
Performance Evaluation of an Adaptive FPGA for Network Applications

Christoforos Kachris, Stamatis Vassiliadis
Computer Engineering Lab1

Department of Electrical Engineering,
Mathematics and Computer Science

Delft University of Technology
The Netherlands

{kachris, stamatis}@ce.et.tudelft.nl

Abstract

This paper presents the design and the performance
evaluation of a coarse-grain dynamically reconfigurable
platform for network applications. The platform consists of
two MicroBlaze RISC processors and a number of
hardware co-processors used for the processing of the
packet’s payload (DES encryption and Lempel-Ziv
Compression). The co-processors can be connected either
directly to the processors or using a shared bus. The type of
the co-processors is dynamically reconfigured to meet the
requirements of the network workload. The system has been
implemented in the Xilinx Virtex II Pro FPGA platform and
the network traces from real passive measurements have
been used for performance evaluation. The use of
dynamically reconfigurable co-processors for network
applications shows that the performance speedup versus a
static version varies from 12% to 35% in the best case and
from 10% to 15% on average, depending on the variability
in time and distribution of the network traffic.

1. Introduction

The increase of Internet traffic has created the need for
more powerful processors into the access and core network
devices, that are able to sustain the demanding packet
processing- the network processors. Network processors are
specific purpose processors that can be used in a number of
network applications such as servers, gateways, firewalls
etc. The architectures of network processor vary from
multi-core multi-threaded RISC architectures to dataflow
architectures. In addition, each network processor targets
different area of the network such as core networks, access
networks.

The network processors are used to process both the
header and the payload of the network packets. In the case
of the header processing, several hardware co-processors
are used to relieve the processor of mainstream
computation such as the CRC (Cyclic Redundancy Check)
and the checksum algorithm. These co-processors are used
in every packet hence it is easy to specify beforehand the

number of co-processor for the required bandwidth.
Unfortunately, in the case of the payload processing there
are not standard processing requirements. The payload
processing requirements of each packet depends on the
network flow that it belongs. Each network flow can has its
own processing requirements such as encryption,
compression, intrusion detection, intrusion prevention, etc.
Since the network processors target a large area of
applications it is very difficult to design a network
processor that meets all the network processing demands. In
many cases, the on-chip co-processors are not able to
process the required number of packets, thus external co-
processors (for encryption, compression or intrusion
detection) are used which increase the cost of the device,
while other on-chip co-processors are not used wasting
valuable chip area. In addition, new protocols can be
deployed in the future and the network processors must be
able to face the new requirements. Hence, the use of
reconfigurable platforms able to adapt themselves to the
network processing demands in necessary. Furthermore, the
performance of reconfigurable logic based systems in many
network applications such as encryption [1], compression
[2] or network intrusion [3] can sustain the demanding
requirements of the payload processing.

Moreover, the behavior of network traffic is not constant
in terms of packet’s size, network protocol and bandwidth
over time. In [4, 5] there is a research about how the
network traffic changes over time, in terms of packet’s size
and the packet’s protocol. Hence, even when the network
processors are designed for specific applications, it is very
difficult to design a processor that will always meet the
network traffic demands. Thus, the use of a dynamically
reconfigurable network platform that can reconfigure the
number and the type of co-processors depending on the
network traffic, could improve the performance of the
system. In a potential application scenario, a network
device is used to connect at least two separated local area
networks that use Virtual Private Networks (VPN). In this
case the packets need to be encrypted and decrypted when
they are received and transmit, respectively. In addition,
any wireless device that it is attached to the network needs
packets compression [17]. The number of packets that need 1 This work was supported by Sandbridge Technologies, Inc.

Proceedings of the Seventeenth IEEE International Workshop on Rapid System Prototyping (RSP'06)
0-7695-2580-6/06 $20.00 © 2006 IEEE

encryption and compression varies over time; hence a
network device that could be adapted to these requirements
could boost the performance of the system.
The main contribution of this paper is:

The design of a reconfigurable platform for network
applications and the mapping to Virtex II Pro device
The investigation of the dynamic reconfiguration to
improve the throughput of a network platform using
co-processors connected either directly to the
processors or using a shared bus.
The performance evaluation in an application scenario
with three flows (IP forward, encryption and
compression) for variable network traffic loads and
several reconfiguration rates using real network traces.

The paper is organized as follows. Section 2 presents the
related research in the area of reconfigurable network
platforms. Section 3 presents the system architecture of the
network platform and Section 4 the implementation in a
Virtex II Pro device. The analysis and the results of this
design are presented in Section 5. Finally, Section 6
presents the conclusions of this work.

2. Related Work

The use of dynamically reconfigurable systems to
improve the performance of the system in many
applications has been increased the last years. This section
presents the research in dynamically reconfigurable systems
in the domain of network applications. In [7, 8], a
reconfigurable programmable router has been introduced
that is mainly used in active networks. Active networks are
networks in which the packets are processed by emerging
protocols that are either included into the packet or can be
downloaded dynamically into the router. The system
consists of general purpose CPUs and hardware plug-ins.
Each plug-in has an SRAM and an SDRAM interface to
communicate with the memory, and a custom interface to a
32-bit wide ring in order to communicate with the CPUs
and the other Plug-ins. These plug-in’s are dynamically
configured kernel modules used to process the active
packets, that can be downloaded by a trusted server. The
system has been implemented into two FPGAs, one used as
the network interface device and one used as the host of the
hardware plug-ins.

In [9], a reconfigurable system called Programmable
Protocol Processing Pipeline (P4) has been introduced. In
this case, a set of FPGAs is used in a pipeline way in order
to accelerate the packets processing. Every device has a
FIFO buffer associated with it that is used to load and store
the processed packets. The devices are connected using a
switching array that can include or exclude processing
elements. As an example a Forward Error Correction (FEC)
is used as a protocol processing function. Although, the
FPGAs are able to be reconfigured dynamically, in that

paper there is only the performance evaluation of a static
design, and not of a dynamically reconfigurable device.

In [10] a reconfigurable network coprocessor platform is
presented called DynaCore. In this case a platform mapped
into an FPGA is presented that can accommodate hardware
accelerator units. The platform includes a dispatcher that is
used to send the incoming packets to the hardware
acceleration units. The system consists only of hardware
acceleration units, and a connection of the hardware units
with the general purpose processing elements used for the
remaining header processing is not presented.

In [11] a secured adaptive network processor is
presented. The use of the secured adaptive network
processor both as a secure network edge device and as a
user-adaptable network gateway is presented. The main
characteristic of this system is that a secured mechanism is
used to load the new configuration of the system, to face a
possible attach on the device. The designed system was
able to resist to several attacks such as bus monitoring,
power analysis, and timing analysis. The whole system
consists of three district devices; one device is used to
perform basic packet processing, one device is used for the
authentication support and the configuration control and the
last one is used as the run-time reconfigurable device that
can by used by the user to load the required functions.

In [12, 13] another reconfigurable platform is introduced
targeting mainly active networks. This system consists of
the software and the hardware part. The software part is a
set of kernel and user space modules running on a Linux PC.
The hardware part consists of an FPGA device that is used
to load the required processing modules. When a packet is
received it is checked if it is a passive or an active packets.
If it is an active packet the system checks if the required
hardware for this application is already in the device.
Otherwise, it can request the bitstream for the specific
active packet. When a new bitstream is received for an
active packet, the bit-stream is authenticated, decrypted and
checked for integrity and then is used for the configuration
of the device.

In [14] the design and analysis of a network processor
using accelerator in reconfigurable logic is presented. In
this paper two different approaches are presented. In the
first case each task in mapped to a general purpose
accelerator, while in the second case different accelerator
are used for different task that can be dynamically
reconfigured in the device. As it is shown the use of
reconfigurable modules can improve the execution time
about 20-times. The system has been evaluated in three
applications; tree lookup, pattern matching and a network
intrusion detection algorithm. In [24], the PLATO platform
is presented. PLATO is a reconfigurable active network
platform which provides four physical connections for
ATM networks. Two applications are ported in this
platform; an Active 4x4 ATM Switch and Wormhole IP
over ATM routing Filter.

Proceedings of the Seventeenth IEEE International Workshop on Rapid System Prototyping (RSP'06)
0-7695-2580-6/06 $20.00 © 2006 IEEE

The system that we present is a single-chip adaptive
platform for network applications using mainstream
interfaces to connect the processor with the configurable
hardware acceleration units. The main characteristic is that
each hardware acceleration unit is connected either in a
common bus or in a direct link with the processor that can
be partially dynamically reconfigured without affecting the
operation of the remaining system. Furthermore, the
performance of the system depending on real traffic traces
with variable stability is presented.

3. System Organization

This section presents the organization of the system that
is targeting the Xilinx FPGA platform. As it is shown in
Figure 1, the system consists of two 32-bit MicroBlaze soft-
core RISC processors and a number of hardware
acceleration units. The hardware acceleration units can be
connected either directly to the processors using the FSL
(Fast Simplex Link) or using a shared bus called OPB (On-
Chip Peripheral Bus) that is part of the IBM Core-Connect
bus [15]. The MicroBlaze uses one of the FSL link to
communicate with a simple packet dispatcher. The
MicroBlaze sends a simple command to the dispatcher and
the dispatcher sends the first 40 bytes of the packet. These
40 bytes contain the Internet and the Transport’s layer
header when these headers do not have any option fields
(the most common case). In case that the processor needs
more data of the packet it sends one more command, and
receives the next 40 bytes. The MicroBlaze processes these
headers and depending on the network flow that it belongs,
it can either simply forward it, or send it for encryption or
send it for compression. Attached to the OPB bus there is
64Kbytes memory block that is used as an IP LookUp that
stores the information for the forwarding and the
classification. The algorithm that is used for searching for
the longest prefix match in the LookUp is the Patricia-trie
algorithm used in the MiBench benchmark [16].

In the current design, two types of hardware acceleration
units are used. The first one is the Data Encryption
Standard (DES) unit for encryption that is used typically in
Virtual Private Networks (VPN) [6] and the second one is
the Lempel-Ziv Compression unit that is used in IPSec
standard as it is described in [17] and is widely used to
connect wireless devices. The DES unit is based on the
OpenCores [18] modified to be attached to the OPB and the
FSL interface, while the LZ compression unit is a pro-
prietary unit. The system is divided into two parts; the static
part and the reconfigurable part. The static part contains the
MicroBlaze, the network interface units, the packet
dispatcher, the block RAMs, one Direct Memory Access
(DMA) unit, one compression unit and one encryption unit.
The reconfigurable part contains two spare hardware units
attached to the OPB bus and two hardware units attached to
the FSL link (one for each MicroBlaze).

MicroBlaze1

Data
BRAM

Instr
BRAM

Data
BRAM

DMA

IP
LookUp

Spare1
Spare1

DES

LZ-Comp

Spare2

DES

LZ-Comp

DES

LZ-Comp

OPB

LMB

FSL

MicroBlaze2

Data
BRAM

Instr
BRAM

LMB

Spare2

FSL

DES

LZ-Comp

Dispa-
tcher

FSL

DES

LZ-
Comp

Arbiter

Check
sum

Check
sum

Figure 1. System Organization

Each spare unit can be configured to contain either the
encryption/decryption unit or the compression/de-
compression unit, depending on the network workload.
Each MicroBlaze process the header of the processing
packet and depending on the network flow that it belong, it
tries to allocate a resource to process the payload of the
packet. The status of the configuration (which spare area
contains what co-processor) is stored in a special address in
a shared memory attached to the OPB bus; hence it is
accessible from the MicroBlazes. Each hardware unit has a
specific register that is used to store the status of this unit.
When the core is busy the resister is set and when the core
is free it is zero. When a processor try to allocate the unit, it
first reads this register and if it is clear then it sets the
register on the same access unit in order to prevent
deadlocks (test and set). Then, using the DMA unit, it sends
the payload of the data from the Block RAM buffer to the
hardware unit. The DMA unit needs 4 registers to be set for
every transaction; the source address, the destination
address, the length of the transfer and the control register
which also initializes the transfer.

The partially reconfiguration of the device is controlled
by one MicroBlaze. Each time a packet’s header is
processed, the MicroBlaze updates a counter that is used for
each network flow. When the total number of packet is over
a threshold the MicroBlaze checks which counter is over
40% of the total processed packets. This threshold is
common for both of the processors and these counters are
stored in a special address in the shared RAM attached to
the OPB bus. Hence, the MicroBlaze that controls the
configuration checks the number of processed packets
belonging to each network flow for both of the processors.
 In order to determine the number of processors and the
number of hardware acceleration units a thorough study of
the requirements and the constraints of the system have
been taken into account. The constraints for the current
platforms are shown in Table I:

Proceedings of the Seventeenth IEEE International Workshop on Rapid System Prototyping (RSP'06)
0-7695-2580-6/06 $20.00 © 2006 IEEE

Table I. System's Constraints
Constraint Limit
Number of OPB units 16
Number of FSL units (per uB) 8
Bandwidth of OPB Bus 500 MB/s
Cycles for processing (per mB) 100 million
Area 13696 slices

This table shows that the system must be carefully
designed to be balanced without wasting available area.
Each unit that it is attached to the FSL interface of the
MicroBlaze can enhance the execution of an algorithm, but
a lot of cycles are wasted for the transfer of the data to and
from the FSL unit, especially when the required data are
loaded and stored from a RAM module attached to the OPB
Bus. On the other hand, the OPB units using DMA transfers
can offload the processor from demanding processing
requirements, but the communication between the processor
and the co-processor is slower. In addition, the number of
MicroBlaze’s is very important to the performance of the
system. An unbalanced system with many processors and
reduced number of acceleration unit will result to decreased
performance of the system when payload processing is
required and many available processor cycles will be
wasted. On the other hand, the use of only one processor
will result to a system that the processing capabilities of
this processor are not enough to process the packet and
exploit the available hardware units. In the current design,
an integer non-linear programming system has been
developed based on the constraint of Table 1 in order to
find a balanced design [19]. Moreover, it must be noted that
the MicroBlaze is a soft core processors, in which many
features such as hardware multipliers, dividers etc. can be
added to the processor or not. In the case of the IP forward
code that is used in the current benchmark, the use of the
hardware barrel shifter and the string matching unit has
reduced the time of execution over 30%. This is due to the
fact that the network functions usually include many bit-
wise operations.

4. Implementation

The system has been mapped to a Xilinx Virtex II Pro
XC2VP30 device. Xilinx proposes two different approaches
for active partial reconfiguration [20]. The first one, called
modular design, is used to partial reconfigure blocks of the
design, while the second one, called differential
reconfiguration, is used when the changed are applied only
to a small number of reconfigurable elements (Look Up
Tables). Our system has been implemented using the
modular partial reconfiguration.

According to the Xilinx design flow, in order to design a
system that can be partially reconfigured, the system must
be separated into static and reconfigurable areas.
Reconfigurable areas underlie into specific constraints. For

example, the reconfigurable module’s height is always the
full height of the device; the width must be a multiple of
four-slices, etc. In addition, the reconfigurable modules
communicate with other modules by only using a special
bus macro. These bus macros (BM) must be locked in a
specific area of the device during the floor-planning. The
only common signal of the static and the reconfigurable
area is the clock signal. Xilinx provides bus macro that can
be used to connect only adjacent reconfigurable and static
areas. In [21] it has been presented the design of a
proprietary bus that uses bus macros to add reconfigurable
modules. The bus macros can cross the static and
reconfigurable areas. In our design we have created bus
macros that can be used for the widely-used Xilinx FSL and
OPB interfaces. Each OPB interface uses 108 signals;
hence we need 216 signals. Each CLB Row in the FPGA
can be used for 4 bus macro wires; hence we use 54 out of
the 64 available rows. (The Virtex II Pro 30 device has 80
rows but 24 of them are allocated to the PowerPC area).
These bus macros have been integrated into the Xilinx
Platform Studio that it used for the implementation of
embedded systems.

The floor-planning of the system is depicted in Figure 2.
In the left side of the device there are the reconfigurable
areas for the FSL interface while in the right side of the
device there are the reconfigurable OPB spare units. As it is
shown, the bus macros are the only common wires between
the static and the reconfigurable areas. Table 2 shows the
allocated area for each unit of the system. The area for the
spare units stands for the allocated reserved area and not for
the actual number of slices that each module occupies.

Table II. Area allocation
Block Slices
MicroBlaze 893
DMA Engine 197
OPB Arbiter 180
Checksum 44
DES Unit 757
LZ Unit 518
FSL Spare Unit 1280
FSL Spare Unit 1280

Static Area Reconfigurable AreaReconfigurable Area

Microblaze

FSL
spare

1

FSL
spare

2

Microblaze

BM

BM

OPB
spare

1

OPB
spare

2BM

BM

Misc.

108

10872

72

Figure 2. System’s Floorplan

Proceedings of the Seventeenth IEEE International Workshop on Rapid System Prototyping (RSP'06)
0-7695-2580-6/06 $20.00 © 2006 IEEE

5. Performance Evaluation

This section presents the performance evaluation of the
reconfigurable system. Figure 3 present the impact of the
configuration in the performance of the system for four
different packet’s sizes; 64, 256, 512 and 1024 bytes. As it
is shown, we use three configurations. In the first
configuration, one OPB spare unit is used for DES
encryption and one OPB spare unit is used for LZ
compression. In the second configuration both of the OPB
spare units are used for DES encryption and in the third
configuration both of the OPB spare units are used for LZ
compression. In every configuration, in the static area, there
is one unit for DES encryption and one unit for LZ
compression. The workload distribution shows the
distribution of the packets that need different processing;
simple forwarding (no payload processing), encryption/
decryption or compression/de-compression.

As it is shown, for each workload distribution there is a
different configuration that maximizes the number of
processed packets. When the majority of the packets need
just forwarding, the balanced configuration (2DES-2LZC)
has the best performance. When the majority of the packets
need payload processing then the other configurations have
better performance. The speedup of the dynamic
configuration versus a static system with equal number of
encryption and compression units varies from 12% (in the
case of the 64 bytes and the 25/25/50 workload distribution)
to 35% (in the case of the 64 bytes and the 25/50/25
workload distribution).

Figure 4 presents the utilization of the OPB shared bus.
When the average packet size is small (64 bytes) the
utilization is small and the bottleneck of the design is the
protocol processing performed by the processor (IP lookup,
classification, etc.). When the average size is 256 bytes, we
have a balanced system between the processor, the co-
processors and the interconnection (bus) hence we have the
maximum utilization. On the other hand, when the average
size of the packets increases (512 bytes and 1024 bytes),
then the acceleration units become the bottleneck of the
design while the shared bus is not fully utilized.

Performance of different configurations

0
50

100
150
200
250
300

50
/2

5/
25

25
/5

0/
25

25
/2

5/
50

50
/2

5/
25

25
/5

0/
25

25
/2

5/
50

50
/2

5/
25

25
/5

0/
25

25
/2

5/
50

50
/2

5/
25

25
/5

0/
25

25
/2

5/
50

64Bytes 256Bytes 512Bytes 1024Bytes

Network Distribution (Forw/Encr/Compr)

P
ac

ke
ts

 (K
pa

ck
/s

ec
.)

2DES-2LZC 3DES-1LZC 1DES-3LZC

Figure 3. Performance for different configurations

OPB Utilization

0
10
20
30
40
50
60
70
80
90

100

50
/2

5/
25

25
/5

0/
25

25
/2

5/
50

50
/2

5/
25

25
/5

0/
25

25
/2

5/
50

50
/2

5/
25

25
/5

0/
25

25
/2

5/
50

50
/2

5/
25

25
/5

0/
25

25
/2

5/
50

64Bytes 256Bytes 512Bytes 1024Bytes

Workload Distribution (Forw/Encr/Compr)

U
lti

liz
at

io
n

(%
)

2DES-2LZC 3DES-1LZC 1DES-3LZC

Figure 4. OPB utilization

Figure 5 presents the utilization of the co-processors for
the three configurations and for several workload
distributions. The first two columns show the utilization of
the static co-processors while the other two columns show
the utilization of the OPB spare units. As it is shown, the
aggregated maximum utilization is achieved in the
configuration that the system performs best. For example,
in the 3DES-1LZC configuration we achieve the maximum
utilization of the co-processors when the majority of the
packets need encryption (25/50/25). This figure justifies the
use of additional hardware units to meet the network
workload. Using this figure, we can also set the distribution
thresholds for the dynamic reconfiguration of the system.
For example, in the second configuration (3DES-1LZC)
when the majority of the packets need encryption (25/50/25)
all of the DES units have high utilization. On the other hand,
in the third configuration (1DES-3LZC) when the majority
of the packets need compression the LZC units have lower
utilization. This is due to the fact that the encryption units
are more powerful. Hence, the distribution threshold that
triggers the system to switch to the third configuration
could be higher (60% or 70% of packets need compression).

The main problem of the partial reconfiguration is that it
can not be done instantly. Hence, the main goal of the
system is to be able to exploit the increased performance of
the different configurations by hiding the configuration
overhead. A main factor to the performance of the system is
the minimum reconfiguration period. If the reconfiguration
of the system happens too often then the wasted time of the
reconfiguration will decrease the overall performance of the
system even when the new configuration is more efficient
than the previous one. Another major variable is the metric
of the workload distribution. The workload distribution can
be measured either by counting the number of packets that
belong to each network flow or by counting the number of
bytes that belong to each network flow. This is due to the
fact that the time to process the packet that need only
header processing is independent of the size of the packet,
while in the case that the payload needs also processing the
execution time is dependent on the packet’s size.

Proceedings of the Seventeenth IEEE International Workshop on Rapid System Prototyping (RSP'06)
0-7695-2580-6/06 $20.00 © 2006 IEEE

Co-Processors Utilization

0

20

40

60

80

100

120

50/25/25 25/50/25 25/25/50 50/25/25 25/50/25 25/25/50 50/25/25 25/50/25 25/25/50

2DES-2LZC 3DES-1LZC 1DES-3LZC

Workload Distribution (Forw/Encr/Compr)

U
til

iz
at

io
n

(%
)

Static-DES Static-LZC Spare0 Spare1

Figure 5. Coprocessor utilization

In order to evaluate the performance of the system with
real traces, we used the network traces from the National
Laboratory of Network Research. Specifically, we used the
traces from the passive measurements [25] for the
characteristics of the packets (size, protocol, etc.) and
synthetic values for the workload distribution. We
measured the performance of the system by changing the
distribution of the network and by changing the sampling
rate of the packets. Figure 6 shows a representative instant
during this simulation in which 1500 packets are processed.
Each pair of columns corresponds to 100 processed packets.
In the beginning the network distribution consists of 50% of
packets belonging to forwarding flows, 25% of packets
belonging to encryption flows and 25% of packets
belonging to compression flows. The system initialization
consists of 2 encryption units and 2 compression units.
After 500 packets, the packet distribution changes to
25/50/25 and after more 500 packets to 25/25/50. The
workload distribution is checked every 100 packets. Hence,
in the instance “7” the configuration loads one more
encryption unit and un-loads the compression unit. During
the configuration the system consists of 2 encryption units
and one compression unit, hence the time of the dynamic
system slightly increase while in the instances 8, 9 and 10
that the system consists of 3 encryption units the time is
decreased. During the second reconfiguration (instance 12),
the two OPB spare units are reconfigured (two encryption
units are un-loaded and two compression units are loaded)
hence they can not be used. Thus the time to process the
packets increase. But during the next instances, (instances
13, 14 and 15) the total time to process the packets decrease
since more compression units are used. It is obvious that the
performance gain for the dynamic system is even higher
when the network variation is higher (e.g. if the encryption
distribution reach 80% of the network packets).

Each partial reconfigurable unit is 1280 slices and each
partial reconfiguration file is 135 Kbytes. The reconfigu-
ration time, according to [14, 22], for the specific number
of slices is almost 2.1ms (66Mbytes/sec).

Static vs. Dynamic Performance

0
20
40
60
80

100
120
140
160

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|---------- 50/25/25 ----------| |---------- 25/50/25 ----------| |----- 25/25/50 ----------|

Ti
m

e
(u

s)

Static Dynamic

Reconfig. Reconfig.

Figure 6. Performance of the Static and
 the Dynamic System with real traces

Fig. 7 shows the speedup of the dynamic platform over
the static version for several sampling rates and network
variations. In every case, the traffic of the network is
equally divided in the 3 cases of network distribution
(50/25/25, 25/50/25 and 25/25/50). In the first case the
distribution of the packets remain the same for 100ms.
When the system checks the distribution of the packets
(sampling rate) every 2ms then the dynamic system is
12.4% better than the static system. When the sampling rate
is rare (12ms) then the system can not follow the changes of
the network traffic and keeps reconfiguring the system;
hence the performance is worse than the static version.
When the network traffic becomes more stable (e.g. the
network distribution remains the same for 500 or 1000ms)
then the performance of the dynamic system is almost 15%
better than the static system.

In this case, when the sampling rate is 2ms, the overhead
makes this configuration slightly worse than using 10ms
sampling rate. On the other hand when the sampling rate is
12ms the system can not follow the changes in the network;
hence the speedup is also slightly worse than the 10ms
sampling rate. Thus, in this case the sampling rate of 10ms
gives the best performance. It is obvious that if the
variability of the distribution was larger (e.g. the encryption
traffic could be 70 or 80% of the network traffic) the
speedup of the dynamic systems over the static system
would be even more. This figures, shows that the sampling
rate of a dynamic platform for network applications should
be carefully defined based on the variability of the network
distribution and the network traffic.

The system can also be configured to use the spare units
of the FSL interface. But the use of FSL units has not
improved the overall performance of the system. This is
due to the fact that the many processor cycles are wasted to
transfer the data from the OPB RAM to the FSL units and
back, while the processor does not actually processes these
data. Hence, the system increase the payload processing
power but the protocol processing power is decreased.

Proceedings of the Seventeenth IEEE International Workshop on Rapid System Prototyping (RSP'06)
0-7695-2580-6/06 $20.00 © 2006 IEEE

Speedup of the Dynamic Design for Several
Sampling Rates

-5

0

5

10

15

20

100 200 500 1000

Network Stability (ms)

%
 S

pe
ed

U
p

2ms
5ms
12ms

Figure 7. Speed Up of the dynamic system

On the other hand, when that data have to be processed
both by the processor and a hardware acceleration unit
(such as checksum calculation or media processing) the use
of acceleration units tightly attached to the processor, has
shown improved performance [9].

6. Conclusions

As it is shown in this paper the use of well balanced
dynamically reconfigurable systems can boost the overall
performance of the system by 12% to 35% on the best case
and by 10% to 15% on the average versus a static system,
as long as the network traffic changes are smooth. The
configuration time, the minimum period of the
reconfiguration and the stability of the network traffic can
greatly affect the performance of the system. Furthermore,
the performance of the system is affected by the threshold
that it is used for each configuration. Hence, the
exploitation of dynamically reconfigurable can speedup the
performance of network processing system when the
performance is mainly depends on the payload processing
requirements of the system.

References

[1] V. Pasham, S. Trimberger, “High-Speed DES and Triple
DES Encryptor/Decryptor”, Xilinx Application Notes,
August 3, 2001

[2] W.J. Huang, N. Saxena, E.J. McCluskey, “A reliable LZ data
compressor on reconfigurable coprocessors”, IEEE
Symposium on Field-Programmable Custom Computing
Machines (FCCM’00), April 2000, Napa CA, USA

[3] I. Sourdis, D. Pnevmatikatos, "Pre-decoded CAMs for
Efficient and High-Speed NIDS Pattern Matching", IEEE
Symposium on Field-Programmable Custom Computing
Machines (FCCM'04), April 2004, Napa CA

[4] K. Thompson, G. Miller, R. Wilder, “Wide-Area Internet
Traffic Patterns and Characteristics”, IEEE Network, vol. 11,
no.6, November-December 1997

[5] S. McCreary, K. Claffy, “Trends in Wide Area IP Traffic
Patterns”, Technical Report from Cooperative Association
for Internet Data Analysis.

[6] R. Thayer, N. Doraswamy, R. Glenn, “IP Security Document
Map”, Request For Comments (RFC 2411)

[7] J. Lockwood, N. Naufel, J. Turner, D. Taylor,
“Reprogrammable Network Packet Processing on the Field
Programmable Port Extender (FPX)”, Proceeding of the
International Symposium on Field Programmable Gate
Arrays (FPGA’01), February 2001

[8] D. Taylor, J. Turner, J. Lockwood, “Dynamic Hardware
Plugins (DHP): Exploiting Reconfigurable Hardware for
High-Performance Programmable Routers”, Computer
Networks, vol. 38, no. 3, pp. 295-310, February 2002

[9] I. Hadzic, W. Marcus, and J. Smith, "On-the-fly
Programmable Hardware for Networks", in Proceedings of
GLOBECOM98, Sydney Australia, November 1998

[10] Foag, J., Koch, R., Architecture Conception of a
Reconfigurable Network Coprocessor Platform (DynaCore)
for Flexible Task Offloading. ANCHOR 2004, 32-38,
München 2004

[11] S. Harper, “A Secure Adaptive Network Processor”, Ph.D.
Thesis, Virginia Tech, 2003.

[12] N. G. Bartzoudis et al., “Reconfigurable Computing and
Active Networks”, Engineering of Reconfigurable Systems
and Algorithms 2003: 280-283

[13] N. G. Bartzoudis et al., “Active Networking using
Programmable Hardware”, PostGraduate Networking
Conference, June 2003, Liverpool.

[14] G. Memik, S. O. Memik, W. H. Mangione-Smith, “Design
and Analysis of a Layer Seven Network Processor
Accelerator Using Reconfigurable Logic”, IEEE Symposium
on Field-Programmable Custom Computing Machines
(FCCM’02), April 2002, Napa CA

[15] “The CoreConnect Bus Architecture”, IBM Inc., Sept. 1999,
White paper

[16] Matthew R. Guthaus et al., “MiBench: A free, commercially
representative embedded benchmark suite”, IEEE 4th Annual
Workshop on Workload Characterization, Austin, TX,
December 2001.

[17] A. Shacham et al., “IP Payload Compression Protocol
(IPComp)”, Request For Comments (RFC 2393)

[18] S. McQueen, “Basic DES Crypto Core”, www.opencores.org
[19] C. Kachris, S. Vassiliadis, “Analysis of a Reconfigurable

Network Processor”, Reconfigurable Architecture Workshop
(RAW’06), IEEE IPDPS, Rhodos, Greece, April 2006

[20] Xilinx Inc., “Two flows for partial reconfiguration: Module
based or Difference Based”, Xilinx Application Notes,
September 2004

[21] J. Thorvinger, “Dynamic Partial Reconfiguration of an FPGA
for Computational Hardware Support”, Master Thesis, June
2004

[22] P. Sedcole, B. Blodget, J. Anderson, P. Lysaght, T. Becker,
“Modular Partial Reconfiguration in Virtex FPGAs”, in
Proceedings of the 2005 International Conference on Field-
Programmable Logic and Applications (FPL), 2005

[23] S. Vassiliadis, S. Wong, G. Gaydadjiev, K. Bertels, G.
Kuzmanov, E. M. Panainte, “The MOLEN Polymorphic
Processor”, IEEE Transactions on Computers, pp. 1363-
1375, Vol. 53, Issue 11, November 2004

[24] A. Dollas et al., “Architecture and Applications of PLATO, a
Reconfigurable Active Network Platform”, IEEE Symposium
on Field-Programmable Custom Computing Machines
(FCCM'01), April 2001, Napa CA

[25] National Laboratory For Applied Network Research, Passive
Measurements, “Daily NLANR Packet Header Traces -AIX”

Proceedings of the Seventeenth IEEE International Workshop on Rapid System Prototyping (RSP'06)
0-7695-2580-6/06 $20.00 © 2006 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

