
Scheduling in the
context of Automatic
Hardware Generation
Razvan Nane∗, Koen Bertels ∗

∗ Computer Engineering, Postbus 5031, 2600 GA, Delft, The Netherlands

ABSTRACT

The advantages of reconfigurable technology in terms of performance have been widely rec-
ognized. Due to its potential to greatly accelerate a wide variety of applications, reconfigurable
computing has become a subject of a great deal of research. Its key feature is the ability to per-
form computations in hardware to increase performance, while retaining much of the flexibility
of a software solution. In this context, the Delft Workbench group focuses on software and back
end compilers for Reconfigurable Embedded Processors. Its objective is a semi-automatic tool
platform for integrated hardware-software co-design targeting heterogeneous computing systems
containing reconfigurable components. Delft Workbench addresses the entire design cycle rather
than isolated parts. It involves the development of compilers for reconfigurable platforms, pro-
gramming models, hardware software co-design, CAD and design space exploration software,
optimization algorithms and integration software development.

The current research emphasis falls onto four major categories: Code Profiling and Cost Mod-
eling in which the segments of the input application that are suitable for hardware execution are
identified and preliminary estimation of the implementation costs is performed. Graph Transfor-
mations where the high-level application is restructured in function of the reconfigurable plat-
form through possible algebraic transformations. Retargetable compilation: Specific compiler op-
timizations are designed to meet the specific requirements of the reconfigurable components; and
VHDL generation where for preliminary costs estimation and hardware implementation of non-
critical parts, the possibility of automated VHDL generation is investigated.

Within this context, the DWARV (C-to-VHDL) tool was designed. The motivation for it was
to have something that would allow us to estimate performance and prototype fast, and to al-
low application designers without hardware knowledge to choose between software or hardware
implementations and not be restricted only to software solutions.

The toolset provides support for broad range of application domains and exploits the oper-
ation parallelism, available in the algorithms. Having no limitations on the application domain
and being able to actually execute on a real hardware prototyping platform were the most impor-
tant design goals of DWARV and the things that basically makes this tool different than similar
projects like SystemC, ImpulseC and others. The input of the toolset is pragma annotated C code
without any syntax extensions. A number of restrictions on the C-language currently apply but
will be relaxed in the future. However, those restrictions, do not limit the application domains.
In its current state, with only a limited number of available optimizations, DWARV is capable

1E-mail: rnane@ce.et.tudelft.nl,k.l.m.bertels@tudelft.nl



of providing the following functionality: No limitations of the application domains. Algorithms
with different characteristics are automatically translated and executed; Kernel-wise speedups
of 9.7 times over the software execution; Substantial overall application speedup of up to 6 times
over software execution is observed; High performance efficiency. The achieved speedup amounts
from 13% to 94% of the theoretically possible maximum speedup, constituted by Amdahl’s law;
Actual execution on a real hardware prototype platform.

Scheduling is an important step in this respect in high-level synthesis and means assigning
each operation in the input description to a time step in such a way that given constraints and opti-
mization objectives are satisfied, i.e. minimize execution time while not exceeding pre-determined
resource constraints. In the context of DWARV project, this implies: Maximize parallelism, Bal-
ance operations load, Balance storage, Reduce interconnect, Reduce control. Scheduling is there-
fore an aspect of utmost importance and is the current topic of research in DWARV. Before de-
scribing the problem, some project terminology and notations needs to be referred to.

The output of the first step in DWARV, i.e. Graph building, is a Hierarchical Data-Flow Graph
(HDFG) containing different types of nodes and edges. Nodes can be of the following types:
data processing (DPN), data transfer (DTN) or data storage (DSN); whereas edges can be data-
explicit(EDDE) or -implicit(IDDE) and control dependencies(CDE). DPN can be atomic (e.g. Ad-
dition) or compound (e.g. function, loop with unknown iterations) therefore the execution delay
of these types of nodes can be known or unknown. Disregarding for the time being the other types
of nodes and the edges, we observed that the compound nodes are at the base of the scheduling
problem.

In order to be able to efficiently schedule the graph, we need to reduce its complexity (de-
compose it) by finding a cut that will give optimal or near optimal results. Nonetheless, this is
not achievable in the current situation, as we are dealing with non-deterministic nodes with un-
known delays. Hence the difficulty of imposing some constraints on the graph, which would lead
to a cut that would generate better results than those obtained by running the non-deterministic
nodes sequentially. With other words, is there a way to schedule in parallel non-deterministic and
deterministic nodes in a graph and if so, what are the implied conditions. One possible solution
that is currently being investigated is to try to find some statistics for the non-deterministic nodes
based on profiling and to schedule accordingly in order to investigate the performances of such
solution.

KEYWORDS: ACES; poster session; reconfigurable; scheduling; hardware generation


