
FLUX Networks: Interconnects on Demand

Stamatis Vassiliadis and Ioannis Sourdis

Computer Engineering,

TU Delft,

The Netherlands,

{stamatis, sourdis}@ce.et.tudelft.nl

http://ce.et.tudelft.nl/

Abstract— In this paper, we introduce the FLUX interconnec-
tion networks, a scheme where the interconnections of a parallel
system are established on demand before or during program
execution. We present a programming paradigm which can be
utilized to make the proposed solution feasible. We perform
several experiments to show the viability of our approach. We
experiment on three case studies, evaluate different algorithms,
developed for meshes or binary trees, and map them on “grid”-
like physical interconnection networks. Our results clearly show
that, based on the underlying network, different mappings are
suitable for different algorithms. Even for a single algorithm
different mappings are more appropriate, when the processing
data size or the number of utilized nodes changes. The implication
of the above is that changing interconnection topologies/mappings
(dynamically) on demand depending on the program needs can
be beneficial.

I. INTRODUCTION

In computer engineering, improvements have been achieved

with the technological advances in terms of area (which

presumably increases exponentially), delay and chip I/O count

(which we postulate increases at best linearly). It has been

postulated that, under the conjunctures stated above, microar-

chitectures provide a substantial increase in performance in

uniprocessor systems. Based on experimental evidence, how-

ever, it has been indicated that it is doubtful such a claim can

be substantiated in the recent past [1]. Given that uniprocessor

microarchitectures may experience some difficulties to exploit

technological advances, it can be envisioned that multiproces-

sors could be the answer to the performance quest. In the

very near future, it is almost certain that the VLSI technology

will allow single chip multicore general purpose processors to

become feasible (possibly exceeding the order of 10x, where

x ≥ 2). Multiprocessor multichip parallel systems are not new

(e.g. see ILIAC IV [2]), and it will appear that using past multi-

processor experiences and applying them in single chip VLSI

implementations will provide a solution to general purpose

uniprocessor performance scalability. While multiprocessors

can be implemented on a chip the VLSI design of single chip

massive multiprocessors is only one of the challenges and by

no means the only one. Simply stated, being able to fit nu-

merous processors in a single chip, does not necessarily imply

that the performance increases substantially. It is well known,

that in the past only a small fraction of peak performance

This work was supported by the European Commission in the context of the
Scalable computer ARChitectures (SARC) integrated project #27648 (FP6).

has been achieved in parallel systems. There are numerous

problems that prohibit top performance achievements. For

example, assuming shared memory paradigms, scalability is

not guaranteed a priori. Clearly, coherence does not scale

(not easily) and most definitely creates costs that substantially

diminish potential multiprocessor advantages. Additionally,

software performance is not “portable”. That is, software

development for a system at time t may not scale to a system

developed at time t + 1. One of the fundamental reasons,

but by no means not the only one, is that software does not

“mutate” to take into account new network topologies, while

seldom parallel systems use a single network topology from

one design point to the next.

In this paper, we address a single challenge regarding

multiprocessor parallel systems. We consider the effects the

interconnects have on the portability and scalability of soft-

ware performance. It is a well known fact that developed

algorithms have in mind an interconnection network. Tradi-

tionally speaking, interconnection networks are rigid and often

(actually usually) the interconnection network changes from

one design point to the next. A consequence of the above is

that algorithms and software, when ported to a new family

of multiprocessor parallel systems, will not scale in terms of

performance (at least) and new software development has to

be under way if performance is critical.

We introduce a new approach, diametrically opposite to

the existing network proposals, for adaptable networks stated

by the following: Interconnection networks are provided (dy-

namically) on demand to suit the needs of an applica-

tion/algorithm/program. We describe some potential imple-

mentation and propose a programming paradigm that may

allow the interconnects to be fused with traditional models.

Finally, we provide experimental evidence suggesting that our

proposal is promising.

The paper is organized as follows: In Section II, we present

different solutions for FLUX interconnection networks and

provide a programming paradigm to change dynamically on

demand processing and interconnecting of processors (general

purpose or not) allowing them to adapt to the interconnect

demands of software. In Section III, we provide initial exper-

imental data supporting our approach. Finally, in Section IV

we present our conclusions.

1-4244-0155-0/06/$20.00 ©2006 IEEE 160

in IC-SAMOS: Samos, Greece, July 17-20, 2006

sourdis
Inserted Text
Using the existing reconfigurable network infrastructure of
FPGAs, we introduce the reconfigurable FLUX interconnec-
tion networks. That is, networks where the processing elements,
forming a parallel system, have interconnects that
are explicitly formed by request using reconfigurable fabric,
rather than being fixed. We perform several experiments to
show the viability of our approach. We use existing FPGA
switching infrastructure (Virtex2P) and show that in reconfigurable
fabrics logical and physical element connections
are comparable, implying that mapping direct instead of indirect
connections, using fixed switching boxes is more efficient.
Additionally, we compare FLUX networks against
rigid/fixed networks using synthetic benchmarks. Our experimental
results show that reconfiguring the network to
suit a given traffic pattern can be up to 2.5 and 5× faster than
a rigid mesh and binary tree network, respectively. The reconfiguration
overhead can become negligible, given a traffic
load that runs for sufficient time. This clearly shows
that, based on the traffic pattern, different network configurations
might be suitable. The implication of the above is
that changing interconnects on demand could be beneficial.

PE PE

PEPE

PE PE

PE PE

2 1

65

4 3

PE 7

5 4

32

8 1

7 6

Switch

Algorithm
Phase 1

Mapping 1
time: t

43

65

21

7

Algorithm
Phase 2

Mapping 2
time: t+12

7

1

8

3

6

Physical
Interconnection

4

5

Fig. 1. FLUX Network on Demand.

II. FLUX INTERCONNECTS ON DEMAND

Currently, single-chip multiprocessor systems are designed

based on a specific hardwired interconnect topology. Algo-

rithms should be created to suit the multiprocessor system

topology in order to maximize performance. In the present

paper, we propose the opposite: the physical interconnection

network is installed/configured/adapted (dynamically) to fit

communication needs.

Before we introduce the proposed approach in detail, we

first describe the concept of logical and physical networks. We

denote logical network as the network which the application

designer has in mind. For example, the logical network struc-

ture of an application developed for binary trees is a binary tree

with specific guidelines about the workload distribution and

the nodes communication. The physical network is the network

available by the designed chip. As described earlier the logical

and physical networks do not always match, therefore, the

logical structure somehow has to be mapped into the physical

network. In this case, no matter what the logical structure is,

the physical network constraints the mapping and the logical

network connections have to follow the physical paths, usually

through intermediate (switching) nodes. Therefore, the link

delay of the physical network is the lowest delay that a

logical link mapping can achieve. Finally, when mapping is

performed, several parameters have to be taken into account

such as congestion, dilation and expansion [3].

To exemplify our approach, consider the multiprocessor

system of Figure 1 which consists of several Processing En-

gines (PEs) physically connected on a physical interconnection

network. Note that the underlying physical network structure

may be highly irregular and chosen by the designer to best

“fit in” the technology he/she is considering rather than a

predetermined regular structure as proposed by all existing

network topologies. In the case of an algorithm implemented

for binary-trees (BT), this scheme, given a mapping algorithm,

can connect the PEs in a BT topology. Similarly, for an

algorithm that is suitable for a mesh interconnect, the network

topology can be a mesh. Of course, this flexibility is limited

by the resources available for the interconnection. This means

that the number of the PEs that can be connected in a specific

topology depends on the routing resources available (wires and

switch boxes). In the proposed FLUX Network on demand, PE

interconnection could change during the execution of a single

program. If different phases of a program “prefer” different

topologies, then the interconnection network could change at

run-time. Consequently, at time t the interconnection topology

can be a BT and at time t + 1 can change to a 2-D mesh.

More precisely, in each phase we reassign the nodes and the

connections required to match the communication needs of

the BT at time t and the mesh at time t + 1. Obviously, for

a given physical network, logical topologies can be mapped

more or less efficiently depending on the logical network and

the mapping algorithm to the physical structure.

1

65

3

PE 7

2

4

Fig. 2. Direct connections additional to the network topology.

Any network mapping algorithm might leave some of the

resources of the underlying network “unused”. That means that

a network structure per se may not be needed and processors

could be connected on demand at point to point networks

if there are available connections (unused routing resources).

When a BT is mapped into the topology of Figure 1, unused

161

in IC-SAMOS: Samos, Greece, July 17-20, 2006

links can be used to connect two PEs additionally to the

utilized interconnection network (Figure 2). In this example,

a direct/hot connection between PEs #2 and #4 can be es-

tablished besides the existing binary tree (BT) interconnect

(in dark lines). This connection should be set when needed

and released when the data exchange is finished. That is, if

on a specific time “processor 2” needs to communicate with

“processor 4” without going via the existing network (BT),

which normally would have been following for example nodes:

2-5-7-6-4, because of a critical event, then a direct connection

is established (and afterwards released) on demand.

Programming Paradigm: In order for a network to exhibit

the properties described above, explicit network calls should

be added to the programming paradigm to support adapting

the physical interconnect on demand. In the following, we

discuss the way of adapting an interconnection network using

ISA extensions similar to the Molen paradigm [4]. Hardware

implementations of arbitrary interconnection networks can

be instantiated under software or hardware control before

program execution or at runtime. They are detected “on-

the-fly” or pre-determined “off-line” at hardware/software co-

design stage using application partitioning, profiling, monitor-

ing etc.. Generally speaking, the FLUX network mechanism

would require additional ISA support to enforce the intended

interconnection network. A master-slave parallel processing

model could be envisioned with the master processor being

responsible for the following:

• Node mapping: distribute the workload to the PEs of

the system (possibly generate it as well) and specify an

address per node.

• Connection mapping: Specify the communication path

between each pair of nodes.

• Run the master/manager process, keeping sequential con-

sistency of the program.

• Control and synchronize the PEs (activate PEs, receive a

message when a PE job is finished)

• May perform part of the work itself.

When it is needed to configure the network, then a SET

< parameters > instruction is necessary (similar to Molen

paradigm [4]). As depicted in Figure 3, the parameters specify

the way the logical network (according to the communication

needs of the application) maps into the physical network. The

parameters are at least the following:

• Node addressing/mapping.

• Workload assignment to nodes (including number of

utilized nodes).

• Establish routing paths (mapping of the logical paths to

the physical ones)

It should be noted that in difference of existing program-

ming paradigms, our proposal allows usual program structures

to co-exist with the direct exposure and controlling of the

physical network. In the case of direct point-to-point connec-

tions, the communication paths are either scheduled statically

at compile time or allocated dynamically. When a request is

allocated dynamically, it should be checked first whether the

PROGRAM

SET network #1

PROGRAM

SET network #2

SET network #N

PROGRAM

SET Network
parameters:

- Number of nodes
- Node addressing-
 mapping
- Connections
 mapping
- Routing (algorithm,
 policies)
- etc.

Fig. 3. Execution of the SET instruction before or during different phases
of an application.

required resources are available (wires and switches), and then

that the destination PE(s) is/are available to receive a new

connection. The procedure could be based on circuit switching

and repeated in a round trip delay request fashion, in case a

direct connection is not possible, due to limitations. When all

necessary requirements are met the direct connection(s) can be

configured using a partial SET < parameters > instruction.

Lastly, when the necessary data is exchanged the connection

should be released, meaning that the utilized resources should

be again available for other possible use.

FLUX Networks on Reconfigurable Hardware: Recon-

figurable technologies have an underlying network that can

be (dynamically) “modified”, thus they are excellent potential

for FLUX implementation platforms. In this paragraph, we

consider using reconfigurable hardware as the underlying

network of the FLUX interconnects. Current FPGA physical

interconnects can approximate the logical network of an appli-

cation (i.e. one-to-one mapping), since they use different types

of wires to traverse short, medium or long distances. This way,

distant logic blocks can be connected avoiding most of the in

between switch boxes and the delay they introduce. The entire

interconnection network, or part of it can be reconfigured on

demand using the programming paradigm described above and

the MOLEN ISA extensions [4]. Reconfigurable FLUX net-

works can be implemented using numerous schemes including

(but not limited by) the following:

• FLUX networks with dynamic PE placement: The

interconnection networks and the PEs are reconfigured

(dynamically). In this case, the PEs are soft-cores in order

to alleviate the routing of the network (place & route).

• FLUX networks with static PE placement: Only the

network is (dynamically) reconfigurable, while the PEs

are statically placed (hard-cores), consequently, the re-

configuration overhead is minimized.

• Direct “point-to-point” & Chaotic Interconnects: The

FPGA routing structures provide an underlying “un-

used” reconfigurable network. Consequently, a network

structure per se may not be needed and processors

could be connected on demand at direct point to point

connections if there are available connections (unused

162

in IC-SAMOS: Samos, Greece, July 17-20, 2006

Physical Underlying
Network

PEPEPEPE

PEPEPEPE

PEPEPEPE

PEPEPEPE

Mesh
Algorithm
2

6

1

5

3

7

4

8

10

14

9

13

11

15

12

16

4321

8765

1211109

16151413

PE3PE1

PE675

PE4PE2

PEPEPEPE

Binary Tree
Algorithm

4321 8765

109 1211

1413

15

21 43

65

7

81151

1214157

410139

PE632

Mesh

H-trees
Mapping

Lee_Choi
Mapping

Binary Tree
Algorithm

Switch

Fig. 4. Binary tree and mesh logical structures mapped on a 2-D mesh physical underlying network.

routing resources). Furthermore, The PE interconnections

can be build on dynamically established connections

(chaotic network) if some specific conditions are satis-

fied. This approach discards the notion of fixed network

topologies and allows to directly interconnect PEs based

on the communication requests of the application and the

available connections (resources).

• Multi-chip multiprocessor systems: Finally, the above

schemes can be applied in multi-chip multiprocessor

systems.

III. EXPERIMENTAL RESULTS

In this section, we provide evidence suggesting the viability

of our proposal when the underlying network is fixed. We eval-

uate three sample parallel problems using logical interconnects

that are binary trees (BT) or 2-D meshes. The physical inter-

connections are assumed to be a 2-D mesh. That is, for specific

mesh logical topologies the links are physical = logical, while

for the BT logical topologies usually physical 6= logical. We

use a regular physical structure rather than irregular only as

an example and for simplicity of discussion (most readers are

familiar with such structures and there is plenty of literature

for mapping a regular network structure into another also

regular structure). Figure 4 illustrates the above, where on

the left-hand side column is the parallel system composed of

its processors and the physical interconnection network, the

middle column is the logical BT and mesh structures, and on

the right-hand column are mappings of these structures into

the physical network.

A. Embedding a Binary-Tree into a 2-D Mesh

Efficient strategies and algorithms can be developed to map

algorithms in multiprocessor systems and several researchers

discuss embedding one interconnection network into another

[3], [5]–[7]. In order to evaluate the performance of an

algorithm developed for BTs into a 2-D mesh interconnection,

we first need to use an algorithm that maps the BT into the

2-D mesh. Next, we describe two different ways of embedding

a BT topology into a mesh and analyze their advantages and

disadvantages.

Lee and Choi mapping: The first mapping algorithm, pro-

posed by Lee and Choi [8], results on a maximum congestion1

of 2 when a BT with 2p
−1 nodes is mapped into a

√

2p
×

√

2p

1When embedding topology A into topology B, edge congestion is the
maximum number of A edges, mapped onto any B edge.

163

in IC-SAMOS: Samos, Greece, July 17-20, 2006

mesh (optimum expansion2). The dilation3 of this mapping is
D
2 + 1 for the edges between the 2nd and 3rd level of the

tree, where D is the dimension of a D × D mesh. In many

cases however, BT networks suffer from a communication

bottleneck at higher levels of the tree [9], [10] and, when

mapped into a mesh with such a dilation, the communication

bottleneck becomes even greater.

H-trees: Another way of mapping a BT into a mesh is

the well known H-trees described in [11]. H-trees result on

edge congestion one and a smaller dilation (D+1
4) compared

to the previous algorithm. On the other hand, the expansion

of the mapping is asymptotically twice the optimum, since a

(2
p+1
2 − 1) × (2

p+1
2 − 1) mesh is required to map a BT of

(2p
− 1) nodes.

B. Evaluation of Three Case Studies

In this section, we evaluate the performance of the 2-D mesh

on three parallel problems (case studies), more suitable when

solved in a BT topology. For each case study, we utilize a

mesh algorithm and one or more BT algorithms. In order to

run the BT algorithms, we map the BT topologies into the

mesh ones using the mappings described above.

The Maximum: Given a set of n numbers (in our experi-

ments n: 213, 216 or 220), the goal in this case study is to find

the greatest number in the set. Three algorithms are used, two

for BTs and one for meshes:

• MaxBT1: Each one of the p

2 leaf BT nodes is loaded

with a smaller subset of n∗2
p

numbers. Each cycle, one

element of each subset is compared with the results of the

other nodes (p

2 elements in total). The root node keeps

the partial maximum and compares it with the partial

results coming next in a pipelined fashion. The maximum

number of the set is found when all the elements of the

subsets have been compared through the tree.

• MaxBT2: The set is divided into (p− 1) smaller subsets

and loaded onto the (p − 1) processors. Each processor

finds sequentially the maximum on its data subset which

consists of n
p−1 numbers. This maximum is compared to

the results of other nodes. The tree structure is used to

obtain the maximum number of the set by passing only

the maximum number from each subtree.

• MaxME: Similar to the above algorithm, the set is

divided into p smaller subsets and loaded onto the p

processors. We merge the partial results first row by

row and then column by column, until we obtain the

maximum number of the entire set.

We evaluate the first two algorithms in BTs (BT MaxBT1

and BT MaxBT2) and in meshes using Lee Choi and H-tree

mappings (ME LeeChoi MaxBT1, ME LeeChoi MaxBT2,

ME Htree MaxBT1, and ME Htree MaxBT2), and the third

algorithm in meshes (ME MaxME). Figure 5 depicts the

2When embedding topology A into topology B, expansion of the mapping
is the ratio of number of the B nodes to the number of A nodes. For the
above mapping, that is 2p

2p
−1

3When embedding topology A into topology B, dilation is the maximum
number of links in B that any edge of A is mapped onto.

ME_LeeChoi_MaxBT2 ME_HTree_MaxBT2
ME_MaxMEBT_MaxBT2

ME_LeeChoi_MaxBT1
ME_HTree_MaxBT1BT_MaxBT1

4
5
6
7
8
9

10
11
12
13
14

3 4 5 6 7 8 9 10 11 12 13 14

4
5
6
7
8
9

10
11

3 4 5 6 7 8 9 10 11 12

DATA: 2^13

DATA: 2^16

4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

DATA: 2^20

Number of nodes 2^x

Nu
m
be
r o

f c
yc
le
s 2

^x

Fig. 5. Performance of the maximum case study for different algorithms,
data sizes and number of nodes. (For this graph and the graphs below, we use
ˆ to denote “the power of”; i.e. 2ˆx = 2x)

total number of cycles required to execute the algorithms for

different sizes of data sets and number of nodes. The MaxBT1

requires more communication than the other algorithms, since

the maximum is calculated throughout the tree instead of

having each node processing a subset sequentially. Therefore

the MaxBT1 algorithm when running on a mesh has up to 4-32

times higher latency than a BT. On the contrary, the MaxBT2

adapts better into the mesh mappings. For the MaxBT1 algo-

rithm H-trees are better (up to 2×) than Lee Choi mapping (for

small and medium systems), since H-trees have lower dilation.

However, when the total number of nodes increases and the

processing data remain constant then the Lee Choi mapping

164

in IC-SAMOS: Samos, Greece, July 17-20, 2006

4
5
6
7
8
9

10
11
12
13
14

3 4 5 6 7 8 9 10 11 12

5
6
7
8
9

10
11
12
13
14
15
16
17

3 4 5 6 7 8 9 10 11 12 13 14

5
7
9
11
13
15
17
19
21

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

BT_SearBT
ME_SearME
ME_Htree_SearBT
ME_LeeChoi_SearBT

DATA: 2^20

DATA: 2^13

DATA: 2^16

Number of nodes 2^x

Nu
mb

er
of

cy
cle

s 2
^x

Fig. 6. Performance of the searching case study for different algorithms,
data sizes and number of nodes.

is better (up to 50%) since the total number of utilized nodes

(expansion) is more important. When running the MaxBT2

algorithm, the Lee Choi mapping becomes better because the

diameter of this mapping is smaller. That is because although

Lee Choi mapping has higher dilation, the average number

of mesh edges required per BT edge is lower. Additionally,

Lee Choi mapping exploits almost all mesh nodes, while H-

trees have worse expansion. The MaxME is almost as good

as the BTs for small number of nodes, but when the system

gets larger has up to 2× worse performance even compared

to any mapping of the MaxBT2 algorithm into the 2-D mesh.

Finally, the size of the processing data affects performance. For

example, for smaller data sets the ME LeeChoi MaxBT1 gets

more efficient than the ME Htree MaxBT1 for large systems,

while the point (#nodes) where it starts being better differs for

different data sets.

Searching: The purpose of this case study is to search for

m specific numbers on an unsorted sequence S of n numbers

1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7

10 102 103 104 105

ME_Bitonic/BT
ME_Htree/BT
ME_Lee/BT

Number of nodes

Pe
rf
or
m
an

ce
 R
at
io

Fig. 7. Performance ratio between sorting on a 2-D mesh (using different
mappings and algorithms) and on a binary-tree.

(n= 213, 216 or 220, m = 8). If such a number is in S,

the searching algorithm outputs the position of the matched

number, otherwise, the output is zero. The implementation of

this case study is similar for the BT and mesh topologies,

SearBT and SearME respectively. The set is divided into

small subsets of n
p

numbers. Each of these subsets is processed

by a single node and the partial results are sent towards the

root node.

Figure 6 depicts again the number of cycles spent for

the execution of the searching algorithm. In this case, the

gap between the binary-tree (BT) and the meshes is smaller

because the searching algorithm requires more processing,

O(nm) instead of O(n), while the percentage of the total time

spent for communication is smaller compared to the MaxBT2

algorithm. The SearME is up to 4× better than the SearBT

algorihm mapped into a mesh. For the SearBT algorithm, the

Lee Choi mapping is generally better than the H-trees (about

50%), however, for large systems the H-trees achieve similar

or better performance. Again the size of the data set affects

performance. For example, the SearME algorithm (running

on a mesh) for medium systems (28
− 212 nodes) follows

the BT SearBT performance when processing large data sets,

while for smaller data sets has higher latency.

Sorting: Given a sequence of n numbers, a sorting algo-

rithm will produce a sorted sequence of the same input set

S. For sorting in BTs we use the algorithm described in [12],

[13] (denoted here as SortBT) and is performed as follows:

the set of numbers S is divided into smaller subsets and loaded

onto the leaf processors. Each processor executes a sequential

quick sort algorithm on its data subset; parallelism is achieved

by having all leaf processors work on their portion of data at

the same time. The smallest element of each sub-sequence is

sent towards the root node. The set S is sorted when all the

elements are sent out through the root node. For sorting in

meshes we implemented the bitonic sort as described in [14].

This mesh algorithm (Bitonic) sorts n2 numbers on a n × n

mesh. Therefore, in order to have a fair comparison between

the two algorithms, the set contains as many numbers as the

number of mesh nodes.

We evaluate the bitonic sort in meshes and the SortBT

165

in IC-SAMOS: Samos, Greece, July 17-20, 2006

algorithm in BTs mapped into meshes (using Lee or H-tree

mapping). Figure 7 illustrates the performance ratio between

the latency of the above cases and the SortBT when running

in the original BT. In each case, the time spent to load and

unload data into/from the system is included in the overall

latency. Clearly, the bitonic sort in meshes is less efficient

than the SortBT in Lee and H-tree mappings. However, when

the size of the processing data increases (along with the

number of nodes) the performance difference between the

three cases and the BT topology becomes insignificant, since

the load/unload latency is the dominant factor. Contrary to the

MaxBT1 algorithm, for sorting the Lee mapping is better than

the H-trees. That is because in this case the expansion of the

mapping is more significant than the dilation.

Some of the reasons why FLUX Networks are beneficial:

We discuss, next, some advantages of the proposed FLUX

networks:

• Definitely, when a single algorithm is ported into a phys-

ical network (designed to match the algorithm) then it

will be faster. That is an algorithm communication needs

might match the physical interconnect. Generally speak-

ing, this is a difficult task since the algorithm developer

has to have in mind the technology details of the physical

network. Furthermore, multiple algorithms should be able

to efficiently run on a single multiprocessor system, and if

there is an one-to-one mapping for one network, this will

not be the case for others. Therefore (as shown by the

example mappings) the interconnection network should

be adaptable to achieve more benefits.

• Software portability: for a given technology an algo-

rithm may match the physical network. However, for

the next device family (new technology) the algorithm

won’t match the new physical structure. In this case

the algorithm communication needs become the “logical”

network that has to be efficiently ported into the new

physical structure, implying that generally speaking the

FLUX networks are the most beneficial solution.

• When the logical and the physical networks do not match,

the algorithm usually cannot exploit all the physical

network resources. That is, because of lack of technology

knowledge, an algorithm developer has difficulties in

achieving optimum mappings. Therefore, using directly

the physical structure may not improve performance and

will possibly increase complexity. In FLUX networks,

both users and developers of technologies are involved

improving the networking.

• The FLUX networks offer the ability to adapt the physical

underlying network to the application needs. More pre-

cisely, based on the parameters that affect the application

performance (underlying network, number of nodes, data

size, etc.), it chooses the best mapping (pre-selection) of

the logical network to the physical one. Our experiments

in a rigid physical underlying network (2-D mesh) show

that Lee mapping is better for the MaxBT2, while the H-

trees is more efficient for MaxBT1 algorithm. Actually,

the performance can be 1.5-2× higher, when the best

mapping is followed.

• In FLUX networks, direct “point-to point” connections

can be utilized to detect and change any wrong decisions

of the application developer regarding the communication

needs of the application. Hot spot connections of the

network can also be added (see also Figure 2).

• We propose that designer, system programmer and

application developer should be involved in a

complimentary fashion. The hardware designer

maximizes physical network flexibility to accommodate

mapping arbitrary “spaghetti” logical networks.

The system programmer finds the most suitable

mapping/utilization of the network, exploiting the

flexibility of the provided FLUX network and gives

feedback to the algorithm developer regarding the

performance tradeoffs of different network decisions.

The application developer utilizes several techniques

(profiling, monitoring etc.) to find the most suitable

interconnect for the targeting problem.

• The FLUX networks allow physical network descriptions

to coexist with common programming constructs. For a

single application running on a single physical network

the best mapping can vary. FLUX networks provide

the ability to detect and change the mapping of the

application into the physical network on-the-fly (multiple

mappings), and therefore, can exploit in each case the

best network configuration. The above is not supported

by previous work [7], [15].

• Contrary to others [15], FLUX Networks on reconfig-

urable fabric can reconfigure the PE routers, changing

the routing algorithm, the number and width of the links,

add buffering etc. on demand instead of being prefixed.

• Our approach can dynamically adapt to arbitrary

topologies, while other solutions can only support

several topologies and regular predefined structures [15].

C. A Programming Example

In this section, we present a programming example, showing

the way to port an application/algorithm in different underlying

networks. In our example, the underlying network is either a

n × n 2-D mesh, an FPGA or a BT interconnection network.

The utilized application is the MaxBT1 algorithm described

in the previous Section III-B. The program decides which

mapping to use according to the following parameters: the

underlying physical network, the processing data size and

the number of nodes. For different applications or physical

networks, other parameters might also be considered (node

size, network area cost etc.) Assuming that a 2-D mesh, a

BT, or an FPGA is the underlying physical network, Figure

8 illustrates the programming function that decides the inter-

connection setup for the MaxBT1 algorithm.

The above function is based on the results of Figure 5. When

the underlying network is a binary tree (BT) then obviously it

is more efficient to use the physical topology itself. In case of

the FPGA interconnection, our experiments show that when

a BT is implemented, it has a similar cycle time with the

166

in IC-SAMOS: Samos, Greece, July 17-20, 2006

SetNet_MAXBT1:

CASE (PHY Net) { // what is the physical network?
BT: // if the Physical Network is a binary tree
SET BT; // then map a binary tree

2-D Mesh: // if the Physical Network is a 2-D Mesh
CASE (#nodes){

 // if the system has up to 2^10 nodes
(#nodes <= 2^10):

// then map a binary tree using H-trees
SET H-trees mapping;

// if the system has more than 2^10 and up to 2^12 nodes
(2^10 < #nodes <= 2^12):

// and the processing data size is upto 2^10
 IF(Data <= 2^10)THEN

// then map a binary tree using H-trees
SET H-trees mapping;

ELSE
//else map a binary tree using Lee_Choi mapping

SET Lee_Choi mapping;
// if the system has more than 2^12 and upto 2^14 nodes
(2^12 < #nodes <= 2^14):

// and the processing data size is upto 2^16
 IF(Data <= 2^16)THEN

// then map a binary tree using H-trees
SET H-trees mapping;

ELSE
//else map a binary tree using Lee_Choi mapping

SET Lee_Choi mapping;
// if the system has more than 2^14 nodes
(#nodes > 2^14):
// then map a binary tree using Lee_Choi mapping

SET Lee mapping;
 }

FPGA: // if the Physical Network is Reconfigurable
SET BT; // then map a binary tree

 }

Fig. 8. A programming example for the MaxBT1 algorithm.

2-D mesh and requires about 70% less resources.Therefore,

based again on the performance results of Figure 5, it is more

efficient to utilize the BT topology. For the 2-D mesh physical

network, the most efficient mapping depends on the number

of nodes and the processing data size. More precisely, for

small number of nodes or medium systems and small data

sets the H-trees are better, while for large number of nodes or

medium systems and large data sets the Lee Choi mapping is

more beneficial. Finally, when a specific topology/mapping is

decided (e.g. SET H-trees mapping into a 2-D mesh), at least

the following parameters should be explicitly specified:

• Node Addressing: assign each physical node with an

address and a workload.

• Establish Routing paths: specify the communication path

between every pair of (utilized) nodes.

• Routing algorithms/policies: specify routing algorithms

and policies (i.e priorities of connections), if can be

supported by the physical network.

IV. CONCLUSIONS

In this paper, we introduced the concept of the FLUX

networks and have discussed some performance potential

for parallel applications suitable for different interconnection

topologies/mappings. We studied different types of physical

interconnections and presented a programming paradigm as a

way to accomplish the configuration (mapping) of an intercon-

nection network on demand. In addition, we presented some

experimental results to show that, when running a parallel

algorithm in a multiprocessor system interconnected in a fixed

topology, performance is affected. More precisely, we showed

that the performance of a parallel algorithm drops when using

other mapping than the appropriate one. We also pointed out

that, besides the implemented algorithm, other parameters such

as the data size, the underlying technology and the number of

nodes should be taken into account in order to decide which

topology is most suitable for an application. The implication

of the above is that by determining the network in advance and

by exploiting network instalments (statically or dynamically)

substantial gain can be expected.

REFERENCES

[1] S. Vassiliadis, L. A. Sousa, and G. N. Gaydadjiev, “The Midlifekicker
Microarchitecture Evaluation Metric,” in Proceedings of the IEEE Int.

Conf. ASAP05, July 2005, pp. 92–97.
[2] W. Bouknight, S. Desenberg, D. McIntyre, J. Randall, A. Sameh, and

D. Slotnick, “The Illiac IV system,” Proc. IEEE, vol. 60, April 1972.
[3] S. Ranka and S. Sahni, Hypercube Algorithms for Image Processing and

Pattern Recognition. New York City, NY: Springer-Verlag, 1990.
[4] S. Vassiliadis, S. Wong, G. N. Gaydadjiev, K. Bertels, G. Kuzmanov, and

E. M. Panainte, “The Molen Polymorphic Processor,” IEEE Transactions

on Computers, pp. 1363– 1375, November 2004.
[5] F. T. Leighton, Introduction to parallel algorithms and architectures:

array, trees, hypercubes. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 1992.

[6] M. Reingold, J. Nievergelt, and N. Deo, Combinational Algorithms:

Theory and Practice. Englewood Cliffs, New Jersey: Prentice-Hall,
Inc., 1977.

[7] B. Monien and I. Sudborough, “Embedding one interconnection network
in another,” In Computational Graph Theory, G. Tinhofer et al. Eds.,

Computing Supplementa, vol. 7, pp. 257–282, 1990.
[8] S.-K. Lee and H.-A. Choi, “Embedding of Complete Binary Trees into

Meshes with Row-Column Routing,” IEEE Trans. Parallel Distrib. Syst.,
vol. 7, no. 5, pp. 493–497, 1996.

[9] A. Grama, A. Gupta, G. Karypis, and V. Kumar, Introduction to Parallel

Computing. USA: Pearson Educ. Lim., 2003.
[10] C. E. Leiserson, “Fat-Trees: universal networks for hardware-efficient

supercomputing,” IEEE Trans. Comput., vol. 34, no. 10, pp. 892–901,
1985.

[11] S. A. Browning, “The Tree Machine: A Highly Concurrent Computing
Environment,” Ph.D. dissertation, Dept. of Computer Science, CalTech,
1980.

[12] T. H. Cormen, E. Leiserson, Charles, and R. L. Rivest, Introduction to

Algorithms, ser. Cambridge. Massachusetts: The MIT Press, 1990.
[13] J. G. Delgado-Frias, S. Vassiliadis, C.-L. Chu, and A. de Luca, “DT:

A Binary Tree Parallel Computer with Distributed I/Os,” Journal of the

Mexican Society of Instrumentation 3 (4), pp. 33–42, January 1994.
[14] C. D. Thompson and H. T. Kung, “Sorting on a mesh-connected parallel

computer,” Commun. ACM, vol. 20, no. 4, pp. 263–271, 1977.
[15] L. Snyder, “Introduction to the Configurable, Highly Parallel Computer.”

IEEE Computer, vol. 15, no. 1, pp. 47–56, 1982.

167

in IC-SAMOS: Samos, Greece, July 17-20, 2006

