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Abstract— Memory Built-In Self-Test (MBIST) has become
a standard industrial practice. Its quality is mainly deter-
mined by its fault detection capability in relationship to the
the area overhead. The MBIST Address Generator (AG) is
largely responsible for the fault detection capability, and has
a significant contribution to the area overhead. This paper
analyzes the properties and implementation aspects of several
AGs. In addition, it presents a novel, very systematic, high-
speed, low-power and low-overhead implementation, based on
an Up-counter and a set of multiplexors.
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I. INTRODUCTION

Memory Built-In Self-Test (MBIST) has become a stan-

dard industrial practice [1], [4], [5], [15], [12]. MBIST is

important because memory cores are a major part of the die

area; it is forecasted that by 2014 they will occupy 94% of

the die area [16]. In addition, they are designed with minimal

design rules, making them more susceptible to defects, and

hence, to faults. For a high product quality, the fault detection

capability of the MBIST is critical.

In the world of MBIST, memory accesses have to be

applied at-speed, using Back-to-Back (BtB) memory cycles

[2]-[5], [7]-[9]. Systems require large, high speed memories,

while current technology exhibits a large spread in imple-

mentation parameters, resulting in speed-related (i.e., delay)

faults [3], [8], [11], [19]. Their detection is mandatory in

today’s industry [2], [4], [6], [20], and requires non-linear

algorithms such as GalPat, GalRow and GalColumn, and a

special Address Generator (AG). The AG is a key MBIST

component. In order to detect speed-related faults, the AG

has to generate a large set of address sequences, with BtB

cycles and the appropriate address transitions. Its complexity

is a major design issue, since it requires a large area and

limits the MBIST speed.

Figure 1 shows the relative area -in % - taken by the five

components for three MBIST designs [4], [15], [12]: Control

(Ctrl), test algorithm Memory (Memory), Instruction fetch

and decode (Instr), Address Generator (AddrGen), and Data

Generator (DataGen). Although the designs are very differ-

ent, the area requirement of the AG is significant: between

26 and 33%. Reducing the algorithm Memory, which takes

between 38 and 42% of the MBIST area, has been addressed

in [21]. A brute-force implementation can be very costly.
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In [17] the authors reported that an MBIST redesign, using

innovative ideas, can result in an area reduction of 75%; the

AG was a major contributor to this area saving.

This paper contributes to the area of MBIST implementation

by emphasizing its most critical part: the Address Generator

(AG). Therefore, it is of value to the practicing engineer.

The main contribution consists of an implementation analysis

of AGs to support a variety of address sequences, such as

Linear, Address Complement, Gray Code, etc. The most

common and important address sequences are supported

with a single Up-only counter, together with a set of mul-

tiplexers. This results in significant savings in area and

power, and allows for a higher speed MBIST engine and

a very systematic implementation. E.g., a 24-bit Linear AG,

implemented with an Up-only counter and a set of muxes,

shows 21.8% area and 23% power savings, as compared with

an implementation, using an Up-Down counter.

The organization of this paper is as follows: Section II

covers the requirements for AGs; Section III shows the

implementation alternatives and analysis for the Linear and

Address complement AGs; Section IV covers the Gray code,

the Worst Case Gate Delay and the 2i AGs; Section V

discusses the Next address and the Pseudo-random AGs;

while Section VI ends with the conclusions.

II. ADDRESS GENERATOR REQUIREMENTS

There are N ! (N-factorial) Counting Methods (CMs); i.e.,

ways of counting to N . E.g., for N=3 there are 6 CMs: 012,

021, 102, 120, 210, and 201. For memory testing, the AG

has to generate several CMs, since each CM has its own

fault detection capability [3], [6], [8], [9], [11], [20]. For

this paper, the most common, and important, CMs will be

considered; they are explained next. Table I highlights the



TABLE I

ADDRESS COUNTING METHODS (CMS)

Step Li Ac Gc 2
i
= 4 Pr Wc

0 0000 0000 0000 0000 0000 -
1 0001 1111 0001 0100 0001 0001
2 0010 0001 0011 1000 0011 0000

3 0011 1110 0010 1100 0111 0001

4 0100 0010 0110 0001 1111 -
5 0101 1101 0111 0101 1110 0010
6 0110 0011 0101 1001 1101 0000
7 0111 1100 0100 1101 1010 0010

8 1000 0100 1100 0010 0101 -
9 1001 1011 1101 0110 1011 0100

10 1010 0101 1111 1010 0110 0000
11 1011 1010 1110 1110 1100 0100

12 1100 0110 1010 0011 1001 -
13 1101 1001 1011 0111 0010 1000
14 1110 0111 1001 1011 0100 0000
15 1111 1000 1000 1111 1000 1000

Note: Li= Linear; Ac= Address Complement; Gc= Gray code;
Pr= Pseudo random; Wc= Worst Case Gate Delay

CMs by giving an example of each CM for N=4 (N is the

# of address bits).

• Linear (Li) CM specifies the address sequence: 0, 1, 2 ,

3, ..., 2N -1 when going Up ’⇑’; and 2N -1,..., 3, 2, 1 , 0

when going Down ’⇓’. The Li CM is used for detecting

single-cell and coupling faults.

• Address complement (Ac) CM specifies the address

sequence: 0000, 1111, 0001, 1110, 0010, 1101, etc.

[10]. The even steps in Table I, see column ’Step’, of

this sequence form a linear ⇑ address sequence; the

addresses of the odd steps, in bold font, are formed

by taking the one’s complement of the preceding even

steps. The Ac CM stresses the address decoders, be-

cause all N or N -1 address bits switch upon an address

transition; this causes lots of noise, a large power surge,

and maximal delay. It is used for detecting speed-related

faults.

• Gray code (Gc) CM has address transitions which differ

only in one bit (i.e., they have a Hamming distance

of 1); see column ’Gc’ in Table I. Its properties are

opposite to those of the Ac CM; it causes minimal noise,

power and delay, and is used for minimal stress.

• Worst Case Gate Delay (Wc) CM derives, for every

address, N address-triplets, with a Hamming distance

of 1, by successively inverting a single address bit. The

column ’Wc’ in Table I shows the address-triplets only

for address ’0000’ [11]. For every address bit, address

triplets consisting of (a) the address with the inverted

bit, (b) the original address, and (c) the address with

the inverted bit, are generated. The Wc CM is used to

detect speed-related faults [11].

• 2i CM generates all address pairs with a Hamming dis-

tance of 1; i.e., address-pairs which differ in one bit. The

column 2i = 4 in Table I shows the address sequence

for i = 2; i.e., with address increments/decrements with

a value of 4. Note that end-around carry is used when

the number under-/over-flows. The 2i CM is used by

the popular MOVing Inversions (MOVI) test [8], [10]

for speed-related faults.
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• Pseudo-random (Pr) generates a Pr address sequence.

It can be used, e.g., to verify the fault coverage of

the deterministic tests. The column Pr in Table I

lists the address sequence for a 4-bit generator with a

characteristic polynomial function: x4 + x1 + 1 [10].

It will be shown that the Li, Ac, Gc, Wc and the 2i CMs

can be implemented with a single Up-counter (with outputs

CN−1, ..., C0), and a Mux-network with Address outputs

AN−1, ..., A0; see Figure 2 and Table II. It has control inputs

’U/D’ (Up/Down) and the desired CM (Li, Ac, Gc, Wc or

2i). Note: In Figure 3, 4, 5, 6 and 8, the addresses A3, A2, A1

and A0 are labeled: Q3, Q2, Q1 and Q0.

III. LINEAR & ADDRESS COMPLEMENT AGS

This section presents the implementation and the analyses

(in terms of area overhead, speed and power consumption)

of four AGs: two versions of Li AGs, the Ac AG and a

combined version of the Li and the Ac AG.

A. Li and Ac AG implementations

The four AGs are shown in Figure 3 and are explained next.

Note that all examples use a 4-bit implementation, which is

sufficient to show the concept, while preserving space.

LiUd: Linear AG based on Up-down counter

Figure 3(a) shows the LiUd AG using J-K flip-flops.

The ’U/D’ (Up/Down) control input determines whether

the ’⇑’ or the ’⇓’ address sequence is generated, by

selecting the Q or the Q output of bitx to control the

J-K inputs of bitx+1. Note that the control of each J-K

input requires two gates which are in the critical signal path.

LiUo: Linear AG based on Up-only counter

Figure 3(b) depicts the LiUo AG using an Up-only counter.

The U/D control input determines whether the Q (for ⇑) or

the Q (for ⇓) outputs are selected. Note that a single mux,

which is not in the critical signal path, is used to switch

between ⇑ or ⇓ counting.

The left column of Table II lists the CM; the next

column the AO {⇑ or ⇓}, followed by the four Address

bits: A3, A2, A1, A0. The rows ’Li’ describe the equations,

implemented via the Mux data and the Mux control inputs.

E.g., for the ⇑ and the ⇓ AOs: for Li ⇑, A3 = C3, while

for Li ⇓, A3 = C3.



TABLE II

MATRIX FOR LI, AC, GC 2I WC & NE AGS

CM ⇑⇓ A3 A2 A1 A0

Li ⇑ C3 C2 C1 C0

Li ⇓ C3 C2 C1 C0

Ac ⇑ C0 C3 ⊕ C0 C2 ⊕ C0 C1 ⊕ C0

Ac ⇓ C0 C3 ⊕ C0 C2 ⊕ C0 C1 ⊕ C0

Gc ⇑ C3 C2 ⊕ C3 C1 ⊕ C2 C0 ⊕ C1

Gc ⇓ C3 C2 ⊕ C3 C1 ⊕ C2 C0 ⊕ C1

Wc ⇑ C3⊕(j=3) C2⊕(j=2) C1⊕(j=1) C0⊕(j=0)
Wc ⇓ C3⊕(j=3) C2⊕(j=2) C1⊕(j=1) C0⊕(j=0)

2i;0 ⇑ C3 C2 C1 C0

2i;0 ⇓ C3 C2 C1 C0

2i;1 ⇑ C3 C2 C0 C1

2i;1 ⇓ C3 C2 C0 C1

2i;2 ⇑ C3 C0 C1 C2

2i;2 ⇓ C3 C0 C1 C2

2i;3 ⇑ C0 C2 C1 C3

2i;3 ⇓ C0 C2 C1 C3
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Fig. 3. Linear & Address Compl. AGs

Ac: Address complement AG

Column ’Ac’ of Table I shows a 4-bit address sequence

for the Ac CM. Figure 3(c) shows Ac AG implementation

using an Up-only counter. The ’U/D’ control signal controls

the most-significant address bit ’A3’, which is the least-

significant counter bit ’C0’, because A3 of the Ac CM

changes with every clock period; see Table I. The Q output

of C0 controls the muxes of all Ax, with 0 ≤ x < 3.

Rows ’Ac’ of Table II describe the Mux functionality;

e.g., A2 = C3 ⊕ C0 is implemented via Mux data input C3

and control input C0, see Figure 3(c).

LiAc: Combined LiUo & Ac AG, see Figure 3(d)

This AG uses the control signal ’CTRL1’ for the mux of

A3, and ’CTRL2’ for the other address bits. E.g., CTRL1=0

means AcUp. Similar to Figure 3(c), the Q0 and Q0 data

inputs to the left-most mux of Figure 3(d) are used to

generate A3. CTRL1=3 means LiDown; similar to Figure

3(b), Q3 is connected to the input ’3’ of the left-most mux

in Figure 3(d) to generate A3.

The CTRL2 inputs are Ac, Q0 and U/D. For the generation

TABLE III

AREA METRICS OF LI & AC AGS

AG Freq N (# of address bits)

in MHz 8 12 16 20 24

LiUd 555 123 186 262 344 426

LiUd 833 135 219 305 401 500

LiUd 1111 179 265 360 455 556

△Area Freq in % 45.3 41.9 37.2 32.3 30.7

LiUo 555 107 170 230 286 352

LiUo 833 110 172 234 297 365

LiUo 1111 116 191 274 355 435

△Area Freq in % 8.4 12.6 19.4 24.0 23.6

△Area LiUd-Uo in % 35.2 27.9 23.8 22.0 21.8

Ac 555 108 168 227 289 351

Ac 833 112 171 230 299 362

Ac 1111 114 192 273 353 435

△Area Freq in % 5.3 13.8 20.2 22.3 24.1

LiAc 555 122 182 252 325 388

LiAc 833 134 202 269 341 414

LiAc 1111 139 227 313 396 486

△Area Freq in % 14.1 24.8 24.3 22.0 25.1

△LiAc-LiUo Area in % 19.8 18.8 14.2 11.6 11.7
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Fig. 4. Power for LiUd & LiUo AGs

of the Ac CM, the mux inputs ’0’ and ’1’ are used. Similar

to Figure 3(c), Q0 controls the generation of Ac ⇑ sequence

via mux input ’0’ when Q0 = 0, and Ac ⇓ sequence via mux

input ’1’ when Q0 = 1. , The mux inputs ’2’ and ’3’ are

used for the generation of the Li CM; the U/D (Up/Down)

control signal determines whether mux input ’2’ or ’3’ is

selected.

B. Li and Ac AG simulation results

The AGs are synthesized with the Synopsys Design Compiler

[14], using the Faraday UMC 90 nm Standard Process library

[13]. Table III shows the area, in terms of standard 2-input

NAND gates, for the 4 AGs (the LiUd, the LiUo, the Ac, and

the LiAc AG). The column ’Freq’ lists the three operating

frequencies in MHz; the columns thereafter list the area

requirements for AGs consisting of 8 (N = 8), 12, 16, 20

and 24 address-bits.

Note that the area increase with increasing N (the # of

address bits) is apparent. The LiUd AG has the largest area

increase: between 30.7 and 45.3% (see table entry ”△Area

Freq in %”); LiUo has an increase of only 8.4 to 23.6%.

Moreover, the table reveals that that LiUd AG consumes the

largest area; e.g., depending on the operating frequency, LiUd

consumes 21.8 to 35.2% more than the LiUo AG; see row

’△Area LiUd-Uo in %’.

The rows ’△Area Freq in %’ list the percentage of area

increase when increasing the frequency from 555 to 1111
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MHz. Increasing the frequency does not increase the number

of gates required to implement the AG. However, in order

to meet the required clock frequency, certain gates are made

larger to get more drive strength; hence, more area overhead

when expressed in terms of # of standard 2-input NAND

gates.

Figure 4 shows the power requirements for the LiUd and

the LiUo AGs; the LiUd is worse, especially for higher

frequencies, by 13 to 23%. The power increases non-linearly

with the frequency, because higher frequencies also demand a

larger circuit area; see Table III. Considering the advantages

the LiUo counter has over the LiUd counter, the latter will

not be considered any more from this point on.

Increasing the AG capability from Li to include Ac does

not double the AG area. Figure 3(d) shows that to each of the

N address muxes, 2 extra inputs are added, together with the

control of the extra mux inputs. The rows with labels ’LiAc’

of Table III show the area requirement for this AG. The row

’△LiAc-LiUo Area in %’ shows the LiUo AG area increase,

for Freq = 1111MHz, to implement the Ac capability: this

is between 11.6 and 19.8%. This means that adding another

CM only marginally increases the AG area.

IV. GRAY CODE, WORST CASE GATE DEL. & 2i AGS

This section analyzes the Gray code (Gc), the Worst Case

Gate Delay (Wc), and the 2i AGs; see also Table I.

Gc: Gray code AG; see Figure 5(a)

The column ’Gc’ of Table I shows a 4-bit Address Sequence

(AS) for the Gc CM. By comparing this sequence with that

of Li AG, one can see that the Gc AS can be derived from

the Li AS as follows: A0 = C0 ⊕ C1; i.e., A0 of the Gc

address can be derived from C0 of the Linear address by

inverting it when C1 of the linear Up-counter is ’1’; see also

Table II. This is implemented in Figure 5(a) by controlling

the mux of A0 with the signal ’C1’. A similar reasoning

applies to A1 and A2. The mux of A3 is controlled by

the Up/Down signal, which means that in case of the ⇑
address sequence, the ’0’ input of the mux will select C3 to

generate A3; see Table I.

TABLE IV

WAYS OF 2
i ADDRESSING

Regular 2i CM Minimal 2i CM

# 0 1 2 3 0 1 2 3

0 0000 0000 0000 0000 0000 0000 0000 0000

1 0001 0010 0100 1000 0001 0010 0100 1000

2 0010 0100 1000 0001 0010 0001 0010 0010

3 0011 0110 1100 1001 0011 0011 0110 1010

4 0100 1000 0001 0010 0100 0100 0001 0100

5 0101 1010 0101 1010 0101 0110 0101 1100

6 0110 1100 1001 0011 0110 0101 0011 0110

7 0111 1110 1101 1011 0111 0111 0111 1110

8 1000 0001 0010 0100 1000 1000 1000 0001

9 1001 0011 0110 1100 1001 1010 1100 1001

10 1010 0101 1010 0101 1010 1001 1010 0011

11 1011 0111 1110 1101 1011 1011 1110 1011

12 1100 1001 0011 0110 1100 1100 1001 0101

13 1101 1011 0111 1110 1101 1110 1101 1101

14 1110 1101 1011 0111 1110 1101 1011 0111

15 1111 1111 1111 1111 1111 1111 1111 1111

Wc: Worst Case Gate Delay AG; see Figure 5(b)

The column ’Wc’ of Table I sketches part of a 4-bit Wc

address sequence. The Wc CM requires that for every

address, a single address bit has to be inverted; see also

Section II. This is accomplished by selecting the Cj or the

Cj output, under control of the corresponding mux with

control input ’j = i’; see Table 2. For example, for A2 the

mux control input is ’j=2’; indicated in Figuure 5(c) by the

mux-control input ”2j(2)”. Note that of the 4 mux control

inputs only one is active, such that only one address bit is

inverted.

2i: 2i AG; see Figure 5(c)

The column ’2i=4’ of Table I shows the 2i address sequence

with address increments/decrements of 4; i.e., i=2. This

CM is important for the MOVI algorithm [8], [10], which

is used throughout the industry. It therefore is worth to

have an optimal implementation. Table IV will be used to

explain the 2i sequences. The sub-table ’Regular 2i CM’ lists

the ’Regular’ 2i CM. Column ’0’ stands for ’i=0’; hence,

address increments/decrements of 20 = 1 are used (see last

digit, in bold font, of column ’0’). In the next column, ’1’,

address increments/decrements of 21= 2 are used, etc. A

barrel shifter with N muxes, each with N inputs, could be

used to transform the Li address sequences into the ’Regular’

2i sequences. However, this requires a total of 2∗N∗N=2N2

mux inputs for the ⇑ and the ⇓ AOs.

A Minimal solution is shown in Figure 5(c); the mux for

A0 has 2*N inputs, and the muxes for A1, A2 and A3 each

have 2*2 inputs. This reduces the required number of mux

inputs from 2N2 to 2∗(2∗(N -1)+N )=6N -4. The second

sub-table of Table IV, ’Minimal 2i CM’, shows the operation.

The sequence in the column ’0’ is identical to the Regular

sequence. For all other values of i the muxes interchange

coli with col0; see bold digits in the columns. Therefore,

the mux for A0 requires 2*N inputs, while the other muxes

only require 2*2 inputs.

Table 2 has N pairs of entries for the 2i CM; for N=i,
Ai=C0 or C0, while A0=Ci or Ci. Note that in each column

Ai, for i > 0, N -1 entry-pairs are identical, requiring only

2 ∗ 2 mux-inputs.



Fig. 6. Pr AGs

V. NEXT ADDRESS & PSEUDO-RANDOM AGS

This section describes the implementation of the Next

address (Ne) and the Pseudo-random (Pr) AGs; see

Table I, Figure 5(d) and Figure 6. The implementation

cannot be done with inputs for the Mux-network of Figure 2.

Ne: Next address AG; see Figure 5(d)

Some algorithms, like those targeting Bit Line Imbalance

Faults [18], [11], require the generation of the next address.

This means that, within a march element, operations

are applied to a given address, as well as to the next

address. The Ne AG implementation is based on the

idea that the Up-only counter can be split into two units:

the ’Register’ and the ’+1 increment logic’, as shown

in Figure 5(d). To generate the ⇑ and ⇓ sequences, the

mux in the figure can select the Register outputs, which

represent the ’Normal Sequence’, via mux inputs ’2’ and

’3’. Alternatively, the generation of the ’Next Sequence’

in the ⇑ or the ⇓ direction is done via mux inputs ’0’ and ’1’.

Pr: Pseudo-random AG; see Figure 6(a, b and c)

The implementation of the Pr CM requires a Linear Feedback

Shift Register (LFSR), instead of extra inputs to the Mux-

network of Figure 2. Figure 6(a) can generate the Address

Sequence (AS) of the column ’Pr’ of Table I, which we

will denote as the Pseudo-random Up ’PrU’ AS. For this,

the LFSR uses the primitive polynomial ’G(x)’ defined as

G(x) = x4+x+1, such that the maximum-length sequence

can be generated [10]. This polynomial is implemented by

XORing bit3 and bit0, and feeding it to the input of the

LFSR, as shown in Figure 6(b). The LFSR has to shift to

the left; i.e., towards the most significant address bit. The

NOR gate allows for the generation of the all-0 address;

when the state of the LFSR is 1000 or 0111, it inserts a ’1’

into the XOR network. That way it can exit state ’0000’.

For the generation of the Pseudo-random Down (PrD)

AS, which has to be the exact inverse of the PrU AS,

the LFSR has to shift towards the least-significant bit (i.e.,
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to the right, while the XOR network has to implement

the reverse polynomial G∗(x) which satisfies the equation:

G∗(x) = xg∗G(1/x); g is the degree of the polynomial [10].

The reverse polynomial G∗(x) = x4 ∗ (1/x4 + 1/x + 1) =
x4 + x3 + 1 and its implementation is given in Figure 6(b).

Figure 6(c) shows the 4-bit Pr AG which can generate both

the ⇑ and the ⇓ sequences; it is a combination of Figure 6(a)

and 6(b). The left and right shift capability is supported by

the muxes controlled by the Up/Down signal, and located

between the LFSR cells.

VI. CONCLUSIONS AND RECOMMENDATIONS

This paper analyzes Address Generator (AG) implementation

alternatives for Memory BIST. This has been motivated by

the fact that the AG takes about 30% of the MBIST engine

area. The set of Counting Methods (CMs), commonly used

in industry to detect different faults classes, which include

speed-related faults, consist of the Linear (Li), Address

complement (Ac), Gray code (Gc), Worst Case Gate Delay

(Wc), 2i (2i), Next address (Ne), and the Pseudo-random

(Pr) CMs.

The AGs have been designed and implemented in Faraday

90 nm technology. The results show that the Up-Down

counter, as compared with an Up-only counter with mul-

tiplexers, is less area efficient (by 22 to 35%) and also less

power efficient (by 13 to 23%). Furthermore, it has been

shown that the optimal AG implementation is based on the

use of an Up-counter, with a set of multiplexers. This

implementation can easily be extended to support additional

CMs, which make the design and implementation of the AG

more systematic, and less area and power demanding.

The Next address CM is supported very economically

by splitting the Up-only counter into a ’Register’ and a

’+1 increment logic unit’, while the Pseudo-random CM is

supported by modifying the ’Register’ to become a Linear

Feedback Shift Register.

Figure 7 depicts the area overhead required for each of the

seven CMs covered in this paper, together with the combined

LiAcNeGcWcPr2i CM, referred to as ’ALL’. The latter will

be described at the end of this section. Figure 7 shows that

the area required for the Li, the Ac, the Ne the Gc and the
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Fig. 8. Li, Ac, Ne, Gc, Wc, Pr and 2i AG

Wc CMs are very comparable, as also can be concluded

from Figure 3, 5 and 6, as well as from Table 2, which

describes the Mux-network. Note that the 2i CM requires a

larger area, because of the fact that the muxes for address

biti, for i > 0, require two inputs pairs, while the mux for

address bit0 requires N input pairs, see Section 4, and Figure

5.

The area for the ALL AG is only 2.42 to 2.95 times the

area of the Li AG, depending on the size of N (the larger

N , the smaller the relative size of the ALL AG). Compared

with a brute-force implementation, the area required for the

ALL AG is reduced by over 60% area; e.g., for N=24, the

new ALL AG consumes 1054 gates, and 3070 gates for

brute-force implementation [12]. Hence, the described Up-

counter – Mux-network approach results in a significant area

reduction.

Figure 8 concludes this paper. It has been included to

illustrate the effectiveness of the new AG implementation

method. Figure 8 implements the ’ALL’ AG, which supports

all CMs described in this paper: the Li, the Ac, the Ne, the

Gc, the Wc, the Pr and the 2i CMs.

A block diagram is shown in the left-upper part of

the figure. It consists of a Linear Feedback Shift Register

(termed the ’Pseudo-Random Gen./Register’), with outputs

R3, R2, R1 and R0; a ’+1 increment logic’ unit, with out-

puts C3, C2, C1 and C0, and a multiplexer with outputs

O3, O2, O1 and O0. The multiplexer has the capability to

select the Next address or the Current address, see also

Figure 5(d)). This multiplexer effectively consists of N=4
multiplexers, one for each address bit. The details of these

muxes is shown in the lower part of Figure 8; while their

control inputs are given in the lists, located in the right-upper

part of the figure.

From left-to-right, it shows the mux for Address bit ’Q3’,

followed by the mux for ’Qi’, for 0 <i<N , and last, the mux

for ’Q0’. The mux with output O3 has three pairs of inputs:

C3 and C3 feed Input ’0’ of the mux, R3 and R3 feed Input

’1’, while R0 and R0 feed Input ’0’. The list with header

’CTRL(3)’ describes the way the mux is controlled: when

input pair ’0’ is selected, then the Next CM, for both the

Up and Down (NeU/D) Address Orders (AOs) is enabled.

Input pair ’1’ selects the following CMs: the 2
i CM, for the

Up and Down AOs, the Linear CM for the Up and Down

AOs, the Wc CM, the Gc CM, and the Pr CM; as indicated

by ’2iU/D,LiU/D,Wc,Gc,Pr’ in the list of ’CTRL(3)’. Note

that they all share the same mux inputs! The explanation of

the muxes O(i) and O(0) is similar.
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