which is known to be NP hard, therefore we utilized a Sim-
ulated Annealing (SA) [7] strategy. During the SA process
the throughput of the system has to be determined in order
to decide if a partitioning ratio is a potential candidate for
optimum. In our system we chose for flexibility and nat-
ural load balancing, therefore the scheduling policy is dy-
namic. In this case, the throughput cannot be analytically
predicted. Hence, simulation is required in order to obtain
the throughput value required by the annealing evaluation
stage. An usual simulation of the multiprocessor platform
is accurate, but too slow to be performed at every anneal-
ing step. Instead of a regular simulation, we use a fast,
light simulation of the system. This means that only the
synchronization is simulated to ensure the proper inter-task
scheduling, whereas the rest of the instructions are only ac-
counted for their execution time. This is possible because in
a compositional environment tasks don’t interfere with each
other, therefore once their performance profiles are known,
they can be used in any possible combination.

The application used to demonstrate our approach is
H.264 video decoding, which is part of the newest video
coding ITU-T standard [2]. The target architecture is a ho-
mogeneous multiprocessor platform [17], with an L2 cache
which is partitioned among tasks. We investigate the pro-
posed optimization method for different L2 cache sizes.
The largest throughput improvement is experienced, for
the smallest cache case (512KB). In this case, the H.264
throughput is improved with 6% comparing with the shared
cache case and with 9% comparing with the cache parti-
tioned for the least number of misses case. We note here
that a maximum of 20% improvement (comparing with the
shared cache case) is theoretically possible by assuming an
infinite L2 cache. In the view of this observation, the pro-
posed throughput optimization strategy delivers 45% of the
possible throughput improvement, while keeping the same
small cache size. In terms of miss rate, our method brings
an absolute value increase of 4% when compared with the
miss rate of the cache partitioned for the minimum number
of misses.

The remainder of the paper is organized as follows. The
related work is discussed in Section 2. Background infor-
mation over the considered multi-processor platform and
the cache partitioning method are introduced in Section 3.
Section 4 describes the proposed throughput optimization
method, and Section 5 presents practical experiments and
results. Finally, the paper is concluded by Section 6.

2. Related work

Cache partitioning on itself is not new. In the literature
multiple methods to partition the cache for decreasing the

miss rate are described [16], [19], [11]. Few cache parti-
tioning methods that improve power [4], allow prioritizing
of tasks [20] or reconfiguration of cache [13] are also pro-
posed.

In [19] the authors use an on-line associativity based par-
titioning scheme, estimate the miss characteristics of each
process in hardware and dynamically partition the cache
such that the overall number of misses is minimized. They
target time sharing environments. The same authors present
cache aware job scheduling in [18]. In [16] the prob-
lem of optimal allocation of cache between two compet-
ing processes that minimizes the overall miss rate is dis-
cussed. These approaches use associativity based partition-
ing (called column caching in their work) and they do not
target compositionality, nor throughput increase for media
applications. For performance reasons, typically the asso-
ciativity of large caches is small, so column caching has too
low granularity to be able to allocate exclusive cache parts
to all tasks and shared data of the system such that compo-
sitionality is achieved.

In [11] and [6] a compositional data (respectively in-
structions) cache organization is proposed. A direct mapped
cache can be partitioned and configured at compile time and
controlled by specific cache instructions at run time, bring-
ing considerable decrease in the number of misses. The
main drawback of these approaches is that it is restricted
to direct mapped caches.

Techniques to dynamically repartition the cache are pre-
sented in [13], [4], and [20]. In [13] a reconfigurable cache
strategy is presented. Parts of the cache can be used for dif-
ferent processor activities and the authors evaluate instruc-
tion reuse, obtaining improvements in instructions per cy-
cle. In [4] a possibility to disable a subset of the ways to
save power is presented. Energy vs. performance trade-off
is flexible and can be dynamically tailored. In [20] a priori-
tized cache for multi-tasking real-time system is presented.
Using the prioritized cache the Worst Case Execution Time
can be estimated more precisely and the cache miss rate de-
creases for the critical application. However, in these papers
the authors do not target the compositionality of the system
neither attempt to optimize the throughput of the system.
Moreover, associativity based partitioning is used, with the
already mentioned disadvantages.

Our work contributes to the state-of-the-art cache man-
agement domain in two aspects: (1) we propose a cache par-
titioning method that increases the application throughput
in embedded chip multiprocessors. (2) based on the com-
positionality induced by our cache partitioning, we propose
a fast throughput estimation method for multi-tasking ap-
plications with flexible, dynamic task scheduling policy.

3. Background

This section introduces the targeted system, the applica-
tion model, and the cache management scheme.

3.1 Target architecture

The envisaged multi-processor architecture consists of a
homogeneous network of computing tiles on a chip [22].
Each tile contains a number of CPUs, a router (for out of
tile communication), and memory banks. The processors
are connected to memory by a fast, high-bandwidth inter-
connection network. Each of the processor cores has its
own L1 cache. Since this L1 cache’s latency directly relates
to the processor’s cycle time, there are very strict timing re-
quirements for this cache. Therefore, the L1 caches are rela-
tively small. The on-tile memory is actually used as a large,
unified L2 cache, shared between processors, facilitating a
fast access to the main memory which resides outside the
chip. In this paper we use one tile of the multi-processor
like the one depicted in Figure 1.

. . .

. . . L2
cache

CPU CPUCPU

L1 cache L1 cache L1 cache

memory

bank

memory

bankbank

memory

interconnection network

Figure 1. Multi-processor target architecture

The applications executed on this architecture consist
of a graph of tasks that communicate through the mem-
ory hierarchy, thus through the shared L2. The inter-task
synchronization is done by means of FIFOs. A task tem-
porarily stops its execution in two cases: (1) when the task
reads from an empty FIFO or (2) when the task writes in
a full FIFO. Inter-task data exchange can be realized either
through FIFOs, or using common memory regions. If sev-
eral tasks share buffer regions, the synchronization at data
access have to be taken care by the application programmer.
The synchronization at common data is realized by commu-
nicating acknowledge-like tokens or data pointers through
FIFOs. For example, a typical case of common regions are
the reference frames of a video application. These frames
are large (a state-of-the art high definition frame can be���������	��

�) and transporting them multiple times among
tasks is more expensive than just having a common copy
of them. However, we use the term ”common region” in a

generic manner. For instance, a common buffer can be also
the shared code of tasks that execute the same instructions
on different parts of the data. For this shared code, no ac-
cess synchronization is needed because the instructions are
only read.

We choose for a task to processor mapping policy in
which tasks may freely migrate from one processing unit
to another, depending on these units availability. So overall,
on the multiprocessor platform the tasks are executed in a
pipelined fashion. The advantage of such a mapping policy
is that it supports natural load balancing among processors.
The disadvantage of this free scheduling and mapping pol-
icy is that, for the general case, the throughput formula can-
not be analytically derived from the execution time of the
tasks.

3.2 Cache partitioning

In the considered multi-tasking environment it is possi-
ble that two tasks ��� and ��� have data mapped in the same
cache location. Therefore, when ��� ’s data is loaded into the
cache it may flush ��� ’s data, eventually causing a future ���
miss. This kind of unpredictability constitutes a major prob-
lem for real-time applications. Ideally, the designer would
like to have a compositional system such that the overall
application performance can be predicted based on the per-
formance of its individual tasks. For this purpose exclusive
L2 cache parts are statically allocated to tasks and inter-task
common buffers using the method introduced in [10].

We assume a conventional cache to be a rectangular array
of memory elements arranged in ”sets” (rows) and ”ways”
(columns). We perform two partitioning types. First, each
task and each inter-task common buffer gets an exclusive
part of the cache sets. Second, inside the cache sets of
a common buffer each task accessing it gets a number of
ways.

In the rest of this paper we assume that an application �
is composed out of � tasks, �������������! #"%$ & and � com-
mon region instances '��(��')�*�+�, -".$ / . On the considered
multi-processor platform, the L2 cache partitioning ratio021 ' is the set of the cache sizes 354 allocated to every task
�6� and common regions '7� : 021 '8�9��35"
:,3+;�:=<><!<>:,3+&@?�/A� .
Due to implementation efficiency reasons, the cache sizes
have to be a power of two number of cache sets. When the
actual cache size is relevant for the paper understanding, we
designate the cache sizes with �CB , otherwise we use just 3 4 .

On the targeted multiprocessor platform, we partition
only the large level two cache because the most inter-task
flushing occurs at this level. The L1 cache is small and be-
longs to a processor, so it can be considered private to the
task that executes on that processor.

4. Throughput optimization

This section presents our method which optimizes the
throughput via cache partitioning.

4.1. Throughput optimization problem

Typically, media applications have to process a certain
amount of data before a time deadline. Therefore, for
such an application, the throughput is defined as being the
amount of data units processed in a time unit (for example,
real time video decoding may require 25 frames per sec-
ond). We denote with ��� the execution time needed by the
application � to process one of its data units. Then, the
throughput of the application (�����) is the inverse of the
execution time needed to process a data unit: ��� � � "��� .

In this article we tackle the problem of finding the par-
titioning ratio

021 ' that gives the best throughput. This
problem is similar with a capital partitioning problem, in
which every production unit (tasks and common buffers)
gets a number of resources (cache) such that the returned
value (throughput) is maximum, under the constraints of
a limited budget (total available cache). This is a known
NP complete problem, therefore an heuristic should be de-
ployed. Simulated annealing [7] is a well-known, powerful
technique for combinatorial optimization problems, like for
instance resource partitioning. To solve the throughput op-
timization problem we use it in the form presented in next
section.

4.2. Simulated annealing

The Simulated Annealing (SA) optimization process
used in this paper has the followings stages:	 Initialization. During this phase the temperature is set

to a high value,
�� . The current partitioning ratio021 '���
���� is initially set to a random value,
021 '�� .

The throughput of the application ������
���� correspond-
ing to

021 '�� is determined using the light simulation
method presented in detail in Section 4.3.	 Cooling. This stage together with the next one (eval-
uation) are at the core of the optimization process and
they are iteratively performed. At every cooling iter-
ation a new solution candidate

021 ' B���� is proposed.
This candidate partitioning ratio is generated by mak-
ing a change in the current partitioning ratio

021 ' ��
���� .
The

021 ' ��
���� changing is realized by halving or dou-
bling the cache sets of a random task. We allow only
halving or doubling because the cache sizes should be
a power of two number of sets due to implementa-
tion efficiency reasons. The available cache can be ex-
ceeded in the case of doubling the cache sets of a task.

In order to increase the chance of finding a global op-
timum, for a cooling step we tolerate � 0 more cache
sets over the available value

0
.

At the iteration � of the cooling stage the temperature
��4 decreases according to the formula:
�42������
24���" ,
where � is a given constant, smaller than .	 Evaluation. In this SA stage it is decided if the current
partitioning ratio

021 '!��
���� is updated to
021 ' B���� .

For this, the throughput of the system ��� B���� is de-
termined using the already mentioned light simulation
method. If the difference in throughput is � ��� �
������
��"��# ��� B���� , the new ratio becomes the current
ratio according to the following probability function:

$&% � ����' �
(
 % �*),+�-. ' % � ���0/213' % � ���04213' (1)

This means that if the new throughput is larger than
the current throughput, the current ratio is updated to
the candidate ratio. Otherwise, if the new through-
put is smaller than the current throughput, still some
new candidates solutions are accepted in order to in-
crease the chance of finding a global optimum and not
”falling” in a local one. However, as Equation (1) sug-
gests, if the temperature cools down, the chances of
accepting a worse candidate are diminishing.	 Termination. The SA optimization terminates if the
temperature is zero or if the optimum is not changed
for 5 iterations. The final solution is the partitioning ra-
tio

021 ' corresponding to largest throughput ��� , that
respects the constraint that the total allocated cache is
smaller than or equal to the available cache

0
.

4.3. Light simulation

At each and every step of the SA optimization the
throughput of the system has to be determined in order to
decide if the current partitioning ratio is a potential optimum
candidate. As we have chosen for flexibility and natural
load balancing (therefore the scheduling policy is dynamic),
the throughput cannot be analytically formulated. There-
fore, simulation is required in order to obtain the throughput
value needed for the 6 � evaluation stage.

An usual simulation of the multiprocessor platform is ac-
curate, but slow. In order to find the best throughput, the
SA process has to performs many steps, so if we would use
the regular multiprocessor simulation the problem would be
unsolvable in a reasonable time. Instead of a regular simu-
lation, we use a fast, ”light” simulation of the system. This
means that only the FIFO reads and writes are simulated to
ensure inter-task synchronization, whereas the rest of the in-
structions are only accounted for their execution time. The

light simulator is implemented using the CASSE tool chain
[14], which is a System C [3] based tool.

In order to perform a light application simulation, one
has to know the execution times and the FIFO read/write
sequences of all tasks. For this, before the SA optimization,
we gather tasks traces from regular simulation. A task’s
trace is a timed list of ”execute” (
), ”read from FIFO” (�),
”write to FIFO” (�), and ”access to common region” (�)
actions. In the following paragraph we present the details
regarding the
 , � , and � actions. The � action is a special
one and it is detailed in a separate paragraph.

An
 action has assigned the time spend in execution.
This time depends on the size of the cache part allocated
to the task. During the light simulation an
 action is be-
haviorally similar with a System C ”wait” statement [3].
The � / � events have associated the FIFO id involved in
the read (write) operation, the number of tokens consumed
(produced) and the time spend to execute this operation.
These informations are used to actually execute the FIFO
reads and writes such that in the light simulation the same
inter-task schedule is imposed as in the regular simulation.
To gather the traces, each and every task � � is accurately
simulated with the list of � � ’s possible cache sizes. The
cache sizes have to be a power of two number of cache sets,
therefore, the following are the possible cache sizes corre-
sponding to task � � : � � : � " : � ; :5<!<><>: � 4��!��� , where � %�� '
	��
and � 4��!��� gives the maximum cache value for task � � . This� 4��!��� is chosen such that if the tasks has � 4��!��� ?#" cache sets,
no changes in its performance can be experienced. The trace
of a task �6� contains the timing information of that task hav-
ing a certain amount of cache, or in other words, the timing
information of a % ����: 3+� ' pair.

The access of common region buffer (the � action) is ac-
counted separately in the execution time of a task because
the access time depends on the cache allocated to the com-
mon buffer, not on the task itself. For every task � � that
accesses a common buffer ')� we collect the access time of
a % �6� : ' ��: 3 � ' tuple, where 3.� is the cache allocated to buffer
' � .

As implied by the compositionality property, the tasks
don’t influence each other, therefore the timing of a % ���,:,3+� '
pair (or % � � : ' � : 3 � ' tuple) can be used in every combi-
nation with the rest of the tasks. Hence, the throughput
of a potential candidate ��3 " :,3 ; :=<><!<>:,3 & ?#/ � can be deter-
mined by a light simulation of the corresponding % � � :,3 � '
and % � � : ' � : 3 � ' traces.

5 Experimental results

For our experiments we used a CAKE multi-processor
platform [22] with 3 Trimedia processor cores and 4 ways
associative L2 cache. We use the L2 partitioning strategy
described in [10]. The experimental workload consists of a

Figure 2. H.264 miss rate

multi-tasking video H.264 decoder [21]. We executed this
application with standard definition input test sequences.
We used the stimuli available at [1], which exhibit differ-
ent degree of detail and movement. The results represent an
average among the performance encountered for different
stimuli.

The used parameter values of the 6 � optimization pro-
cess are: initial temperature
�� � 1�
 , the maximum cache
excedent � 0 ��� ��� � the limit number of iteration with-
out an optimum change 5 � �1�1 . The temperature de-
creases at every step with a parameter � � 1 < � .

In the remainder of this section we first present the re-
sults of the throughput optimization method and then we
evaluate and discuss the accuracy of the light-weighted sim-
ulation used in the SA optimization.

5.1 Throughput optimization

To validate our method, we compare the average L2 miss
rate and time to process 25 frames for four cache configu-
rations: (1) the cache fully shared, (2) the cache partitioned
such that the number of misses is minimized (

021 ' /), (3)
the cache partitioned such that the throughput is maximized
(
021 '��), and (4) the cache shared, but having an infinite

size. In the H.264 case, the infinite cache size is approxi-
mated in practice with 4MB, because for cache sizes larger
than that the miss rate (so the execution time) does not de-
crease anymore. Figures 2, respectively 3 depict the miss
rates and completion time (for 25 frames) for the H.264 de-
coder in the four studied cache configurations, correspond-
ing to different realistic cache sizes.

Looking at the
021 ' / and the

021 ' � cases, one can
observe that the throughput is, as expected, larger for the021 ' � case at the expense of increased cache misses. The
largest difference appears in the case of the smallest inves-
tigated cache (512KB), so we comment first on the results
obtained with this L2 size case. The

021 ' / cache con-
figuration has an absolute L2 miss rate with 4% smaller

Figure 3. H.264 time to process 25 frames

than the
021 ' � configuration, but it is 9% slower when

processing 25 frames. This throughput improvement of the021 ' � configuration corresponds to the completion of ap-
proximately two extra frames per second. When using an
infinite L2 cache it can be observed that, the H.264 appli-
cation has a 20% speedup when compared with 512KB,021 ' / cache configuration. These 20% represents the
maximum speedup achievable by tuning the L2 cache. One
can observe that the proposed throughput optimization strat-
egy brings 45% of the possible throughput improvement,
while keeping the same small cache size. When compared
to a shared cache of 512KB the

021 ' / cache configura-
tion degrades the throughput with 3% (relative to the shared
cache throughput) but the absolute miss rate decreases with
3%. The

021 ' � cache configuration improves the through-
put with 6% relative to the shared cache, but has an absolute
miss rate with 2% higher. For the rest of the cache sizes
(1MB and 2MB) the differences in performance among the
four cases are not that large (under 2%).

The presented method is not restricted to the H.264 ap-
plication. Every parallel application running on a multipro-
cessor system can benefit from the proposed optimization.

Two phenomenon justify the difference in misses’ num-
ber between a shared and a partitioned cache. If the cache
is partitioned, the inter-task cache flushing is eliminated
(which means less misses) but every task can use less cache
space than in the shared case (which means more misses).
The variation of the execution time with the number of
misses is not linear because by minimizing the overall num-
ber of misses the sum of tasks execution times is minimized.
However, because the tasks are executed in parallel the criti-
cal path in the application gives the overall completion time
and it is not the sum of tasks execution times.

5.2 Light simulation

As introduced in the Section 4, the SA performs a light
simulation of the system to evaluate the throughput cor-

Figure 4. Light simulation accuracy

responding to a given partitioning ratio. In the following
we present an accuracy investigation of this light simula-
tion method. Figure 4 depicts the average completion time
for H.264 decoding of 25 frames in two cases: regular sim-
ulation and light simulation. The comparison between this
two cases is presented for multiple cache partitioning ratios.
The maximum difference between the completion time re-
ported by the regular simulation when compared with the
light simulation is 3%. Worth to mention is that the light
simulation is at least 30 times faster than the regular simu-
lation. The 3% difference is actually caused by the fact that
the system is not 100% compositional. Some tasks’ timings
are slightly different from a configuration to the other be-
cause the L1 cache is not partitioned. The L1 is considered
private to each and every task during its execution. How-
ever, there are variations in the cache access pattern due to
L1 behavior. For more insight in the compositionality and
robustness of our cache partitioning scheme we refer the
reader to [8].

We would like to stress out the fact that the light simu-
lation method as described in the Section 4.3 is applicable
due to the compositionality induced by cache partitioning.
In a compositional environment the timed traces of tasks
can be gathered once and used in any possible combination,
because tasks don’t interfere with each other.

6 Conclusions

In this paper we proposed a cache partitioning method
to maximize the throughput of a multi-tasking applica-
tion mapped on an embedded multiprocessor. Our method
assumes an on-chip multiprocessor platform with a large
shared L2 cache and improves throughput by tuning the L2
cache sizes allocated to each and every task. Because re-
source allocation problems are NP complete, our method is
based on a simulated annealing strategy. At every step of

the annealing, the throughput of the system has to be esti-
mated very fast, so we utilized a light simulation strategy.
Compared with a regular simulation, the light simulation is
at least 30 times faster and its accuracy is within 3%.

To demonstrate our method we utilized an H.264 multi-
tasking decoder. For the H.264 application a 9% throughput
improvement is achieved when compared to existing meth-
ods of cache partitioning for the least number of misses.
When compared with the shared cache case 6% through-
put improvent is achieved under the circumstances that a
maximum of 20% is actually possible by having an infinite
L2 cache. This implies that the proposed throughput opti-
mization strategy brings 45% of the possible throughput im-
provement, while keeping the same small cache size. The
miss rate when using our method increases with an absolute
value of 4% when compared with the cache partitioned for
the least number of misses case.

References

[1] ftp://ftp.ldv.e-technik.tu-muenchen.de/pub/test sequences/.
[2] International Telecommunication Union, http://www.itu.int.
[3] Language Reference Manual for SystemC 2.1, 2005,

http://www.systemc.org.
[4] D. H. Albonesi. Selective cache ways: On-demand cache

resource allocation. International Symposium on Microar-
chitecture, 1999.

[5] J. L. Hennesy and D. A. Patterson. Computer Architecture:
A Quantitative Approach. Morgan Kaufmann Publishers,
San Fransisco, CA, 2003.

[6] J. Irwin, D. May, H. Muller, and D. Page. Predictable in-
struction caching for media processors. 13th International
Conference on Application-specific Systems, Architectures
and Processors (ASAP), pages 141–150, 2002.

[7] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimiza-
tion by simulated annealing. Science, Number 4598, 13 May
1983, 220, 4598:671–680, 1983.

[8] A. Molnos, S. Cotofana, M. Heijligers, and J. van Eijnd-
hoven. Static cache partitioning robustness analysis for em-
bedded on-chip multi-processors. In Proceeding of the ACM
International Conference on Computing Frontiers, To ap-
pear 2006.

[9] A. Molnos, M. Heijligers, S. Cotofana, and J. van Eijnd-
hoven. Compositional memory systems for multimedia
communicating tasks. Proceedings, DATE, pages 932–937,
2005.

[10] A. Molnos, M. Heijligers, S. Cotofana, and J. van Eijnd-
hoven. Compositional, efficient caches for a chip multi-
processor. Proceedings, Design, Automation and Test in Eu-
rope, To appear in 2006.

[11] H. Muller, D. Page, J. Irwin, and D. May. Caches with com-
positional performance. Proceedings, Embedded Processor
Design Challenges, pages 242–259, 2002.

[12] B. A. Nayfeh and K. Olukotun. Exploring the design space
for a shared-cache multiprocessor. Proceedings, ISCA,
pages 166 – 175, 1994.

[13] P. Ranganathan, S. Adve, and N. P. Jouppi. Reconfigurable
caches and their application to media processing. Proceed-
ings, 27th Annual International Symposium on Computer
Architecture, 2000.

[14] V. Reyes, W. Kruijtzer, T. Bautista, G. Alkadi, and A. Nunez.
A unified system-level modeling and simulation environ-
ment for MPSoC design: MPEG-4 decoder case study. Pro-
ceedings, Design, Automation and Test in Europe, To appear
2006.

[15] A. Stevens. Level 2 cache for high-performance arm core-
based soc systems. ARM white paper, 2004.

[16] H. S. Stone, J. Truek, and L. Wolf, Joel. Optimal parti-
tioning of cache memory. IEEE Transactions on computers,
41(9):1054–1068, 1992.

[17] P. Stravers and J. Hoogerbrugge. Homogeneous multipro-
cessing and the future of silicon design paradigms. Proceed-
ings, International Symposium on VLSI Technology, Sys-
tems, and Applications (VLSI-TSA), April 2001.

[18] G. E. Suh, S. Devadas, and L. Rudolph. A new memory
monitoring scheme for memory-aware scheduling and parti-
tioning. HPCA, pages 117–, 2002.

[19] G. E. Suh, L. Rudolph, and S. Devadas. Dynamic partition-
ing of shared cache memory. The Journal of Supercomput-
ing, 28(1):7–26, 2004.

[20] Y. Tan and V. J. Mooney. A prioritized cache for multi-
tasking real-time systems. Proceedings of the 11th Work-
shop on Synthesis And System Integration of Mixed Infor-
mation technologies, pages 168–175, 2003.

[21] E. van der Tol, E. Jaspers, and R. Gelderblom. Mapping of
h.264 decoding on a multiprocessor architecture. Proceed-
ings, SPIE Conference on Image and Video Communications
and Processing, 2003.

[22] J. T. van Eijndhoven, J. Hoogerbrugge, M. Jayram,
P. Stravers, and A. Terechko. Cache-coherent heterogeneous
multiprocessing as basis for streaming applications. In Dy-
namic and robust streaming between connected CE-devices.,
(Kluwer Academic Publishers), 2005.

