
Computer Engineering
Mekelweg 4,

2628 CD Delft
The Netherlands

http://ce.et.tudelft.nl/

2006

MSc THESIS

Reverse engineering of Java Card applets using
power analysis

Dennis Vermoen

Abstract

Faculty of Electrical Engineering, Mathematics and Computer Science

CE-MS-2006-05

Power analysis of smart cards is commonly used to obtain informa-
tion about implemented cryptographic algorithms. We propose a
similar methodology for reverse engineering of Java Card applets.
In order to acquire power traces, we present a new microcontroller
based smart card reader with an accurate adjustable trigger func-
tion. Because power analysis only does not provide enough informa-
tion, we refine our methodology by involving additional information
sources. Issues like distinguishing between instructions performing
similar tasks and reverse engineering of conditional branches and
nested loops are also addressed. The proposed methodology is ap-
plied to a commercially available Java Card smart card and the re-
sults are reported. We conclude that our augmented power analysis
can be successfully used to acquire information about the instruc-
tions executed on a Java Card smart card.

Reverse engineering of Java Card applets using
power analysis

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER ENGINEERING

by

Dennis Vermoen
born in Rotterdam, The Netherlands

Computer Engineering
Department of Electrical Engineering
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

Reverse engineering of Java Card applets using
power analysis

by Dennis Vermoen

Abstract

P
ower analysis of smart cards is commonly used to obtain information about implemented
cryptographic algorithms. We propose a similar methodology for reverse engineering of
Java Card applets. In order to acquire power traces, we present a new microcontroller

based smart card reader with an accurate adjustable trigger function. Because power analysis
only does not provide enough information, we refine our methodology by involving additional
information sources. Issues like distinguishing between instructions performing similar tasks and
reverse engineering of conditional branches and nested loops are also addressed. The proposed
methodology is applied to a commercially available Java Card smart card and the results are
reported. We conclude that our augmented power analysis can be successfully used to acquire
information about the instructions executed on a Java Card smart card.

Laboratory : Computer Engineering
Codenumber : CE-MS-2006-05

Committee Members :

Advisor: G.N. Gaydadjiev, CE, TU Delft

Advisor: M.F. Witteman, Riscure BV

Chairperson: S. Vassiliadis, CE, TU Delft

Member: J.C.A van der Lubbe, ICT, TU Delft

i

ii

Contents

List of Figures vi

List of Tables vii

Acknowledgements ix

1 Introduction 1
1.1 Research questions . 2
1.2 Conventions . 2
1.3 Organisation of this thesis . 3

2 Background information 5
2.1 Smart cards . 5

2.1.1 Typical smart card architecture . 5
2.1.2 Communication . 6

2.2 Java Card technology . 7
2.2.1 Java Card applet example . 7
2.2.2 Java Card applet security . 9

2.3 Power analysis . 10
2.3.1 Simple power analysis . 11
2.3.2 Differential power analysis . 11
2.3.3 Tool for power analysis . 13

3 Improved acquisition system 15
3.1 Smart card reader . 16

3.1.1 Hardware . 17
3.1.2 Firmware . 18
3.1.3 Communication protocol . 19

3.2 Oscilloscope . 21
3.3 Acquisition software . 21

4 Power analysis methodology & results 23
4.1 Trace set preprocessing . 23

4.1.1 Trace Resampling . 23
4.1.2 Trace Alignment . 24
4.1.3 Trace Shifting . 26
4.1.4 Trace Stretching . 26

4.2 Template determination . 28
4.2.1 Reference applet . 28
4.2.2 Executing the reference applet . 28

iii

4.2.3 Obtaining power traces . 30
4.3 Template recognition . 32

4.3.1 Executing the (un)known applet 33
4.3.2 Obtaining and recognising power traces 33

4.4 Power analysis results . 34
4.4.1 Similar instructions . 35
4.4.2 Instruction duration . 35
4.4.3 Cryptographic operations . 38
4.4.4 Other Java Card smart cards . 39

5 Reverse engineering of Java Card applets 43
5.1 Additional information sources . 44

5.1.1 Input data . 44
5.1.2 Impossible instruction sequences 44
5.1.3 Unlikely instruction sequences . 46
5.1.4 Instruction statistics . 47
5.1.5 Instruction duration . 47

5.2 Execution trace processing . 48
5.2.1 Loop rerolling . 49
5.2.2 Conditional branches . 51

5.3 Decompilation . 51
5.4 Prototype reverse engineering program . 52

6 Conclusions 55
6.1 Main contributions . 56
6.2 Future work . 57

Bibliography 60

A JCVM instructions 61

B Flowchart smart card reader 69

iv

List of Figures

1.1 Organisation of this thesis . 3

2.1 Block diagram of a typical smart card . 5
2.2 Contacts on a smart card . 6
2.3 Structure of a command APDU . 6
2.4 Structure of a response APDU . 6
2.5 Example applet . 8
2.6 Applet that contains several bugs . 9
2.7 Power analysis on a smart card . 10
2.8 Simple power analysis . 11
2.9 Differential power analysis on simulated DES power traces 12
2.10 Inspector . 13

3.1 Differences between the initial and the revised acquisition system 15
3.2 Difference between software trigger (a) and hardware trigger (b) 16
3.3 The new smart card reader . 16
3.4 Smart card reader design . 17
3.5 Delaying the acquisition . 19
3.6 Smart card reader command structure . 19

4.1 Frequency spectrum of the original power trace 24
4.2 End of a power trace affected by RPIs . 27
4.3 Example reference applet . 29
4.4 Bytecode of the process method . 29
4.5 Single power trace while executing the reference applet 30
4.6 Average of 8000 power traces during the execution of the reference applet 31
4.7 JCVM visible in the power trace . 31
4.8 Templates of the baload, sstore and sload instructions 32
4.9 Java source code, bytecode and the execution trace of pow(3,2) 33
4.10 Result of the template matching process 34
4.11 Correlation between the power trace and the type of sload operation

performed . 35
4.12 Difference between sload 2 and sload 3 36
4.13 Average power traces of two sdiv instructions 37
4.14 Fragment of the applet to determine the ifle template 37
4.15 Duration of the ifle instruction . 38
4.16 Power trace of a DES operation called from Java 38
4.17 Differences in power consumption . 39
4.18 Fragment of the applet used for the quality comparison 40
4.19 Average power trace of smart card 4 . 41

5.1 Correlation between input data and the power trace 45
5.2 Probable instructions that follow the sload 1 and sload 2 instructions . 48

v

5.3 Probable instructions following the aload 1+sload 2 sequence 48
5.4 A for loop as generated by the Java compiler 49
5.5 Execution trace of the program depicted in Figure 5.4 49
5.6 Loop rerolling . 50
5.7 Check impossible instruction sequences . 52
5.8 Loop rerolling . 53

B.1 Flowchart smart card reader firmware . 69

vi

List of Tables

3.1 I/O port functions . 18

4.1 Correlation quality . 40

5.1 Example execution trace obtained from the power analysis. 43
5.2 Examples of unlikely instruction sequences. 46
5.3 Examples of generic unlikely instruction sequences. 46
5.4 Java Card bytecode statistics . 47
5.5 Decompiling Java Card bytecode . 52

vii

viii

Acknowledgements

First of all, I would like to thank Marc Witteman for providing the opportunity to
perform this interesting thesis project at Riscure BV and for his help during my thesis
project. I would like to thank my advisor Georgi Gaydadjiev for reviewing my thesis and
providing me with useful remarks and suggestions. I also want to thank my colleagues at
Riscure BV, especially Yee Wei Law for reviewing my paper and Jasper van Woudenberg
for reviewing my thesis. Finally, I would also like to thank my family for their support
during my study.

Dennis Vermoen <dennis@vermoen.com>
Delft, The Netherlands
May 29, 2006

ix

x

Introduction 1
Today, smart cards are being used in a growing number of different applications. For
example, all Dutch passports issued after August 2006 contain a smart card that contains
personal details and biometric information. In 2007, the Dutch OV-chipkaart will be used
for public transport in The Netherlands.

At this moment, Java Card is the most commonly used operating system for smart
cards. According to Sun Microsystems, Java Card technology grew from 750 million
deployments in November 2004 to over 1.25 billion deployments in November 2005 [20,
21]. Because smart cards are typically used in applications that require a high degree of
security, it is needless to say that security of Java Card applications is very important.

In this document, I describe my thesis project carried out at Riscure BV in Delft.
Riscure is a security lab founded in 2001. It evaluates smart cards, terminals, smart
phones and PDAs for banks, credit card companies, GSM operators, smart card manu-
facturers, organisations deploying digital IDs and companies in the pay television indus-
try.

The main goal of this project is to research the possibilities of using power analysis to
reverse engineer the source code of Java Card applets. Power analysis is a side channel
analysis technique to acquire information about running processes on a device (such as a
smart card) by monitoring the runtime current usage. Power analysis on smart cards is
commonly used to obtain information about running cryptographic algorithms like DES
or RSA [8, 9, 10, 22].

There are several reasons for performing this research project:

• Smart cards used to be programmed by experienced and specialised developers.
With the introduction of Java Card in 1997, smart card technology became avail-
able to a wider developer community. This is however also a security risk, as
developing an application for a smart card differs from developing an application
for a desktop computer. When a Java Card applet is reverse engineered, possible
security bugs in the applet could be revealed. A good example is presented in
Section 2.2.2;

• Java Card developers sometimes implement proprietary cryptographic algorithms
in their Java Card applets. During a security evaluation, reverse engineering these
algorithms would possibly reveal vulnerabilities.

The experiments in this project are performed using several recent and commer-
cially available Java Card smart cards. For the sake of convenience, we focus on one
specific smart card in this document. This smart card is referred to as Smart card 1 .
Nevertheless, most of the proposed techniques can be applied in the general case.

Due to the sensitive nature of this research project, some of the results remain prop-
erty of Riscure BV and are not disclosed in this document.

1

2 CHAPTER 1. INTRODUCTION

1.1 Research questions

The main research question in this project is: ”Is it possible to reverse engineer Java Card
applets using power analysis?”. This question can be divided into several sub-questions:

• Is it possible to obtain a power profile for a specific instruction?

• Can specific instructions be recognised in a power trace?

• Can two instructions that perform similar tasks be distinguished from each other?

• Is it possible to generate Java Card source code from its execution trace?

Besides these main questions there are some miscellaneous research questions:

• What equipment is needed to reverse engineer Java Card applets?

• What information sources can be used in addition to power analysis?

• How effective are current countermeasures against power analysis?

• Are newer smart cards more secure than older smart cards, with respect to our
study?

1.2 Conventions

The following conventions are used in this document:

• All Java source code, Java bytecode and Java types are written in constant width;

• All references to applets should be read as Java Card applets, unless otherwise
specified. Likewise, all references to smart cards should be read as Java Card
smart cards;

• The power traces depicted in this thesis do not depict values on their vertical axis,
as the value itself is not used in the reverse engineering process. Moreover, the
experiments during this project are performed using a smart card reader with a
variable offset and gain which can be adjusted continuously, in order to use the
oscilloscope resolution optimally. Therefore the absolute values may be different
each time.

1.3. ORGANISATION OF THIS THESIS 3

1.3 Organisation of this thesis

This thesis is organised as depicted in Figure 1.1. Chapter 2 covers the necessary back-
ground information about smart cards, Java Card technology and power analysis. Chap-
ter 3 describes the development of the system used to perform our power measurements.
Chapter 4 covers power analysis of Java Card applets. Transforming the results of the
power analysis to the original Java source code is described in Chapter 5. Finally, the
conclusions are drawn in Chapter 6.

Java source code

Chapter 4
Power analysis

Chapter 5
Reverse engineering

Chapter 3

Execution trace

Raw power traces (resampled)

Acquisition system

Figure 1.1: Organisation of this thesis

4 CHAPTER 1. INTRODUCTION

Background information 2
This chapter contains the necessary background information needed to follow the discus-
sion in the rest of this document. In Section 2.1, smart cards are covered briefly. Then,
in Section 2.2 Java Card technology is discussed. Finally, we discuss power analysis in
Section 2.3.

2.1 Smart cards

This section briefly covers the architecture of smart cards. Furthermore, it explains the
communication protocol that is used to communicate with smart cards.

2.1.1 Typical smart card architecture

Today, most smart cards are based on a small 8, 16 or 32-bit microprocessor. A block
diagram of a typical smart card is depicted in Figure 2.1. A smart card usually contains
three types of memory. First of all, ROM is used to store the operating system. Second,
EEPROM is used to store non-volatile data like PINs and secret/private keys. Last,
RAM is used as working memory. Smart cards are often used to perform encryption
or decryption of data. Therefore, most smart cards are equipped with a secure cryp-
tographic engine and random number generator. A Universal Asynchronous Receiver
Transmitter (UART) is used to communicate with smart card readers. The commu-
nication protocol is specified in [5]. The test logic is used during the development of
the smart card. It can be used to read specific addresses of the memory for debugging
purposes. After the development, this logic is disabled. Security logic consists of sensors
that check the input voltage and the clock signal, in order to protect the smart card
against different attacks.

Security
Engine

ROM EEPROM RAM

Random
Generator

UART

CPU

Test
Logic

Logic
Crypto

Figure 2.1: Block diagram of a typical smart card

A smart card is connected to a smart card reader using eight contacts. The assign-
ment of the contacts is specified in [4]. Normally, only five of these contacts are used.

5

6 CHAPTER 2. BACKGROUND INFORMATION

These are depicted in Figure 2.2. The VCC and GND contacts are used to supply power
to the smart card. Depending on the type of smart card, VCC must be 5 V (class A)
or 3 V (class B) [5]. Smart cards that can operate with both supply voltages also exist
(i.e. class AB smart cards). Via the CLK contact, an external clock signal is supplied.
The RST contact is used to reset (i.e. a warm reset) the smart card. The bidirectional
I/O contact is used for serial communication with the smart card.

I/O

Vcc

RST

CLK

GND

Figure 2.2: Contacts on a smart card

2.1.2 Communication

Smart cards communicate with smart card readers through Application Protocol Data
Units (APDUs). There are two types of APDUs:

• Command APDUs (sent from the reader to the smart card);

• Response APDUs (sent from the smart card to the reader).

A command APDU consists of a class byte (CLA), an instruction byte (INS) and two
parameter bytes (P1 and P2). Optionally 1 to 255 extra data bytes can be sent using
the Data field. The length of this field is specified in the Lc field. The Le field specifies
the number of bytes expected in the response APDU Data field. The structure of a
command APDU is depicted in Figure 2.3. Note that optional fields are enclosed by
square brackets.

CLA INS P1 P2 [Lc] [Data] [Le]

Figure 2.3: Structure of a command APDU

A response APDU consists of an optional Data field followed by a mandatory sta-
tus word (SW1 and SW2). The length of the Data field is specified in the Le of
the preceding command APDU. The list of pre-specified status words is defined in [6].
The most common status word is 0x9000 which means ”Normal processing, no further
qualification”. The structure of a response APDU is depicted in Figure 2.4.

[Data] SW1 SW2

Figure 2.4: Structure of a response APDU

2.2. JAVA CARD TECHNOLOGY 7

2.2 Java Card technology

Java Card technology allows easy smart card application development using the Java
programming language. It is compatible with the ISO 7816 standard for smart cards
[4, 5, 6]. Therefore the communication protocol described in Section 2.1.2 can also be
used to communicate with Java Card applets.

Smart cards have limited hardware resources. For example, most modern smart cards
do not have more than 64 kilobytes of ROM and 4 kilobytes of RAM. Therefore, the
Java Card Virtual Machine (JCVM) has the following limitations when compared to a
standard Java Virtual Machine (JVM):

• The char, double, float and long data types are not available. The int data
type is optional, but at this moment not available on most commercially available
smart cards;

• Only one-dimensional arrays can be used;

• Dynamic class loading, garbage collection and threads are not supported.

The interested reader can find a more comprehensive list of differences between the
JCVM and the JVM in [19]. Readers interested in reading more general information
about Java Card technology can refer to [1].

The rest of this section covers two Java Card applet examples. The first example is
used to explain how an applet is loaded on a smart card. The second example shows an
insecure applet.

2.2.1 Java Card applet example

In order to understand how a Java Card applet is loaded on a smart card, we consider an
example Java Card applet. The SumApplet class, as depicted in Figure 2.5, is a relatively
simple applet that adds two values supplied through the command APDU. The sum of
these numbers is returned in the response APDU.

In order to load, install and execute a Java Card applet on a smart card, the applet
must extend the abstract class Applet. Each subclass must implement the process
method. The process method handles all incoming command APDUs that are intended
for this applet. The actual command APDU is supplied to the applet via the apdu
parameter. Therefore the applet could also perform specific functions based on the
instruction field of the command APDU. The constructor creates an instance of the
SumApplet class. Furthermore, it calls the register method. This method registers the
applet with the Java Card Runtime Environment (JCRE) and is implemented by the
Applet class. The install method is called by the JCRE and creates an instance of
the SumApplet class by calling its constructor. It is defined as static. This allows the
install method to be called from the JCRE without an existing instance of the applet.
The constructor and the install method are not enforced by the compiler (i.e. they
are not defined as abstract). However, the default implementation throws a runtime
exception if they are not implemented. Therefore they should be implemented, in order
to develop a working Java Card applet.

8 CHAPTER 2. BACKGROUND INFORMATION

1 package com.riscure.sum;

2

3 import javacard.framework .*;

4

5 public class SumApplet extends Applet

6 {

7 public SumApplet(byte[] bArray , short bOffset , byte bLength)

8 {

9 register ();

10 }

11

12 public static void install(byte[] bArray , short bOffset , byte bLength)

13 {

14 new SumApplet(bArray , bOffset , bLength);

15 }

16

17 public void process(APDU apdu)

18 {

19 byte a, b, c;

20

21 if (selectingApplet ())

22 return;

23

24 byte buffer [] = apdu.getBuffer ();

25 short len = apdu.setIncomingAndReceive ();

26

27 a = buffer [(short)(ISO7816.OFFSET_CDATA)];

28 b = buffer [(short)(ISO7816.OFFSET_CDATA + 1)];

29

30 c = (byte) (a + b);

31

32 buffer [0] = (byte) c;

33 apdu.setOutgoingAndSend ((short) 0, (short) 1);

34 }

35 }

Figure 2.5: Example applet

2.2.1.1 Compilation

In order to load this applet on a Java Card smart card, first of all the applet is compiled
with a regular Java compiler (i.e. javac) which translates the source code into bytecode.
This results in a standard Java class file. The only difference between compiling for the
Java Card platform and for the standard Java platform is the used API. When compiling
for the Java Card platform, the classpath must be set to the Java Card API. This causes
the compiler to use the java.lang package of the Java Card platform.

2.2. JAVA CARD TECHNOLOGY 9

2.2.1.2 Conversion

As discussed earlier, the JCVM does not support some of the standard Java features.
Therefore, standard Java class files must be converted using the Java Card converter
tool, in order to verify and process the class files. This tool is also used to assign an
Application Identifier (AID) to each converted applet. An AID can range from 5 to
16 bytes and uniquely identifies the applet. The converter tool produces a converted
applet (CAP) file. In addition to the CAP file, it can also produce a Java Card Assembly
(JCA) file, which is a textual representation of the CAP file. The JCA file can be used
to directly edit the bytecode of the applet. The modified JCA file can be converted back
to a CAP file using the capgen tool.

2.2.1.3 Applet installation

Loading an applet on a Java Card is performed using the installer applet. This applet is
available by default on all Java Card smart cards. The apdutool tool generates command
APDUs for the installer applet. First, it loads the contents of a CAP file on the smart
card. Then, an instance of the applet is created. In Java Card technology, Java objects
are stored into the EEPROM. Therefore, they remain on the smart card even if it is
removed from the smart card reader.

2.2.2 Java Card applet security

The source code of Java Card applets is generally not accessible. When a Java Card
applet could be reverse engineered using power analysis or other techniques, possible
security bugs in the applet can be revealed. Suppose that a Java Card applet uses the
implementation shown in Figure 2.6 to check if the user entered a valid PIN.

1 public boolean check(byte[] pin)

2 {

3 if (tryCounter > 0)

4 {

5 if (Util.arrayCompare(pin , (short)0, cardPin , (short)0, pin.length) == (byte)0)

6 {

7 tryCounter = tryLimit;

8 validatedPin = true;

9 return true;

10 }

11 }

12 validatedPin = false;

13 tryCounter --;

14 return false;

15 }

Figure 2.6: Applet that contains several bugs

Util.arrayCompare compares two arrays, beginning at the specified position from
left to right. It returns the ternary result of the comparison: less than (-1), equal (0) or
greater than (1).

10 CHAPTER 2. BACKGROUND INFORMATION

This relatively simple Java method contains four errors on different levels.

• When a pin array of length 1 is used, only the first digit of the PIN is checked.
This increases the chance of guessing the PIN by a factor 1000;

• The tryCounter variable is decremented when an invalid PIN is entered. When the
tryCounter equals 0, a random PIN can be entered 129 times. Then tryCounter
will then get the value 127 (provided that tryCounter is of type byte).

These two bugs can easily be identified when a Java Card applet is reverse engineered.
The method also contains other (less obvious) problems.

• When observing the power consumption, one can easily determine the first incorrect
digit, assumed that Util.arrayCompare returns right after an incorrect digit is
found. Section 2.3.1 describes this in more detail. An attacker could even perform
such timing attack without an oscilloscope. This can be done by measuring the
time until the response APDU is received;

• In this example, tryCounter can easily be reset to 127. There is however another
way to prevent tryCounter from being decremented. An attacker can switch off
the power supply right before line 13 is executed.

Note that exploiting the two above bugs requires a custom smart card reader. Al-
though the above example may seem a bit far-fetched, errors like this occur in real Java
Card applets. When applets like this one could be reverse engineered, the above errors
can be located and possibly exploited.

2.3 Power analysis

Power analysis is a side channel analysis technique to acquire information about running
processes on a device (such as a smart card) by monitoring its runtime current usage.
Figure 2.7 depicts the common way of power analysis on a smart card. The power
consumption is observed by measuring the voltage drop over a low resistance resistor
(e.g. 50Ω). The power consumption during the execution of a smart card process is
refered to as a power trace. Multiple power traces can be stored in a trace set.

VDD VSS

=⇒Oscilloscope

Figure 2.7: Power analysis on a smart card

2.3. POWER ANALYSIS 11

2.3.1 Simple power analysis

A straightforward way to perform power analysis is Simple Power Analysis (SPA). SPA
is the visual analysis of a few power traces. When SPA is applied on the applet shown in
Figure 2.6, we obtain the power traces depicted in Figure 2.8. This figure shows single
power traces while checking the PINs 0000, 4000, 4500 and 4560 respectively. Suppose
the correct PIN is 4567. As depicted in Figure 2.8, the time needed to complete the
applet is variable. When examining the check method, the only statement that is likely
to vary in time is the Util.arrayCompare method. This method returns after the first
unsuccessful comparison. Therefore, checking the PIN 4000 takes longer than checking
PIN 0000. To obtain the correct second digit, an attacker only needs to try the ten
possibilities for this digit. When the execution time of the applet increases, the digit is
probably correct.

A brute force algorithm would only need to check 40 different PINs in the worst case
situation. Although the smart card probably locks the PIN when it is entered incorrectly
three times in a row, this attack increases the chance of guessing the PIN significantly.

 0 200

 PIN: 0000

 PIN: 4000

 PIN: 4500

 PIN: 4560

 400 600 800 1000 1200 1400
µs

Figure 2.8: Simple power analysis

2.3.2 Differential power analysis

A more advanced technique is Differential Power Analysis (DPA) [9]. First, the algo-
rithm is executed N times with alternating or random input values Di[j], where i denotes
the i-th iteration, 0 ≤ i < N , and j denotes the j-th bit of the input data. N should
be a significant large value (e.g. N > 10, 000), depending on the amount of noise in
the power consumption. During each execution of the algorithm, a power trace Ti[t] is
stored, where i denotes the i-th iteration and t denotes the time.

Using correlation, a measure of association between different variables can be ob-
tained [13]. One can use correlation to find a measure of association between the samples
of a power trace (i.e. T) and the augmented data (i.e. D). The correlation function
results in a value between -1 and 1, where 1 means ”identical in shape”, 0 means that
the variables are uncorrelated and -1 means ”inverted in shape”. In this document, a
correlation of 1 is represented as 100%. Likewise a correlation of 0 is represented as 0%.

12 CHAPTER 2. BACKGROUND INFORMATION

In most our study, a negative correlation is not relevant, as we only try to find patterns
that are identical in shape.

Figure 2.9 depicts an example of differential power analysis on DES. The upper trace
is one of the N input power traces, which are obtained using a simulation program
developed by Riscure BV. The other three traces give the correlation between the input
traces and a specific input bit. Reverse engineering of the DES algorithm is outside
the scope of this thesis, but using these correlation traces, the secret DES key may be
obtained.

 0 0.5 1 1.5

N Power traces

Correlation bit 0

Correlation bit 1

Correlation bit 2

 2 2.5 3 3.5 4 4.5
µs

Figure 2.9: Differential power analysis on simulated DES power traces

In order to understand how the correlation between two variables can be computed,
some other functions must be defined first. The variance of x is defined as:

var(x) =
(
∑

xi − x)2

n− 1
(2.1)

where xi represents the i-th element of x, x is the algebraic mean of x, and n is the size
of x. The covariance of x and y provides a measure of how much x and y are related
and is defined as:

cov(x, y) =
∑

(xi − x)(yi − y)
n− 1

(2.2)

The covariance is difficult to interpret though, because it depends on the scale of the
input values. A better measure, independent on the absolute values of the input is given
by the correlation function which is defined as:

corr(x, y) =
cov(x, y)√

var(x) · var(y)
(2.3)

2.3. POWER ANALYSIS 13

2.3.3 Tool for power analysis

Inspector is a software tool to perform side-channel analysis, developed by Riscure BV.
It provides a framework to analyse, edit and filter data obtained using side-channel
analysis. Inspector can be extended using modules implemented in Java. These modules
have access to an input trace set and can generate an output trace set. By default,
Inspector has modules that can be used for editing, statistical analysis, filtering and
the analysis of cryptographic operations. Figure 2.10 depicts an example screenshot
of Inspector. As the screenshot shows, multiple traces in a trace set can be displayed
simultaneously.

Figure 2.10: Inspector

14 CHAPTER 2. BACKGROUND INFORMATION

Improved acquisition system 3
In order to collect power traces while executing a Java Card applet, an acquisition system
is required. The system should perform the following two functions:

• Communication with the smart card (i.e. sending and receiving APDUs);

• Acquire power traces at a specified moment.

In early experiments, we used an existing acquisition system depicted in Figure 3.1a.
In this measurement system, the PC sends a command APDU over a serial RS-232
connection to a transparent card reader. As the name implies, this reader sends and
receives bytes transparently. In contrast to commercially available smart card readers,
it does not implement any communication protocols. Right after sending the last byte
of the command APDU, the oscilloscope is triggered using a special command sent
through the USB interface. Unfortunately it turned out that triggering the oscilloscope
using software, especially when sampling at high sample rates, did not result in properly
aligned power traces, as depicted in Figure 3.2a.

Trig
ger

Storage

Oscilloscope

PC

USB

Transparent

card

reader
RS−232

Signal

Digital

(a) Initial acquisition system

card reader

Storage
Oscilloscope

PC

USB

USB

TriggerSignal

Delay

New smart

Digital

(b) Revised acquisition system

Figure 3.1: Differences between the initial and the revised acquisition system

To solve this problem, we developed an improved smart card reader. The design of
this system is depicted schematically in Figure 3.1b. The advantage of our smart card
reader is that it can automatically trigger the oscilloscope after sending the last byte
of the command APDU. Furthermore, the trigger signal can also be delayed with µs
precision, in order to analyse different parts of the APDU processing (i.e. the process
method). The traces produced using our smart card reader are properly aligned as
depicted in Figure 3.2b.

15

16 CHAPTER 3. IMPROVED ACQUISITION SYSTEM

(a) Improperly aligned traces (b) Properly aligned traces

Figure 3.2: Difference between software trigger (a) and hardware trigger (b)

This chapter describes the system that measures power consumption. Section 3.1
describes the design of the smart card reader. Next, the different oscilloscopes used
during this project are described in Section 3.2. Finally, Section 3.3 covers the acquisition
software developed as part of this thesis project.

3.1 Smart card reader

This section describes the design of the smart card reader. Section 3.1.1 covers the
design of the smart card reader hardware. Section 3.1.2 describes the smart card reader
firmware. The communication protocol used by the smart card reader is explained
in Section 3.1.3. A picture of the final version of the smart card reader is shown in
Figure 3.3.

Figure 3.3: The new smart card reader

3.1. SMART CARD READER 17

3.1.1 Hardware

The smart card reader is built upon a Microchip PIC18F4550 microcontroller. This
microcontroller runs at 48 MHz and incorporates both a high-speed USB interface for
host communication and a UART which is used to communicate with the smart card.
The smart card reader is USB-powered. The voltage obtained from the USB interface
(i.e. 5 V) is also provided to the smart card. Therefore, this smart card reader supports
only class A (5 V) and class AB (3 and 5 V) smart cards. Class B (3 V) smart cards
are not supported by the current hardware version. Figure 3.4 depicts the design of the
smart card reader.

Both the TX and RX pins of the microcontroller are connected to the smart card’s
I/O channel, as a smart card contains a single bidirectional I/O port. A resistor is placed
between TX and the smart card to prevent a possible short circuit.

Table 3.1 describes the function of the microcontroller I/O pins. The first column
contains the pin numbers. The second column indicates if the pin is used as input or
output. The third column describes the pin function.

+5V+5V

+5V

+5V

PIC18F4550

RB7

RB6

RB5

RB4

RB3

RB2

RB1

RB0

40

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

39

38

TX

RX

D+

D− USB

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

GND

Vpp

I/O

RFU

Vcc

RST

CLK

RFU

Vusb

Vdd

Vss

MCLR

OSC

Analog circuit

SW_CARD

SW_MISC

LED_ORANGE

LED_GREEN

TRIGGER

SW_RESET

OSC1

Figure 3.4: Smart card reader design

I designed the digital circuit, based on a schematic proposed in [12]. I also developed
the software for the microcontroller, while colleagues from Riscure BV developed the
analog circuit to measure the power consumption. The analog circuit is not depicted, but
it is similar to the circuit depicted in Figure 2.7. Instead of a single resistor, this circuit
allows the gain and the offset of the power signal to be adjusted. This is advantageous
because in some situations the oscilloscope resolution cannot be used efficiently.

18 CHAPTER 3. IMPROVED ACQUISITION SYSTEM

Port In/Out Function
RB0 Out Smart Card power. Used to turn the power to the smart card on

or off (1=powered on, 0=powered off).
RB1 Out Smart Card reset. Used to control the smart card reset signal

(1=normal operation, 0=reset).
RB2 - Reserved for future use
RB3 Out Trigger. Used to trigger an oscilloscope.
RB4 Out Green LED. Used to indicate that the smart card reader is powered

on. In addition, it indicates that it is triggering the oscilloscope
when it is blinking.

RB5 Out Orange LED. Used to monitor the smart card power status. When
the LED is off, no card is inserted. A blinking yellow LED indi-
cates that there is a card inserted, but it isn’t powered on. A
steady yellow LED indicates that a smart card is inserted and
powered on.

RB6 In Card detection switch. Using this switch the card reader knows
whether there is a card present or not (1=no card inserted, 0=card
inserted).

RB7 In Push button that can be used for various user specific functions.

Table 3.1: I/O port functions

3.1.2 Firmware

The microcontroller is equipped with a bootloader. Using this bootloader, new versions
of the firmware can be programmed in the microcontroller through the USB interface.
The microcontroller is also equipped with the Microchip USB framework which emulates
an RS-232 serial interface over USB [11]. This has two advantages:

• As most recent operating systems contain standard drivers for this class of devices,
writing a device specific driver is not required;

• The impact on software previously developed by Riscure BV is minimal, as this
software used the RS-232 serial interface to communicate with the old transparent
smart card reader.

The microcontroller firmware consists of an infinite loop, in which the received com-
mands are processed. The flowchart of the software containing the main loop is depicted
in Figure B.1. After executing certain commands, the microcontroller can trigger the
oscilloscope by generating a short pulse on one of its digital outputs (i.e. RB3). If
required, the trigger signal can also be delayed with µs precision. This allows us to
control the oscilloscope window position very precisely, as depicted in Figure 3.5. This is
important, as most oscilloscopes can only store a limited amount of data when running
at high sample rates.

3.1. SMART CARD READER 19

Trigger
Oscilloscope window

Delay (in µs)

Figure 3.5: Delaying the acquisition

3.1.3 Communication protocol

The smart card reader is controlled over the USB port using a simple protocol. The
Command field specifies the command that has to be executed. The length of the data
is specified in the Length field and the data itself is specified in the Data field. The
structure of a command to the smart card reader is shown in Figure 3.6. The specific
commands supported by the smart card reader are covered in the following sections. The
structure of the response (if any) from the reader depends on the executed command.

Command

Length

}
Header

Data
hhhhhhhh

hhhhhhhh

Figure 3.6: Smart card reader command structure

3.1.3.1 COMMAND ARM

COMMAND ARM arms the smart card reader. When the reader is armed, it will generate a
trigger pulse after completion of the next command. This makes it possible to trigger
after the last byte of a command APDU is sent or after the smart card is reset. The
Length field of this command is always 4. The Data field contains 4 bytes representing the
trigger delay time in µs. Therefore, the trigger can be delayed for almost 232× 1µs ≈ 72
minutes. This command does not send back a response.

20 CHAPTER 3. IMPROVED ACQUISITION SYSTEM

3.1.3.2 COMMAND POWER UP, COMMAND POWER DOWN &
COMMAND RESET SMART CARD

COMMAND POWER UP and COMMAND POWER DOWN are used to power up and power down the
smart card respectively. When a card is inserted, the power to the smart card is always
disabled. The COMMAND RESET SMART CARD is used to reset the smart card. It is a combi-
nation of the COMMAND POWER DOWN and COMMAND POWER UP commands. The Length field
of this command is always 0. Therefore, the Data field must be empty. It does not
directly return a response.

3.1.3.3 COMMAND CARD DATA

COMMAND CARD DATA is used to send command APDUs to the smart card. All data that
is received from the smart card is sent to the PC whenever it is received. The Length
field of this command depends on the length of the command APDU. The Data field
contains the command APDU. The response contains the response APDU.

3.1.3.4 COMMAND ENABLE WDT & COMMAND DISABLE WDT

When the acquisition system is used to acquire a significant number of traces (e.g.
when it is running for a few days), the system may crash. Especially in our early
experiments, this happened frequently. Therefore, the smart card reader is equipped
with a watchdog timer that resets the microcontroller when no trigger event occurred
after approximately eight seconds. It is recommended to enable the watchdog timer,
using the COMMAND ENABLE WDT command, before starting long acquisitions. When an
acquisition is finished, the COMMAND DISABLE WDT command can be used to disable the
watchdog timer. The Length field of this command is always 0. Therefore, the Data field
must be empty. This command does not send a response.

3.1.3.5 COMMAND CARD INSERTED

The smart card connector that is used in the smart card reader contains a card de-
tection switch which is connected to one of the microcontroller inputs. Using the
COMMAND CARD INSERTED command, the PC can check if a smart card is inserted in
the smart card reader. The Length field of this command is always 0. Therefore, the
Data field must be empty. This command always sends back a one byte response that
indicates whether a smart card is inserted in the reader (1) or not (0).

3.2. OSCILLOSCOPE 21

3.2 Oscilloscope

During this thesis project, two different oscilloscopes were used. Therefore, an
Oscilloscope interface was created. Each oscilloscope must implement all methods de-
fined in the Oscilloscope interface. This has two advantages. First, it allows changing
the oscilloscope with minimal impact on the acquisition software. Second, new oscillo-
scopes can be used, provided that a Java Native Interface (JNI) driver is developed.

Most experiments were performed using a PicoScope 3206 USB oscilloscope. This
oscilloscope has a sample rate of 200 MS/s and can store approximately 1 million samples.
Therefore, at the maximum sample rate, this oscilloscope can acquire power traces with
a length of 5 ms. The oscilloscope can be controlled using an SDK, which is provided as
a C library. Because Inspector and its modules are implemented in Java, we developed
a JNI driver which provides a bridge between a Java class and the C library.

Some of our experiments were performed using a CompuScope 8500 PCI digitiser
from Gage Applied Technologies, Inc. This oscilloscope has a sample rate of 500 MS/s
and is capable of storing approximately 8 million samples. It can therefore acquire 16 ms
power traces at the maximum sample rate. For this oscilloscope, a JNI driver has been
already developed by Riscure BV. Therefore, this driver could be used without many
modifications.

3.3 Acquisition software

The acquisition software is used to control the smart card reader and store the data
obtained from the oscilloscope. The software is implemented as an Inspector module
that generates a trace set.

Algorithm 1 Pseudocode Acquisition module
1: procedure AcquisitionModule(numberOfTraces)
2: initialise oscilloscope 200 MS/s, 1,000,000 samples, 1V range . Initialise oscilloscope
3: power on smart card . Power on smart card
4: send apdu 00 A4 04 00 08 A0 00 00 00 FF 00 00 01 00 . Select test applet AID
5: for i = 0 to numberOfTraces do
6: command ← randomise A0 00 00 00 02 00 00 00, 6, 2 . Randomise two data bytes
7: trace.data ← command[6..7] . Store data in trace
8: arm 900 µs delay . Arm smart card reader
9: send apdu command . Send command APDU
10: trace.samples ← get oscilloscope samples . Get oscilloscope samples
11: resample trace.samples at 4 MHz . Resample trace
12: traceset[i] ← trace . Store oscilloscope samples
13: end for
14: power off smart card . Power off smart card
15: end procedure

22 CHAPTER 3. IMPROVED ACQUISITION SYSTEM

Algorithm 1 shows the pseudocode for the Acquisition module. This module per-
forms the following tasks:

• The oscilloscope is initialised. In this case the sample rate is set to 200 MS/s. The
range is set to 1 volt. The number of samples is set to 1,000,000;

• The smart card is powered up;

• The command APDU that selects the Java Card applet is sent;

• The actual power traces are acquired in a loop. In this loop, the following opera-
tions are performed:

– A command APDU is constructed. If necessary, the data bytes of this com-
mand APDU can be randomised. The randomise command overwrites the
specified bytes with random data. In this case two bytes at index six and
seven are assigned random values;

– The smart card reader is armed and the trigger delay is specified. The arm
command causes the oscilloscope to wait for an external trigger. In addition,
the smart card reader will send the delayed trigger pulse after the next received
command. In this example, the trigger pulse is generated 900 µs after the
command APDU is sent to the smart card using the send apdu command
on line 9;

– If necessary, the traces can be resampled. The resample command resamples
a power trace. Resampling is a technique to reduce the file size. It is explained
in Section 4.1.1. Of course resampling is not always necessary.

• The smart card is powered down.

Note that this is just a simple example. The above algorithm can be modified de-
pending on the specific experiment that is performed. For example, the delay can be
modified or resampling may be disabled.

Power analysis methodology &
results 4
The previous chapter covered the acquisition system that is used to obtain power traces
from a smart card. This chapter describes how this acquisition system is used to perform
power analysis on known and unknown Java Card applets. In order to recognise the
various instructions supported by the JCVM in a power trace, each of these instructions
must be represented by a unique pattern (hereinafter referred to as template). In order to
determine these templates, a reference smart card is required. This smart card should be
freely programmable and identical to the smart card that contains the unknown applet.
By loading known applets on the reference smart card, we can determine the templates
and their corresponding instructions. Note that these templates can only be used to
reverse engineer one particular type of smart card. However, the described procedure is
applicable in the general case, assuming a programmable smart card is available.

In Section 4.1, we describe the Inspector modules that we developed to preprocess
the obtained power traces. We present techniques to reduce the amount of data and
align the traces, in order to create an average trace. Section 4.2 shows how to determine
which part of a power trace represents a specific instruction. We will show an example
Java Card applet. Then, we will execute the applet and determine the templates for
the executed instructions. In Section 4.3, the template recognition process is described.
We will try to recognise the stored templates in an unknown power trace. Section 4.4
contains the results of several interesting experiments.

4.1 Trace set preprocessing

Before the obtained power traces can be analysed, some preprocessing has to be per-
formed. The following sections cover the Inspector modules that we developed or im-
proved during this project.

4.1.1 Trace Resampling

Performing power analysis often requires a significant number of traces to be obtained.
When capturing 10,000 traces at 200 MHz containing 1,000,000 8-bit samples each, the
total file size of such trace set is 10000× 1000000 ≈ 9.5 GB. Resampling is a straightfor-
ward technique to reduce the file size, at cost of losing some of the information. When
the trace set is resampled at 4 MHz (i.e. the external frequency of the smart card),
the number of samples of the above example is reduced by a factor of 50. The resam-
pled traces contain 20,000 samples, each containing the average of 50 samples from the
original trace. The resampled trace set would require only 760 MB. Therefore it is ad-
vantageous to resample the traces before storing them. In addition, smaller trace sets
speed up sequential filter and analysis processes.

23

24 CHAPTER 4. POWER ANALYSIS METHODOLOGY & RESULTS

 3.975 3.98125 3.9875 3.99375 4 4.00625 4.0125 4.01875 4.025

MHz

Figure 4.1: Frequency spectrum of the original power trace

The resample frequency of 4 MHz was chosen because it is equal to the external
frequency of the smart card. However, the frequency spectrum of a power trace, as
depicted in Figure 4.1 shows that the oscillator frequency is not exactly 4 MHz. It is
therefore advantageous to resample at the frequency corresponding to the peak in the
frequency spectrum of the power signal. Algorithm 2 automatically searches for this
frequency within a certain margin of the specified resample frequency.

First of all, some variables are initialised. The frequency spectrum of the input trace
is stored in spectrum. The strongest frequency in spectrum is stored in resampleFreq.
The variable factor contains the ratio between the resample frequency and the original
sample frequency. The number of samples added to the current index in the resampled
trace is stored in count. The variable lastIndex stores the trace index of the previous
resampled in the loop.

Next, the following operations are performed for each sample in the input trace.
The current index of the resampled array (resampleIndex) is calculated. When the
current index of the resampled array increased since the previous loop iteration, the
previous index is divided by the number of samples added (i.e. count), in order to
obtain an average. At the end of each loop iteration, lastIndex is assigned the old value
of resampleIndex. Furthermore, count is incremented by one.

It should be noted that all time critical measurements that require high precision
must of course not be resampled.

4.1.2 Trace Alignment

The measurements performed with the proposed smart card reader are properly aligned
at the beginning of the trace, as depicted in Figure 3.2b. In some situations it is advan-
tageous to align traces at the end of the execution. This can be done using the Align
module. In order to align traces, a small pattern that is present in all traces, must be
selected in one of the traces. The Align module aligns the traces, such that the selected
pattern is aligned in all of the traces. This module stores shift values in a file. These
values indicate the number of samples that each trace must be shifted, such that the
traces are properly aligned. The actual shifting is performed by the Shift module, which

4.1. TRACE SET PREPROCESSING 25

Algorithm 2 Pseudocode Resample module
1: function Resample(trace, sampleFreq, resampleFreq, margin)
2: spectrum← Frequency Spectrum(trace)
3: resampleFreq ←Max(spectrum[resampleFreq −margin..resampleFreq + margin])

4: factor ← resampleFreq
sampleFreq

5: count← 0
6: lastIndex← 0
7: resampleLength← dfactor × trace.lengthe
8: for i = 0 to trace.length do
9: resampleIndex← bfactor × ic
10: if resampleIndex > lastIndex and count > 0 then

11: resampledTrace[lastIndex]← resampledTrace[lastIndex]
count

12: count← 0
13: end if
14: if resampleIndex < resampleLength then
15: resampledTrace[resampleIndex]← resampledTrace[resampleIndex] + trace[i]
16: end if
17: lastIndex← resampleIndex
18: count← count + 1
19: end for
20: if lastIndex <= resampleLength and count > 0 then

21: resampledTrace[lastIndex]← resampledTrace[lastIndex]
count

22: end if
23: return resampledTrace
24: end function

is described in the next section. The pseudocode of the alignment module is depicted in
Algorithm 3. This module requires 5 parameters. The traceSet parameter contains the
trace set that has to be aligned. The index parameter specifies the index of the trace
that is used as the reference trace (i.e. the trace from which a fragment is selected). The
parameters start and end indicate the start and the end of this fragment in the number
of samples. The maxShift parameter specifies the maximal allowed shift value.

Algorithm 3 Pseudocode Alignment module
1: function Align(traceSet, index, start, end, maxShift)
2: pattern[]← traceSet[index].samples[start..end]
3: patternLength← end− start
4: traceLength← traceSet[index].samples.length
5: for i = 0 to traceSet.length do
6: maxCorrelation← 0
7: for shift = −maxShift to maxShift do
8: if start + shift >= 0 and start + shift + patternLength < traceLength then
9: currentPattern← traceSet[index].samples[start + shift..start + shift + patternLength]
10: correlation← Correlation(pattern, currentPattern)
11: if correlation > maxCorrelation then
12: maxCorrelation← correlation
13: shiftV alues[i]← shift
14: end if
15: end if
16: end for
17: end for
18: return shiftV alues
19: end function

26 CHAPTER 4. POWER ANALYSIS METHODOLOGY & RESULTS

4.1.3 Trace Shifting

As explained in the previous section, the Shift module performs the actual shifting of
the traces, using the shift values stored in a file by the Align module. The pseudocode
of the Shift module is depicted in Algorithm 4.

In some situations it is difficult to align a trace set because it contains too much
noise. The Shift module can solve this problem. Suppose trace A, containing noise,
needs to be aligned. This noise could be reduced by filtering out specific frequencies.
The result is stored in trace set B. We then apply the Align module on trace set B and
store the shift values as described earlier. Using the Shift module, we can apply the
shift values obtained from B on A. This way, a noisy trace set can still be aligned.

Algorithm 4 Pseudocode Shift module
1: function Shift(traceSet, shiftV alues)
2: traceLength← traceSet[0].samples.length
3: for i = 0 to traceSet.length do
4: for j = 0 to traceLength do
5: index← (traceLength + j + shiftV alues[i]) modulo traceLength
6: trace.samples[j]← traceSet[i].samples[index]
7: end for
8: resultTraceSet[i]← trace
9: end for
10: return resultTraceSet
11: end function

4.1.4 Trace Stretching

Some smart cards try to prevent power analysis by using Random Process Interrupts
(RPIs). These interrupts stop the execution of the applet for a short time. Therefore,
the execution time of an applet varies and its power traces are not properly aligned.
Computing an average of a trace set that is not aligned correctly will add noise to the
average trace [2]. Aligning at the end of a trace does not solve the problem, as this
causes the beginning of the trace to shift too. For this situation, the Stretch module
was developed. Figure 4.2 depicts the end of the power traces of a simple applet. This
module corrects these shifted traces by stretching the entire trace over a constant length
(e.g. the average execution time). The pseudocode of the Stretch module is shown in
Algorithm 5. Of course this technique does not remove the RPI effects from the power
traces, but it does reduce noise when an average of the trace set is computed.

The probability that an RPI is inserted can be calculated. Suppose that an RPI is
inserted with a constant probability p. The average length of the trace set is defined as:

n = n + pn = n(1 + p) (4.1)

where n is the length of the trace without RPIs. The standard deviation σ is defined as:

σ =
√

p(1− p)n (4.2)

4.1. TRACE SET PREPROCESSING 27

 3580 3590 3600 3610 3620 3630 3640 3650 3660 3670 3680

µs

Figure 4.2: End of a power trace affected by RPIs

Algorithm 5 Pseudocode Stretch module
1: function Stretch(traceSet, shiftV alues, position, newLength)
2: traceLength← traceSet[0].samples.length
3: for i = 0 to traceSet.length do
4: stretch = newLength− traceLength− shiftV alues[i]
5: stretchFactor = 1 + stretch

position

6: for j = 0 to newLength do
7: index← Round(j

stretchFactor
)

8: trace.samples[j]← traceSet[i].samples[index]
9: end for
10: resultTraceSet[i]← trace
11: end for
12: return resultTraceSet
13: end function

By substitution, we obtain:

σ =

√
p(1− p)

n

1 + p
=

√
p
1− p

1 + p
n (4.3)

The actual value of σ can also be computed based on the trace set. If σ is known, p
can also be calculated by rewriting Equation 4.3.

p =
n− σ2 −

√
n2 − 6nσ2 + σ4

2n
∨ p =

n− σ2 +
√

n2 − 6nσ2 + σ4

2n
(4.4)

Finally, the actual length of the trace n without RPIs can be calculated as follows.

n =
n

1 + p
(4.5)

28 CHAPTER 4. POWER ANALYSIS METHODOLOGY & RESULTS

4.2 Template determination

In this section, we show the various steps to determine templates for a specific smart
card. First of all, a reference applet that contains all instructions for which templates
should be determined, is required. An example of such applet is given in Section 4.2.1.
Second, the reference applet has to be executed, as explained in Section 4.2.2. Third,
power traces of the applet execution have to be obtained, as described in Section 4.2.3.

4.2.1 Reference applet

Figure 4.3 depicts an example of a reference applet that we used in this study. The applet
is similar to the example applet in Figure 2.5. This applet assigns the first data byte of
the command APDU to variable b. Then some addition and multiplication operations
are performed. An addition statement is compiled to Java Card bytecode as depicted
in Figure 4.4 (lines 32 to 36). A multiplication statement is compiled in a similar way
(lines 27 to 31). Although, in contrast to the applet in Figure 2.5, this applet does not
return any output data, it just performs a sequence of similar operations. Therefore, the
power trace is expected to show a repeated pattern. A repeated pattern is advantageous
when identifying the individual instructions. Figure 4.4 depicts the bytecode of the
process method of this reference applet, generated by the compiler (i.e. the standard
Java compiler and the Java Card converter).

4.2.2 Executing the reference applet

Because we developed the reference applet ourselves, the AID is known. In this case,
we assigned the AID: A0 00 00 00 FF 00 00 01 to the applet. The test applet can be
selected by sending the following command APDU to the smart card:

> 0x00 0xA4 0x04 0x00 0x08 0xA0 0x00 0x00 0x00 0xFF 0x00 0x00 0x01 0x00

Instruction 0xA4 is the SELECT FILE command as implemented by the JCRE.
This command selects the applet with AID 0xA0 0x00 0x00 0x00 0xFF 0x00 0x00
0x01. The first parameter (i.e. 0x04) indicates that an AID has to be selected. The
second parameter (i.e. 0x00) indicates that the first or only occurrence has to be
selected. The length field is set to eight, as the length of the following AID consists
of 8 bytes. If the applet exists on the card, the following response APDU will be received:

< 0x90 0x00

After the applet is selected, the JCRE dispatches all incoming command APDUs
to the applet via the process method. However, some instructions like SELECT FILE
are always processed by the JCRE. An extensive explanation of this mechanism is given
in [18]. The process method is executed using the following command APDU.

> 0x00 0x00 0x00 0x00 0x01 0xAB 0x00

4.2. TEMPLATE DETERMINATION 29

1 package com.riscure.test;

2

3 import javacard.framework .*;

4

5 public class TestApplet extends Applet

6 {

7 public TestApplet(byte[] bArray , short bOffset , byte bLength)

8 {

9 register ();

10 }

11

12 public static void install(byte[] bArray , short bOffset , byte bLength)

13 {

14 new TestApplet(bArray , bOffset , bLength);

15 }

16

17 public void process(APDU apdu)

18 {

19 byte a = (byte) 0x03 , b, c;

20

21 if (selectingApplet ())

22 return;

23

24 byte buffer [] = apdu.getBuffer ();

25 short len = apdu.setIncomingAndReceive ();

26

27 b = buffer [(short)(ISO7816.OFFSET_CDATA)];

28 c = (byte)(a + b);

29 c = (byte)(a * b);

30 c = (byte)(a * b);

31 c = (byte)(a + b);

32 c = (byte)(a * b);

33 c = (byte)(a + b);

34 c = (byte)(a + b);

35 c = (byte)(a * b);

36 }

37 }

Figure 4.3: Example reference applet

1 L0: sconst_3;

2 sstore_2;

3 aload_0;

4 invokevirtual 2;

5 ifeq L2;

6 L1: return;

7 L2: aload_1;

8 invokevirtual 3;

9 astore 5;

10 aload_1;

11 invokevirtual 4;

12 sstore 6;

13 aload 5;

14 sconst_5;

15 baload;

16 sstore_3;

17 sload_2;

18 sload_3;

19 sadd;

20 s2b;

21 sstore 4;

22 sload_2;

23 sload_3;

24 smul;

25 s2b;

26 sstore 4;

27 sload_2;

28 sload_3;

29 smul;

30 s2b;

31 sstore 4;

32 sload_2;

33 sload_3;

34 sadd;

35 s2b;

36 sstore 4;

37 sload_2;

38 sload_3;

39 smul;

40 s2b;

41 sstore 4;

42 sload_2;

43 sload_3;

44 sadd;

45 s2b;

46 sstore 4;

47 sload_2;

48 sload_3;

49 sadd;

50 s2b;

51 sstore 4;

52 sload_2;

53 sload_3;

54 smul;

55 s2b;

56 sstore 4;

57 return;

Figure 4.4: Bytecode of the process method

30 CHAPTER 4. POWER ANALYSIS METHODOLOGY & RESULTS

This applet does not check the CLA and INS fields contained in the command
APDU. Therefore, all command APDUs will execute the process method. Variable b
is assigned the value 0xAB. After processing the addition and multiplication statements,
the following response APDU will be received:

< 0x90 0x00

This response indicates that the applet is executed successfully.

4.2.3 Obtaining power traces

The acquisition of the power trace depicted in Figure 4.5 is started immediately after
sending the last byte of a command APDU. The last part of the power trace represents
the response APDU sent serially by the smart card (LSB first, one start bit, even parity
and one stop bit). In this case the response APDU was 0x9000, because the Java Card
applet executed successfully. The 0x9000 response code is returned after approximately
3 ms. Therefore, the execution of the actual Java Card applet must be the first part of
the power trace (i.e. from 1ms to 3ms).

 0 1 2 3 4 5 6
ms

S00001001PG S00000000PG

S = Start bit
P = Parity bit
G = Guard time

Figure 4.5: Single power trace while executing the reference applet

Now that the approximate start time and duration of the Java Card applet are
determined, a larger number of power traces can be obtained. From these power traces,
an average power trace can be constructed, as depicted in Figure 4.6. Note that a
repeated pattern is clearly visible in the power trace. Moreover, the smul instructions
can easily be distinguished from the sadd instructions.

4.2. TEMPLATE DETERMINATION 31

 0 200 400 600 800

sadd smul smul sadd smul sadd sadd smul

 1000 1200 1400 1600 1800 2000
µs

Figure 4.6: Average of 8000 power traces during the execution of the reference applet

4.2.3.1 JCVM template

There exist smart cards with a hardware implementations of the JCVM. For example,
STMicroelectronics sells smart card cores that allow direct execution of the majority
of the Java Card byte codes [17]. However, at this moment, most Java Card smart
cards contain a software interpreter to execute bytecode. Therefore, it is likely that the
JCVM fetch, decode and execute stages can be recognised in a power trace. As the fetch
and decode stages of the JCVM always perform the same task, the power trace is not
expected to differ significantly. In contrast, the actual execution of the instruction is
expected to be different. Figure 4.7 shows a repeated pattern that represents the fetch
and decode stages of the JCVM. This pattern is referred to as JCVM template. The
existence of this template is advantageous, because this template can be used to split
the power trace into separate parts representing the individual instructions.

 12 12.5 13 13.5 14
µs

JCVMInstruction n

Instruction n+1

Instruction n+2

Instruction n+3

Figure 4.7: JCVM visible in the power trace

32 CHAPTER 4. POWER ANALYSIS METHODOLOGY & RESULTS

4.2.3.2 Instruction templates

Recognising instructions in a power trace requires each instruction to be represented by
a unique template. In order to determine the template of a specific instruction, an applet
that contains this instruction must be developed. For example, the source code fragment
depicted in Figure 4.3 can be used to determine templates of 10 different instructions
(i.e. aload, baload, return, s2b, sadd, sconst, sload, sload, smul and sstore).

By comparing the separated parts of the power trace with the bytecode of the known
Java Card applet, it is possible to link these parts to a instruction and store them as
a template for that specific instruction. Figure 4.8 depicts the templates obtained for
the baload, sstore and sload instructions respectively. We will see later that some
instruction sequences occur more frequently. Therefore, frequently occurring sequences
can be stored in a single template. These templates are referred to as combined templates.
For example, smul+sstore is a combined template.

 0 100 200 300

ns

sload

 0 100 200 300

ns

sstore

 0 500 1000

ns

baload

Figure 4.8: Templates of the baload, sstore and sload instructions

It is important to realise that the executed instructions must be matched against the
execution trace of the applet, as the order of the executed instructions may differ from
the structured bytecode due to loops and conditional statements. Figure 4.9 depicts
an example. The pow method contains a for loop to compute an. The figure depicts
the Java source code, the bytecode generated by the compiler and the execution trace
of pow(3,2). This execution trace is created manually. For more complex algorithms,
the execution trace can be obtained using the Java Card C Reference Implementation
(CREF). This tool simulates a Java Card smart card on a PC.

4.3 Template recognition

In this section, we present the template recognition process. This process is quite similar
to the template determination process described in the previous section. First, the
applet must be executed, as explained in Section 4.3.1. Then, power traces of the applet
execution have to be obtained, as described in Section 4.3.2.

4.3. TEMPLATE RECOGNITION 33

1 // Java source code

2 public short pow(short a, short n)

3 {

4 short ret = 1;

5

6 for (short d = 0; d < n; d++)

7 ret *= a;

8

9 return ret;

10 }

1 // Bytecode

2 L0: sconst_1;

3 sstore_3;

4 sconst_0;

5 sstore 4;

6 goto L2;

7 L1: sload_3;

8 sload_1;

9 smul;

10 sstore_3;

11 sinc 4 1;

12 L2: sload 4;

13 sload_2;

14 if_scmplt L1;

15 L3: sload_3;

16 sreturn;

1 // Execution trace of pow(3,2)

2 L0: sconst_1;

3 sstore_3;

4 sconst_0;

5 sstore 4;

6 goto L2;

7 L2: sload 4;

8 sload_2;

9 if_scmplt L1; // branch!

10 L1: sload_3;

11 sload_1;

12 smul;

13 sstore_3;

14 sinc 4 1;

15 L2: sload 4;

16 sload_2;

17 if_scmplt L1; // branch!

18 L1: sload_3;

19 sload_1;

20 smul;

21 sstore_3;

22 sinc 4 1;

23 L2: sload 4;

24 sload_2;

25 if_scmplt L1; // no branch!

26 L3: sload_3;

27 sreturn;

Figure 4.9: Java source code, bytecode and the execution trace of pow(3,2)

4.3.1 Executing the (un)known applet

As explained earlier, an applet has to be selected using its AID, before it can be executed.
On some smart cards it is possible to obtain a list of available AIDs that would allow
execution of unknown applets. Besides the AID, the supported instructions and their
respective classes have to be obtained. Although these can be found using a simple brute
force technique, another way is to eavesdrop on the I/O channel of the smart card while
it is used in a real application [16]. An advantage of this method is that also P1, P2 and
the length of the data field of the command APDUs will be revealed. This technique
can of course also be used to determine the AID.

4.3.2 Obtaining and recognising power traces

When the AID and the APDUs are known, the applet can be executed while measuring
the smart card’s power consumption. The templates determined earlier can then be used
to process the unknown power trace. We developed an Inspector module that matches
n templates against an average power trace automatically by using the correlation tech-
nique described in Section 2.3.2. Algorithm 6 shows the pseudocode of the Inspector
module RecogniseBytecodes. The parameter trace contains an average power trace of
the applet execution.

The result of this program is a set of n traces containing the correlation of the power
trace with each template. The result of the template matching process is depicted in
Figure 4.10. The average power trace (shown in red on the first row) and its correlation

34 CHAPTER 4. POWER ANALYSIS METHODOLOGY & RESULTS

Algorithm 6 Pseudocode RecogniseInstructions module
1: function RecogniseInstructions(trace)
2: templates[]← LoadTemplates()
3: for i = 0 to templates.length do
4: template← templates[i]
5: correlationTrace[i].name← template.name
6: for j = 0 to trace.length− template.length do
7: correlationTrace[i].samples[j]← Correlation(template, trace[j..j + template.length])
8: end for
9: end for
10: return correlationTrace
11: end function

with the JCVM template and the templates for sload, baload, sadd+s2b+sstore and
smul+s2b+sstore respectively are shown. From Figure 4.10 can be concluded that
the instruction sequence smul+s2b+sstore is probably executed three times during the
applet execution.

 0 5

 smul+s2b+sstore

0

0

0

0

0

1

1

1

1

1 sadd+s2b+sstore

baload

sload

JCVM template

Average power trace

 10 15 20 25 30 35 40 45
µs

Figure 4.10: Result of the template matching process

4.4 Power analysis results

Although the techniques described in this chapter perform well for most instructions,
there exist some special cases. First of all, Section 4.4.1 describes that instructions which
perform similar tasks, show very similar power profiles. Second, Section 4.4.2 shows that
the duration of some instructions is not fixed, which makes it more difficult to create a
template for these instructions. However, we will see that the duration provides useful
information. Next, we will discuss cryptographic operations in Section 4.4.3. Finally, in
Section 4.4.4, results with some other smart cards are described.

4.4. POWER ANALYSIS RESULTS 35

4.4.1 Similar instructions

Some instructions that are available in the JCVM are used to optimise common opera-
tions. For example, loading a short value from local variable 2 or 3 can be performed
using sload 2 or sload 3 respectively. We acquired the power traces at 200 MHz, as
distinguishing between similar instructions, such as sload 2 and sload 3, is difficult
based on resampled measurements. We performed 12500 measurements of the power
consumption during the execution of an sload 2 instruction and another 12500 mea-
surements during the execution of an sload 3 instruction. We augmented each trace
with the opcode of the executed instruction. Figure 4.11 depicts the average power con-
sumption of all measurements. It also depicts the correlation between the measurements
and the augmented opcode.

 0 1 2 3 4 5 6 7 8
µs

Average power trace
Correlation

Figure 4.11: Correlation between the power trace and the type of sload operation
performed

Figure 4.11 shows that there is a minimal difference in the power consumption be-
tween sload 2 and sload 3. This difference is indicated by the peak in the correlation
function (from 2.5 µs to 2.7 µs). Figure 4.12 depicts the difference between sload 2 and
sload 3 in this region. Note that the difference is minimal, as there is only a significant
difference during a small period of time (i.e. approximately 400ns). Although it is pos-
sible to determine the type of sload operation, a significant number of traces must be
collected and therefore it is very time consuming.

4.4.2 Instruction duration

In this section, we show that the duration of some instructions is not fixed. First of
all, Section 4.4.2.1 shows that the duration of the sdiv instruction is dependent on the
quotient. Therefore it is difficult to recognise this instruction using a fixed-size template.
Next, the duration of the conditional branch instruction (like ifle) is also dependent on
input data, as described in Section 4.4.2.2.

36 CHAPTER 4. POWER ANALYSIS METHODOLOGY & RESULTS

 0 0.2 0.4 0.6 0.8 1 1.2 1.4
µs

sload_2
sload_3

Figure 4.12: Difference between sload 2 and sload 3

4.4.2.1 sdiv duration

At first, a template for the sdiv instruction was difficult to determine, because the
time needed for the division operation is variable. The duration of the sdiv instruction
appeared to be dependent on the quotient. We investigated this dependence by collecting
2000 traces of each of the following divisions.

• 256 / 11 = 23 (0b0000000000010111)

• 1239 / 3 = 413 (0b0000000110011101)

The average power traces of these sdiv operations are depicted in Figure 4.13. Note
that the individual bits of the quotient can be easily read from this power trace. Prob-
ably a simple algorithm using left shifts and subtractions is used on the smart card we
investigated to implement the division. A 1-bit in the quotient requires more steps in
the algorithm (i.e. subtracting the divisor from the partial remainder and incrementing
the quotient).

It should be noted that this is a serious vulnerability. Besides the fact that the
quotient can be read from the power trace, it is also possible to determine the input
values if one of them is known. If one of the input values of the division instruction
(i.e. dividend or divisor) can be changed, it is even possible to determine the other value
statistically by just analysing the time required for the operation.

A more secure algorithm for division on secure devices like smart cards, is proposed
in [7]. Unfortunately, we were not able to perform power analysis on this algorithm, as
we do not have a smart card that implements it.

4.4.2.2 Conditional branch instructions

Figure 4.14 shows a fragment of the reference applet that we used to determine the
template for the ifle instruction. Variable a is supplied to the applet via the command
APDU. The statements performed in the if part and else part are intentionally kept
identical.

4.4. POWER ANALYSIS RESULTS 37

 0 50 100 150 200 250
µs

256 / 11 = 23

0

0 0 0 0 0 0 1 1 0 0 1 11 0 1

0 0 0 0 0 0 0 0 0 0 1 0 1 1 1

 0 50 100 150 200 250
µs

1239 / 3 = 413

Figure 4.13: Average power traces of two sdiv instructions

1 a = buffer [(short)(ISO7816.OFFSET_CDATA)];

2

3 if (a > 0)

4 a = 1;

5 else

6 a = 1;

Figure 4.14: Fragment of the applet to determine the ifle template

By alternating variable a between 0 and 1, we tried to determine the template for the
ifle instruction, we discovered that the duration of this instruction depends on whether
the branch is taken or not. Figure 4.15 depicts this difference. Note that the rest of the
trace is identical, but shifted by 4 µs.

Such behaviour can be explained by the fact that the JCVM has to compute the
address at which the execution should be proceeded. Figure 4.15 depicts the difference
between a branch which is not taken and a taken branch respectively. While decompiling,
it may be helpful to know whether a branch is taken or not. For example, one can draw
conclusions about operands (i.e. variable a in this case). Therefore, we stored two
templates for this instruction. Both are augmented with a flag that indicates whether
the branch was taken or not.

38 CHAPTER 4. POWER ANALYSIS METHODOLOGY & RESULTS

 360 380 400 420 440
µs

Branch not taken

Branch taken

Figure 4.15: Duration of the ifle instruction

4.4.3 Cryptographic operations

Most Java Card applets invoke cryptographic algorithms like DES or RSA. These al-
gorithms are commonly implemented as native software functions or in hardware and
can be invoked using the Java Card cryptography API. Although reverse engineering of
native functions and functions implemented in hardware are outside the scope of this
project, it is interesting to see if these operations can be identified in a power trace. Fig-
ure 4.16 depicts a power trace of an applet that executes a single DES operation using
the Java Card cryptography API. From this power trace, we can create a template. This
allows us to recognise the execution of DES operations in a Java Card applet.

Although recognising a DES operation in a power trace is not difficult, there is one
practical problem. As described in Section 3.2, the PicoScope oscilloscope can measure 5
ms at the maximum sample rate. Because the actual DES operation alone, already takes
approximately 10 ms, we are forced to decrease the sample rate and therefore reduce the
precision of our measurements. Acquiring the power trace in several iterations would be
another possible solution to this problem.

 0 2 4 6 8 10

ms

Figure 4.16: Power trace of a DES operation called from Java

4.4. POWER ANALYSIS RESULTS 39

4.4.4 Other Java Card smart cards

In this section, we will see the power traces of a few other smart cards. All of these
smart cards are loaded with the same example reference applet (i.e. the applet depicted
in Figure 4.3). First of all, we show the average power traces of three revisions of a
smart card (same brand and type). These three revisions are referred to as Smart card
1, Smart card 2 and Smart card 3, purchased in 2003, 2005 and 2006 respectively. Then,
in Section 4.4.4.2 we will discuss Smart card 4. The brand of this smart card differs from
the other three smart cards.

4.4.4.1 Smart card 1, 2 and 3

The differences between the three smart cards of the same brand and type, while ex-
ecuting the same reference applet, are depicted in Figure 4.17. Besides the difference
in power consumption and speed, Smart card 1 is similar to Smart card 2. Smart card
3 however, shows a different power profile. The power consumption is higher and the
execution is slower. When inspecting the power trace of Smart card 3, one can see ripples
that represent the execution of instructions.

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

µs

2003
2005
2006

Figure 4.17: Differences in power consumption

An interesting question is whether the newer revisions of the smart cards are more
secure than the older smart cards. We investigated this using the following experiment.
The baload instruction has a power profile that can be easily recognised on all three
smart cards. Therefore, we forced the execution of this instruction during each addition
or multiplication statement, as shown in Figure 4.18.

We executed the applet 5,000 times on all smart cards. Then, we resampled the
traces at 4 MHz, aligned them and computed an average power trace.

Next, we manually selected the first multiplication statement (line 11) in the power
trace and we correlated this selected part against the power trace, as if it was a tem-
plate. We found that the selected multiplication statement has a correlation with the
other multiplication statement, as well as with the addition statement. Table 4.1 shows
the results of this experiment. The first column indicates the smart card on which the
experiment is performed. The second column shows the correlation of the selected mul-

40 CHAPTER 4. POWER ANALYSIS METHODOLOGY & RESULTS

1 public void process(APDU apdu)

2 {

3 byte a = (byte) 0x03 , b, c;

4

5 if (selectingApplet ())

6 return;

7

8 byte buffer [] = apdu.getBuffer ();

9 short len = apdu.setIncomingAndReceive ();

10

11 c = (byte)(a * buffer [(short)(ISO7816.OFFSET_CDATA)]);

12 c = (byte)(a * buffer [(short)(ISO7816.OFFSET_CDATA)]);

13 c = (byte)(a + buffer [(short)(ISO7816.OFFSET_CDATA)]);

14 }

Figure 4.18: Fragment of the applet used for the quality comparison

tiplication statement with the other one. The third column shows the correlation of the
selected multiplication statement with the addition statement.

Correlation with
Smart card multiplication addition

1 (2003) 97.78% 64.59%
2 (2005) 99.34% 67.81%
3 (2006) 95.55% 90.16%

Table 4.1: Correlation quality

As shown in Table 4.1, the first two smart cards do not differ significantly. It is likely
that the higher correlation of Smart card 2 is caused by the slower applet execution on
that card. The correlation of 95.55% for Smart card 3 indicates that the multiplication
can be recognised. However, the correlation with the addition statement is also signif-
icant. Therefore, with respect to distinguishability of the multiplication and addition
statements, Smart card 3 is more secure than Smart card 1 and Smart card 2.

4.4. POWER ANALYSIS RESULTS 41

4.4.4.2 Smart card 4

Smart card 4 was the first Java Card smart card that we tried to reverse engineer.
Unfortunately this smart card contains a countermeasure that adds noise by shifting.
Therefore, the average power trace becomes a flat line, as depicted in Figure 4.19.

A more accurate inspection of the power traces revealed that the power trace is
similar each 88th iteration. We did not further investigate this smart card. However, we
do expect that a repeated pattern (i.e. the execution of instructions) will become visible
when an average of each 88th power trace is made. Unfortunately this means that we
should execute the applet 88 times to obtain one power trace.

 0 5 10 15 20 25 30 35

ms

Figure 4.19: Average power trace of smart card 4

42 CHAPTER 4. POWER ANALYSIS METHODOLOGY & RESULTS

Reverse engineering of Java
Card applets 5
The previous chapter described how to obtain and process power traces. In this section
we will discuss the reverse engineering process, based on the results of the power analysis.

Table 5.1 shows the results of the power analysis of an applet that performs two
addition statements. The table is based on the information obtained using the template
recognition process, as described in Section 4.3. The first column shows the expected
execution trace, which is of course not available when an unknown applet is reverse
engineered. The second column shows the execution trace obtained from the power
analysis. This column contains the instructions with the highest correlation. The third
column shows instructions with a lower correlation. As shown, the execution trace
obtained from the power analysis contains uncertainties and even one error. On line
number 6 the aload instruction has a better correlation than the sload instruction.
Errors like this one can be detected and recovered using techniques described in this
chapter.

Table 5.1: Example execution trace obtained from the power analysis.
Expected Recognised Alternatives
sload sload (93%) aload (89%)

JCVM

sload sload (92%) aload (91%), sconst & sstore (57%)
JCVM

sadd sadd (91%) sload (55%), aload (51%)
JCVM

s2b & sstore s2b & sstore (91%) sload (51%)
JCVM

sload sload (92%) aload (78%), sconst & sstore (54%)
JCVM

sload aload (92%) sload (91%)
JCVM

sadd sadd (90%) sload (54%), aload (53%)
JCVM

s2b & sstore s2b & sstore (90%) sload (53%)

43

44 CHAPTER 5. REVERSE ENGINEERING OF JAVA CARD APPLETS

Reverse engineering using power analysis differs from reverse engineering of an exe-
cutable on a PC. Although reverse engineering of an executable on a PC is certainly not
trivial, it is easier than reverse engineering using power analysis, because of the following
reasons:

• On a PC, the structured program is available. Power analysis results in an execu-
tion trace. In case of a conditional branch, only one execution path is visible;

• In contrast to an executable program on a PC, the execution trace obtained using
power analysis may contain errors or uncertainties due to a noisy signal.

In order to improve the quality of our reverse engineering process, additional infor-
mation sources are desirable. These information sources are covered in Section 5.1. By
using the techniques described in this section, an improved execution trace is obtained.
The processing of this execution trace is described in Section 5.2. Finally, Section 5.3
describes a technique to decompile the structured bytecode to the original Java source
code.

5.1 Additional information sources

In this section, the additional information sources are described. In Section 5.1.1, cor-
relation with input data is covered. In Section 5.1.2, we will see that not all instruction
sequences are possible. In addition, some instruction sequences are unlikely to occur, as
explained in Section 5.1.3. In Section 5.1.4, statistics of Java Card bytecode are shown.
Section 5.1.5 shows that the duration of an instruction can also be used to obtain infor-
mation.

5.1.1 Input data

Besides correlating a power trace with templates, as described in the previous chapter,
correlation with input data contained in the command APDU can also be used to de-
termine which instruction uses the input data. The example in Figure 5.1 depicts the
average power trace of a single smul instruction. In addition, it also depicts the correla-
tion with one of the operands of the smul instruction and the correlation with a random
byte, which is not used by the smul instruction. From Figure 5.1 can be concluded that
it is possible to determine if a specific input value is used by an instruction.

5.1.2 Impossible instruction sequences

Not all instructions can follow each other in a valid execution trace of a Java Card
applet. During the reverse engineering process, it is advantageous to keep an operand
type stack. Although storing the operands themselves is difficult, storing their types is
much easier. Based on the elements on top of the operand type stack, some instructions
can be excluded from the set of possible following instructions. Note that this technique
will reduce the search space and hence speed up the overall process.

5.1. ADDITIONAL INFORMATION SOURCES 45

 0 5 10 15

Average power trace

Correlation with one of the operands

Correlation with random byte

 20 25 30 35 40 45
µs

Figure 5.1: Correlation between input data and the power trace

For example, the aload <index> instruction would push an object reference onto the
operand stack, as described in [19]:

... The objectref in the local variable at index is pushed onto the operand
stack. ...

The sadd instruction is described in the JCVM specification as follows:

... Both value1 and value2 must be of type short. The values are popped
from the operand stack. The short result is value1 + value2. The result is
pushed onto the operand stack. ...

This technique can be applied to the example of Table 5.1. The impossible instruction
sequence in this example is:

sload, aload, sadd

The sadd instruction expects two short values on top of the operand stack, while the
aload instruction pushes an objectref. Therefore, the aload candidate must be replaced
by an alternative instruction (i.e. the sload instruction that matches for 91%). This
results in:

sload, sload (first alternative), sadd

In this case, it is assumed that the sload instruction on line 5 and the sadd
instruction on line 7 are correctly recognised.

46 CHAPTER 5. REVERSE ENGINEERING OF JAVA CARD APPLETS

The pseudocode of the program that checks impossible instruction sequences, is
shown in Algorithm 7. The GetPoppedTypes and GetPushedTypes functions re-
turn an array of the popped and pushed types respectively.

Algorithm 7 Pseudocode CheckSequence program
1: procedure CheckSequence(sequence[])
2: stack = []
3: for i = 0 to sequence.length do
4: pop[]← GetPoppedTypes(sequence[i])
5: push[]← GetPushedTypes(sequence[i])
6: for j = 0 to pop.length do
7: popFromStack ← stack.pop()
8: if popFromStack 6= pop[j] then
9: Print("Line number: " + i)
10: Print("Instruction: " + sequence[i])
11: Print("Expected type: " + pop[j])
12: Print("Found type: " + popFromStack)
13: end if
14: end for
15: for j = 0 to pop.length do
16: stack.push(push[j])
17: end for
18: end for
19: end procedure

5.1.3 Unlikely instruction sequences

Besides impossible instruction sequences, as described in the previous section, there are
instruction sequences that are unlikely to occur even they are allowed by the JCVM.
Table 5.2 shows some examples of unlikely instruction sequences.

Table 5.2: Examples of unlikely instruction sequences.
Sequence Description
sconst 0, sdiv Divide by constant 0
sneg, sneg Negate two times
sadd, pop Add two short values and pop the result
sload 2, sstore 2 Assign variable to itself (e.g. a = a;)

Automatically determining all of these sequences is difficult and manually determin-
ing the sequences is a lot of work. Therefore, it is advantageous to define the unlikely
instruction sequences in a more generic manner, as shown in Table 5.3. The first generic
sequence covers 48 instruction sequences, as the ALU operation group contains 24 in-
structions and the Pop operation group contains 2 instructions.

Table 5.3: Examples of generic unlikely instruction sequences.
Sequence Description
ALU operation, Pop operation Perform an ALU operation and pop the result
sload x, sstore x Assign local variable x to itself

5.1. ADDITIONAL INFORMATION SOURCES 47

5.1.4 Instruction statistics

The previous section described unlikely instruction sequences. These sequences can
not be determined easily. Another way of determining unlikely instruction sequences
is by using statistical information based on a large execution trace. As obtaining a
large execution trace from a smart card is difficult, we used the CREF to generate such
execution trace. At the time the execution trace was made, the CREF was installing
some Java Card applets. Although the implementation is not known, this will probably
execute some complex methods. The execution trace contains a sequence of nearly
100,000 instructions.

Bytecode of Java Card applets on a smart card is usually generated by the Java
compiler. Therefore, certain instructions will occur more often than others. As described
in [15], 90% of an execution trace contains less than 45 out of the 250 standard Java
instructions. Furthermore, approximately 30-40% of the execution trace consists of load
operations (e.g. sload 1). We performed a similar experiment for Java Card bytecode.
The results of this experiment are shown in Table 5.4.

Table 5.4: Java Card bytecode statistics
Instructions group Percentage
Load 31.9%
Stack 19.4%
Method call 15.5%
Store 9.3%
ALU 9.1%
Branches 6.4%
Constant pool 5.1%
Jump 1.5%
Other instructions 1.8%

Besides statistics about individual instructions, it is also possible to obtain statistics
about instruction sequences. Suppose that instruction I is executed. Based on the CREF
execution trace, we can find the possible instructions that follow I and the chance that
each of them follows I. Figure 5.2 depicts the possible instructions that follow the
sload 1 and sload 2 instructions. We can see in the figure, that if sload 1 is executed,
there is a probability of 26% that an aload 0 is executed next.

The same technique can also be used to obtain the possible instructions that follow I.
In addition, we can find the instructions that precede or follow an instruction sequence.
For example, Figure 5.3 depicts the possible instructions that follow the instruction
sequence aload 1+sload 2.

5.1.5 Instruction duration

In some situations the duration of an instruction provides useful information. As already
explained in Section 4.4.2.2, we found that the duration of a conditional branch instruc-
tion indicates if a branch is taken or not. For example, the duration of the if scmplt

48 CHAPTER 5. REVERSE ENGINEERING OF JAVA CARD APPLETS

26%20%

20%

6% 3% 3%

21%

aload_0

Other instructions

invokevirtual

sstore_3

sstore_1 sconst_0 if_scmpne

(a) sload 1

55%

7%

7%
5% 5% 5% 4%

3%2%

9%

sstore

sstore_2

sload_1
aload_1 ifeq sload

sstore_3
if_scmpne

Other instructions

iload_0

(b) sload 2

Figure 5.2: Probable instructions that follow the sload 1 and sload 2 instructions

55%

39%

4%
2%

sload_3

get�eld_a_this

sload
invokespecial

Figure 5.3: Probable instructions following the aload 1+sload 2 sequence

instruction is approximately 5.75µs. In case of a taken branch the duration increases by
4.5µs to 10.25µs.

5.2 Execution trace processing

Using the techniques described in the previous sections, it is possible to obtain the most
likely execution trace. In order to reverse engineer a Java Card applet completely, the
execution trace should be transformed to structured bytecode. This step is certainly not
trivial, because an execution trace may contain (nested) loops. The structured bytecode
of a for loop will always be generated as depicted in Figure 5.4. Basically, it contains a
goto instruction, 2 labels and an if scmplt instruction.

In the ideal case, the reverse engineering process would generate the execution trace
depicted in Figure 5.5.

The rest of this section covers techniques to recover the original structured source
code as good as possible. Section 5.2.1 shows how an unrolled for loop can be rerolled.
In Section 5.2.2, we explain why conditional branch instructions make reverse engineering
process more difficult.

5.2. EXECUTION TRACE PROCESSING 49

1 sconst_0 // initialisation

2 sstore_2

3 goto L2

4 L1: sload_3 // loop body

5 sload_2

6 sadd

7 sstore_3

8 sload_2 // increment loop variable

9 sconst_1

10 sadd

11 s2b

12 sstore_2

13 L2: sload_2 // condition

14 bspush 3

15 if_scmplt L1

Figure 5.4: A for loop as generated by the Java compiler

1 sconst_0

2 sstore_2

3 goto

4 sload_2

5 bspush 3

6 if_scmplt

7 sload_3

8 sload_2

9 sadd

10 sstore_3

11 sload_2

12 sconst_1

13 sadd

14 s2b

15 sstore_2

16 sload_2

17 bspush 3

18 if_scmplt

19 sload_3

20 sload_2

21 sadd

22 sstore_3

23 sload_2

24 sconst_1

25 sadd

26 s2b

27 sstore_2

28 sload_2

29 bspush 3

30 if_scmplt

31 sload_3

32 sload_2

33 sadd

34 sstore_3

35 sload_2

36 sconst_1

37 sadd

38 s2b

39 sstore_2

40 sload_2

41 bspush 3

42 if_scmplt

Figure 5.5: Execution trace of the program depicted in Figure 5.4

5.2.1 Loop rerolling

Consider the execution trace depicted in Figure 5.5. It shows the execution of an unrolled
for loop which is iterated 3 times. As shown in Figure 5.6 the execution trace can be
divided into several parts. First of all, lines 3-6 indicate the presence of a loop. The
goto statement is used to branch to the conditional part of the loop which loads a
short value (sload), pushes a constant (bspush) and branches if the short comparison
succeeds (if scmplt). Second, the lines following the goto statement (i.e. lines 4-6)
can be used to split the execution trace of the loop into parts. This process is depicted
in Figure 5.6. The end of the loop is reached when the conditional branch instruction
is not followed by the loop body. In addition, the duration of the conditional branch
instruction may also indicate the end of the loop, as explained earlier.

Besides reconstructing the loop, this technique has other advantages. First of all it
is possible to derive the labels originally used on lines 3, 6, 15, 24 and 33. Second, it
is very common that the same loop variable is used in the initialisation, condition and
increment part of the loop. Therefore it is likely that the instructions on lines 2, 4, 8,
12, 13, 17, 21, 22, 26, 30 and 31 share the same local variable index. Third, based on the
number of loop iterations, the operand of the bspush instruction can be reconstructed.

50 CHAPTER 5. REVERSE ENGINEERING OF JAVA CARD APPLETS

Although this technique works for this relatively simple example, it is difficult to
completely automate this process. Especially when nested loops are involved or when a
loop contains conditional statements. Moreover the execution traces may contain errors.
Detecting a nested loop as such is less difficult, because the nested loop will cause an
additional goto statement.

if_scmplt L1

sload 2
sconst_1
sadd
s2b
sstore 2

Initialisation of the loop

Indicates start of a new loop

First iteration

Indicates new iteration

Second iteration

Indicates new iteration

Third iteration

Indicates new iteration

 1 sconst_0
 2 sstore 2
 3 goto
 4 sload 2
 5 bspush 3
 6 if_scmplt
 7 // Loop body
 8 sload 2
 9 sconst_1
10 sadd
11 s2b
12 sstore 2
13 sload 2
14 bspush 3
15 if_scmplt
16 // Loop body
17 sload 2
18 sconst_1
19 sadd
20 s2b
21 sstore 2
22 sload 2
23 bspush 3
24 if_scmplt
25 // Loop body
26 sload 2
27 sconst_1
28 sadd
29 s2b
30 sstore 2
31 sload 2
32 bspush 3
33 if_scmplt

L1:

L2:

sconst_0
sstore 2
goto L2

sload 2
bspush 3

// Loop body

Figure 5.6: Loop rerolling

5.3. DECOMPILATION 51

5.2.2 Conditional branches

Conditional branch instructions, such as if scmplt, make the reverse engineering process
more difficult. By varying the input data, it is possible to enforce another part of the
source code to be executed. Without knowledge of the source code it can be difficult to
determine on what input data a conditional branch instruction is dependent. There are
two ways to determine such dependency:

• Use correlation between random input data and the power profile of the conditional
branch instruction. When a conditional branch depends on input data, it is likely
that a correlation is found. Then, altering this data will possibly cause the branch
to execute another part of the program;

• Inspect the (partially) reverse engineered applet first and try to derive what input
data is used in the condition.

It is however possible that a varying input data does not affect the conditional branch,
for example when it is based on an internal state or data from a random generator. In
this case the condition has to be determined from the partially reverse engineered source
code.

5.3 Decompilation

When the structured bytecode is available, it is relatively easy to reconstruct source-level
expressions. In [14], a technique to automatically decompile Java bytecode into Java
source code is presented. Although the referred paper focuses on decompiling standard
Java bytecode, we implemented a Java Card version. Suppose that reverse engineering
of a Java Card applet results in the structured Java Card bytecode shown in the first
column of Table 5.5.

Although goto statements are not allowed in Java, the reverse engineered source
code, as shown in the third column, is much more readable than the instructions in the
first column. Note that the local variables are prefixed with the first character of their
type (e.g. s for short), because the original names are not available. As described in
[14], there exist techniques to eliminate the goto statements.

52 CHAPTER 5. REVERSE ENGINEERING OF JAVA CARD APPLETS

Table 5.5: Decompiling Java Card bytecode
Instruction Stack Source
sconst 0 "0"
sstore 2 s2 = 0;
goto L2 goto L2;
L1: sload 3 "s3" L1:
sload 2 "s3","s2"
sadd "s3 + s2"
sstore 3 s3 = s3 + s2;
sload 2 "s2"
sconst 1 "s2","1"
sadd "s2 + 1"
s2b "(byte) (s2 + 1)"
sstore 2 s2 = (byte) (s2 + 1);
L2: sload 2 "s2" L2:
bspush 3 "s2","3"
if scmplt L1 if (s2 < 3) goto L1;

5.4 Prototype reverse engineering program

The techniques described earlier are implemented in a prototype program. This program
has several functions.

First of all it can find impossible instruction sequences, as described in Section 5.1.2.
In addition, unlikely instruction sequences could be checked, as described in Section 5.1.3

Figure 5.7: Check impossible instruction sequences

Second, the program depicts errors and allows the user to replace the incorrect in-
struction by one of the alternatives. This is done by selecting the correct instruction and
clicking the Activate button.

5.4. PROTOTYPE REVERSE ENGINEERING PROGRAM 53

Finally, the program can reroll loops, using the technique described in Section 5.2.1.
Note that besides rerolling the loop, the program also detects the number of iterations.
Normally, it is very difficult to obtain an operand. Using this technique, the operand of
the bspush instruction is obtained. In addition, the original labels are reconstructed.

Figure 5.8: Loop rerolling

54 CHAPTER 5. REVERSE ENGINEERING OF JAVA CARD APPLETS

Conclusions 6
In this report, we showed that power analysis can be used to acquire information about
executed instructions on a Java Card smart card. In order to acquire power traces,
we built a custom smart card reader that can precisely trigger an oscilloscope. Using
acquisition software, this smart card reader is successfully used to obtain power traces
of the execution of Java Card applets.

In order to obtain an average power trace, we presented several preprocessing tech-
niques that are applied to the obtained trace set. First of all, we presented a resampling
technique to reduce the memory needed to store the power trace, at cost of losing some
information. Second, we showed several techniques to align the power traces. Finally, an
average of the trace set could be calculated. Based on this average trace and the known
execution trace of the applet, we were able to determine the templates for the executed
instructions.

These templates could be recognised in a power trace of an unknown Java Card
applet using correlation techniques. Experiments showed that different instructions can
be identified relatively easy. In contrast, instructions that perform similar tasks cannot
be distinguished easily. It is therefore possible that the execution trace obtained using
power analysis contains errors or uncertainties. We proposed the following additional
information sources that could be used to reduce the number of errors and uncertainties
in the execution trace:

• Each instruction has a set of types that is popped from the operand stack and a
set of types that is pushed on the operand stack. A sequence of two instructions
i1 and i2 is valid if and only if the set of types pushed by i1 matches the set of
types popped by i2. Therefore, some bytecode sequences cannot occur in a valid
Java Card applet;

• Some instruction sequences perform useless tasks and are therefore not likely to
appear in Java Card applets. It is difficult to determine these sequences auto-
matically. Therefore it is advantageous to specify these sequences as groups, as
described in Section 5.1.3;

• Statistical results of other Java Card applets can identify frequently occurring
instruction sequences or sequences that are not likely to occur;

• Correlation with input data can be used to determine which instructions depend on
input data. This can be advantageous in several situations. For example, when it is
known that (a part of) the input data is used by a conditional branch instruction,
the branch direction can possibly be affected by modifying the input data;

55

56 CHAPTER 6. CONCLUSIONS

• The instruction execution duration may provide additional information. For exam-
ple, we found that from the sdiv instruction on Smart card 1, the hamming weight
of the quotient can be derived from the length of the sdiv instruction. Moreover,
the actual value of the quotient can be read from the power trace.

The information sources described above, in addition to the results of the template
recognition process, result in an execution trace. We presented techniques to generate
structured bytecode from this execution trace using loop rerolling. Most of the time
however, this step will be difficult, as the execution trace may also contain nested loops
and other conditional statements.

Finally, we showed that structured bytecode, once it is available, can be decompiled
to Java source code using algorithms which are similar to algorithms that are used to
decompile regular Java applications.

The experiments performed during this project were mainly focused on one particular
smart card, purchased in 2003. We investigated some other cards as well (i.e. two cards
from the same vendor and one from another vendor). A newer revision of the same
smart card, purchased in 2005, showed similar power traces. Reverse engineering applets
running on the latest revision of this smart card, purchased in 2006, appeared to be more
difficult. However, the individual instructions are still visible. Therefore, we expect that
reverse engineering applets on the newest revision of this smart card is still possible to
some extent, provided that enough power traces are acquired.

During the project, we have identified a couple of countermeasures. These counter-
measures make the reverse engineering process more difficult, but we showed that it is
still possible to get information about executed instructions.

6.1 Main contributions

The main contributions of this thesis are:

• Improved acquisition system that consists of:

– A new microcontroller based smart card reader with accurate hardware trig-
ger;

– JNI driver for the PicoScope 3206 USB oscilloscope;

– Acquisition software that controls the smart card reader and the oscilloscope.

• Improved techniques to align power traces;

• Technique to determine templates for the various Java Card instructions in a power
trace;

• Technique to recognise templates in a power trace;

• Additional information sources that can be used during the reverse engineering
process;

6.2. FUTURE WORK 57

• Techniques to generate structured bytecode from an execution trace (e.g. loop
rerolling);

• A prototype program that implements various techniques described in this report.

6.2 Future work

During this project, we thought of the following research topics that can be investigated
in the future.

• It would be interesting to see if the results in this document can be improved when
an oscilloscope with a higher sample rate (i.e. more than 500 MS/s) and larger
memory is used;

• This project focused on reverse engineering Java Card applets using power analysis.
Besides power analysis, other side channel analysis techniques such as Electro-
Magnetic Analysis (EMA) exist. EMA has successfully been applied to widely used
cryptographic algorithms (e.g. DES and RSA), as described in [3]. It is possible
that smart cards with countermeasures against power analysis are vulnerable to
these different side channel analysis techniques;

• We discussed countermeasures that we encountered while performing power analy-
sis. It would be interesting to investigate countermeasures that prevent Java Card
applets from being reverse engineered using power analysis;

• This project focused on contact smart cards. It would be interesting to see if the
techniques described in this document can also be applied to contactless smart
cards;

• The different steps of the reverse engineering process, described in this document,
require manual actions, especially during the template determination. Developing
a program that performs the template determination for all instructions automat-
ically would be interesting.

58 CHAPTER 6. CONCLUSIONS

Bibliography

[1] Zhiqun Chen, Java Card Technology for Smart Cards: Architecture and Program-
mer’s Guide, Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
2000.

[2] Christophe Clavier, Jean-Sébastien Coron, and Nora Dabbous, Differential Power
Analysis in the Presence of Hardware Countermeasures, CHES 2000: Proceedings
of the Second International Workshop on Cryptographic Hardware and Embedded
Systems (London, UK), Springer-Verlag, 2000, pp. 252–263.

[3] Karine Gandolfi, Christophe Mourtel, and Francis Olivier, Electromagnetic analysis:
Concrete results, CHES 2001: Proceedings of the Third International Workshop on
Cryptographic Hardware and Embedded Systems (London, UK), Springer-Verlag,
2001, pp. 251–261.

[4] International Organization for Standardization, ISO/IEC 7816-2 – Information
technology – Identification cards – Integrated circuit(s) cards with contacts – Part
2: Dimensions and location of the contacts, 1999.

[5] , ISO/IEC 7816-3 – Information technology – Identification cards – Inte-
grated circuit(s) cards with contacts – Part 3: Electronic signals and transmission
protocols, 1999.

[6] , ISO/IEC 7816-4 – Identification cards – Integrated circuit cards – Part 4:
Organization, security and commands for interchange, 2005.

[7] Marc Joye and Karine Villegas, A protected division algorithm., CARDIS, USENIX,
2002.

[8] Paul C. Kocher, Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,
and Other Systems., CRYPTO (Neal Koblitz, ed.), Lecture Notes in Computer
Science, vol. 1109, Springer, 1996, pp. 104–113.

[9] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun, Differential power analysis.,
CRYPTO (Michael J. Wiener, ed.), Lecture Notes in Computer Science, vol. 1666,
Springer, 1999, pp. 388–397.

[10] Thomas S. Messerges, Ezzy A. Dabbish, and Robert H. Sloan, Examining smart-
card security under the threat of power analysis attacks., IEEE Trans. Computers
51 (2002), no. 5, 541–552.

[11] Microchip Technology Inc., Application Note – Migrating Applications to USB from
RS-232 UART with Minimal Impact on PC Software, 2004, Also available at http:
//ww1.microchip.com/downloads/en/AppNotes/00956b.pdf.

[12] , PICDEM FS USB Demonstration Board User’s Guide, 2004, Also available
at http://ww1.microchip.com/downloads/en/DeviceDoc/51526a.pdf.

59

http://ww1.microchip.com/downloads/en/AppNotes/00956b.pdf
http://ww1.microchip.com/downloads/en/AppNotes/00956b.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/51526a.pdf

60 BIBLIOGRAPHY

[13] W.H. Press, S.A. Teukolsky, W.T. Vettering, and B.P. Flannery, Numerical Recipes
in C++ – Second Edition, Cambridge University Press, Cambridge, UK, 2002.

[14] Todd A. Proebsting and Scott A. Watterson, Krakatoa: Decompilation in java (does
bytecode reveal source?), COOTS, 1997, pp. 185–198.

[15] R. Radhakrishnan, J. Rubio, and L. John, Characterization of Java Applications at
Bytecode and Ultra-SPARC Machine Code Levels, 1999.

[16] Wolfgang Rankl and Wolfgang Effing, Smart Card Handbook, 3rd Edition, John
Wiley & Sons, Ltd., New York, NY, USA, 2003.

[17] STMicroelectronics, http://www.st.com/stonline/products/families/
smartcard/sc_sol_secure_ics_st22.htm, 2005.

[18] Sun Microsystems, Inc., Java Card 2.1.1 Runtime Environment Specification, 2000.

[19] , Java Card 2.1.1 Virtual Machine Specification, 2000.

[20] , http://www.sun.com/smi/Press/sunflash/2004-11/sunflash.
20041102.1.xml, 2004.

[21] , http://www.sun.com/smi/Press/sunflash/2005-11/sunflash.
20051115.2.xml, 2005.

[22] Marc Witteman, Advances in smartcard security, Information Security Bulletin 7
(2002), 11–22, Also available at http://www.riscure.com/articles/ISB0707MW.
pdf.

http://www.st.com/stonline/products/families/smartcard/sc_sol_secure_ics_st22.htm
http://www.st.com/stonline/products/families/smartcard/sc_sol_secure_ics_st22.htm
http://www.sun.com/smi/Press/sunflash/2004-11/sunflash.20041102.1.xml
http://www.sun.com/smi/Press/sunflash/2004-11/sunflash.20041102.1.xml
http://www.sun.com/smi/Press/sunflash/2005-11/sunflash.20051115.2.xml
http://www.sun.com/smi/Press/sunflash/2005-11/sunflash.20051115.2.xml
http://www.riscure.com/articles/ISB0707MW.pdf
http://www.riscure.com/articles/ISB0707MW.pdf

JCVM instructions A
Dec Hex Mnemonic Description
0 0x00 nop Do nothing

1 0x01 aconst null Push null
2 0x02 sconst m1 Push short constant -1
3 0x03 sconst 0 Push short constant 0
4 0x04 sconst 1 Push short constant 1
5 0x05 sconst 2 Push short constant 2
6 0x06 sconst 3 Push short constant 3
7 0x07 sconst 4 Push short constant 4
8 0x08 sconst 5 Push short constant 5
9 0x09 iconst m1 Push int constant -1
10 0x0A iconst 0 Push int constant 0
11 0x0B iconst 1 Push int constant 1
12 0x0C iconst 2 Push int constant 2
13 0x0D iconst 3 Push int constant 3
14 0x0E iconst 4 Push int constant 4
15 0x0F iconst 5 Push int constant 5
16 0x10 bspush Push byte
17 0x11 sspush Push short
18 0x12 bipush Push byte
19 0x13 sipush Push short
20 0x14 iipush Push int
21 0x15 aload Load reference from local variable
22 0x16 sload Load short from local variable
23 0x17 iload Load int from local variable
24 0x18 aload 0 Load reference from local variable 0
25 0x19 aload 1 Load reference from local variable 1
26 0x1A aload 2 Load reference from local variable 2
27 0x1B aload 3 Load reference from local variable 3

61

62 APPENDIX A. JCVM INSTRUCTIONS

Dec Hex Mnemonic Description
28 0x1C sload 0 Load short from local variable 0
29 0x1D sload 1 Load short from local variable 1
30 0x1E sload 2 Load short from local variable 2
31 0x1F sload 3 Load short from local variable 3
32 0x20 iload 0 Load int from local variable 0
33 0x21 iload 1 Load int from local variable 1
34 0x22 iload 2 Load int from local variable 2
35 0x23 iload 3 Load int from local variable 3
36 0x24 aaload Load reference from array
37 0x25 baload Load byte or boolean from array
38 0x26 saload Load short from array
39 0x27 iaload Load int from array
40 0x28 astore Store reference into local variable
41 0x29 sstore Store short into local variable
42 0x2A istore Store int into local variable
43 0x2B astore 0 Store reference into local variable 0
44 0x2C astore 1 Store reference into local variable 1
45 0x2D astore 2 Store reference into local variable 2
46 0x2E astore 3 Store reference into local variable 3
47 0x2F sstore 0 Store short into local variable 0
48 0x30 sstore 1 Store short into local variable 1
49 0x31 sstore 2 Store short into local variable 2
50 0x32 sstore 3 Store short into local variable 3
51 0x33 istore 0 Store int into local variable 0
52 0x34 istore 1 Store int into local variable 1
53 0x35 istore 2 Store int into local variable 2
54 0x36 istore 3 Store int into local variable 3
55 0x37 aastore Store into reference array
56 0x38 bastore Store into byte or boolean array
57 0x39 sastore Store into short boolean array
58 0x3A iastore Store into int boolean array
59 0x3B pop Pop top operand stack word
60 0x3C pop2 Pop top two operand stack words
61 0x3D dup Duplicate top operand stack word
62 0x3E dup2 Duplicate top two operand stack words
63 0x3F dup x Duplicate top operand stack words and in-

sert below

63

Dec Hex Mnemonic Description
64 0x40 swap x Swap top two operand stack words
65 0x41 sadd Add short
66 0x42 iadd Add int
67 0x43 ssub Subtract short
68 0x44 isub Subtract int
69 0x45 smul Multiply short
70 0x46 imul Multiply int
71 0x47 sdiv Divide short
72 0x48 idiv Divide int
73 0x49 srem Remainder short
74 0x4A irem Remainder int
75 0x4B sneg Negate short
76 0x4C ineg Negate int
77 0x4D sshl Shift left short
78 0x4E ishl Shift left int
79 0x4F sshr Arithmetic shift right short
80 0x50 ishr Arithmetic shift right int
81 0x51 sushr Logical shift right short
82 0x52 iushr Logical shift right int
83 0x53 sand Boolean AND short
84 0x54 iand Boolean AND int
85 0x55 sor Boolean OR short
86 0x56 ior Boolean OR short
87 0x57 sxor Boolean XOR short
88 0x58 ixor Boolean XOR int
89 0x59 sinc Increment local short variable by con-

stant
90 0x5A iinc Increment local int variable by constant
91 0x5B s2b Convert short to byte
92 0x5C s2i Convert short to int
93 0x5D i2b Convert int to byte
94 0x5E i2s Convert int to short
95 0x5F icmp Compare int
96 0x60 ifeq Branch if short comparison with zero suc-

ceeds (equal)
97 0x61 ifne Branch if short comparison with zero suc-

ceeds (not equal)

64 APPENDIX A. JCVM INSTRUCTIONS

Dec Hex Mnemonic Description
98 0x62 iflt Branch if short comparison with zero suc-

ceeds (less than)
99 0x63 ifge Branch if short comparison with zero suc-

ceeds (greater than or equal)
100 0x64 ifgt Branch if short comparison with zero suc-

ceeds (greater than)
101 0x65 ifle Branch if short comparison with zero suc-

ceeds (less than or equal)
102 0x66 ifnull Branch if reference is null
103 0x67 ifnonnull Branch if reference is not null
104 0x68 if acmpeq Branch if reference comparison succeeds

(equal)
105 0x69 if acmpne Branch if reference comparison succeeds

(not equal)
106 0x6A if scmpeq Branch if short comparison succeeds

(equal)
107 0x6B if scmpne Branch if short comparison succeeds (not

equal)
108 0x6C if scmplt Branch if short comparison succeeds (less

than)
109 0x6D if scmpge Branch if short comparison succeeds

(greater than or equal)
110 0x6E if scmpgt Branch if short comparison succeeds

(greater than)
111 0x6F if scmple Branch if short comparison succeeds (less

than or equal)
112 0x70 goto Branch always
113 0x71 jsr Jump subroutine
114 0x72 ret Return from subroutine
115 0x73 stableswitch Access jump table by short index and

jump
116 0x74 itableswitch Access jump table by int index and jump
117 0x75 slookupswitch Access jump table by key match and jump
118 0x76 ilookupswitch Access jump table by key match and jump
119 0x77 areturn Return reference from method
120 0x78 sreturn Return short from method
121 0x79 ireturn Return int from method
122 0x7A return Return void from method
123 0x7B getstatic a Get static reference field from class

65

Dec Hex Mnemonic Description
124 0x7C getstatic b Get static byte or boolean field from class
125 0x7D getstatic s Get static short field from class
126 0x7E getstatic i Get static int field from class
127 0x7F putstatic a Set static reference field in class
128 0x80 putstatic b Set static byte or boolean field in class
129 0x81 putstatic s Set static short field in class
130 0x82 putstatic i Set static int field in class
131 0x83 getfield a Fetch reference field from object
132 0x84 getfield b Fetch byte or boolean field from object
133 0x85 getfield s Fetch short field from object
134 0x86 getfield i Fetch int field from object
135 0x87 putfield a Set reference field in object
136 0x88 putfield b Set byte or boolean field in object
137 0x89 putfield s Set short field in object
138 0x8A putfield i Set int field in object
139 0x8B invokevirtual Invoke instance method; dispatch based

on class
140 0x8C invokespecial Invoke instance method; special handling

for superclass, private, and instance ini-
tialization method invocations

141 0x8D invokestatic Invoke a static class method
142 0x8E invokeinterface Invoke interface method
143 0x8F new Create new object
144 0x90 newarray Create new array
145 0x91 anewarray Create new array of reference
146 0x92 arraylength Get length of array
147 0x93 athrow Throw exception or error
148 0x94 checkcast Check whether object is of given type
149 0x95 instanceof Determine if object is of given type
150 0x96 sinc w Increment local short variable by con-

stant
151 0x97 iinc w Increment local int variable by constant
152 0x98 ifeq w Branch if short comparison with zero suc-

ceeds (wide index, equal)
153 0x99 ifne w Branch if short comparison with zero suc-

ceeds (wide index, not equal)
154 0x9A iflt w Branch if short comparison with zero suc-

ceeds (wide index, less than)

66 APPENDIX A. JCVM INSTRUCTIONS

Dec Hex Mnemonic Description
155 0x9B ifge w Branch if short comparison with zero suc-

ceeds (wide index, greater than or equal)
156 0x9C ifgt w Branch if short comparison with zero suc-

ceeds (wide index, greater than)
157 0x9D ifle w Branch if short comparison with zero suc-

ceeds (wide index, less than or equal)
158 0x9E ifnull w Branch if reference is null (wide index)
159 0x9F ifnonnull w Branch if reference is not null (wide in-

dex)
160 0xA0 if acmpeq w Branch if reference comparison succeeds

(wide index, equal)
161 0xA1 if acmpne w Branch if reference comparison succeeds

(wide index, not equal)
162 0xA2 if scmpeq w Branch if short comparison succeeds

(wide index, equal)
163 0xA3 if scmpne w Branch if short comparison succeeds

(wide index, not equal)
164 0xA4 if scmplt w Branch if short comparison succeeds

(wide index, less than)
165 0xA5 if scmpge w Branch if short comparison succeeds

(wide index, greater than or equal)
166 0xA6 if scmpgt w Branch if short comparison succeeds

(wide index, greater than)
167 0xA7 if scmple w Branch if short comparison succeeds

(wide index, less than or equal)
168 0xA8 goto w Branch always (wide index)
169 0xA9 getfield a w Fetch reference field from object (wide in-

dex)
170 0xAA getfield b w Fetch byte or boolean from object (wide

index)
171 0xAB getfield s w Fetch short field from object (wide index)
172 0xAC getfield i w Fetch int field from object (wide index)
173 0xAD getfield a this Fetch reference field from current object
174 0xAE getfield b this Fetch byte or boolean field from current

object
175 0xAF getfield s this Fetch short field from current object
176 0xB0 getfield i this Fetch int field from current object
177 0xB1 putfield a w Set reference field in object (wide index)
178 0xB2 putfield b w Set byte or boolean field in object (wide

index)

67

Dec Hex Mnemonic Description
179 0xB3 putfield s w Set short field in object (wide index)
180 0xB4 putfield i w Set int field in object (wide index)
181 0xB5 putfield a this Set reference field in current object
182 0xB6 putfield b this Set byte or boolean field in current object
183 0xB7 putfield s this Set short field in current object
184 0xB8 putfield i this Set int field in current object
254 0xFE impdep1 Reserved opcode (Cannot appear in valid

CAP file)
255 0xFF impdep2 Reserved opcode (Cannot appear in valid

CAP file)

68 APPENDIX A. JCVM INSTRUCTIONS

Flowchart smart card reader B
Initialize UART

Power down smart card

Data available
in UART buffer?

Forward data
to USB port

yes

Data available
in USB buffer?

no no

Command?

yes

Send
data

COMMAND
CARD
DATA

Arm

COMMAND
ARM

Power up
smart
card

COMMAND
POWER

UP

Power down
smart
card

COMMAND
POWER
DOWN

Reset
smart
card

COMMAND
RESET
SMART
CARD

Set
stop
bits

COMMAND
SET

STOP BITS

Reset
reader

COMMAND
RESET

Card
inserted

COMMAND
CARD

INSERTED

Armed?

Button
SW_MISC
pressed?

Trigger
oscilloscope

yes

no

no

Reset
smart
card

yes

Figure B.1: Flowchart smart card reader firmware

69

70 APPENDIX B. FLOWCHART SMART CARD READER

	List of Figures
	List of Tables
	Acknowledgements
	Introduction
	Research questions
	Conventions
	Organisation of this thesis

	Background information
	Smart cards
	Typical smart card architecture
	Communication

	Java Card technology
	Java Card applet example
	Java Card applet security

	Power analysis
	Simple power analysis
	Differential power analysis
	Tool for power analysis

	Improved acquisition system
	Smart card reader
	Hardware
	Firmware
	Communication protocol

	Oscilloscope
	Acquisition software

	Power analysis methodology & results
	Trace set preprocessing
	Trace Resampling
	Trace Alignment
	Trace Shifting
	Trace Stretching

	Template determination
	Reference applet
	Executing the reference applet
	Obtaining power traces

	Template recognition
	Executing the (un)known applet
	Obtaining and recognising power traces

	Power analysis results
	Similar instructions
	Instruction duration
	Cryptographic operations
	Other Java Card smart cards

	Reverse engineering of Java Card applets
	Additional information sources
	Input data
	Impossible instruction sequences
	Unlikely instruction sequences
	Instruction statistics
	Instruction duration

	Execution trace processing
	Loop rerolling
	Conditional branches

	Decompilation
	Prototype reverse engineering program

	Conclusions
	Main contributions
	Future work

	Bibliography
	JCVM instructions
	Flowchart smart card reader

