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Introduction 1
1.1 Hand gesture recognition

Human-computer interaction (HCI) is a discipline involved with the design, implementa-
tion and evaluation of interactive computer systems which provide the user with natural
and efficient means for interaction. One of the known human communication modes is
using hand gestures. Systems capable of recognizing gestures are envisioned to provide
more natural user interaction compared to systems relying only on keyboard and/or
mouse user input. Application domains for hand gesture recognition include input and
control of user applications and games, interactive training of sign languages and behav-
ior monitoring.

1.2 Problem statement

The Mediamatics department, part of the Electrical Engineering Mathematics and Com-
puter Science faculty of Delft University of Technology, is currently developing a gesture
recognition system based on images captured by a digital video camera. The current
system is implemented in software and is unable to achieve the frame processing rate
of 25 frames per second as is required for accurate hand gesture recognition. The pri-
mary cause for this can be attributed to the skin segmentation algorithm computational
overhead employed in the gesture recognition system. Currently, the system works with
an image resolution of 160x120 pixels at a frame rate of 25 images per second. It is
desirable to improve the image resolution up to 640x480 pixels at the same frame rate.
The higher resolution is desirable since it will make it possible to determine the shape
of a human hand, to perform better tracking of features and to have more freedom of
movement for the user. This allows larger variations in distance between the user and
the camera. Furthermore, a higher resolution would allow the use of better methods of
gesture recognition since more details (such as seperate fingers) will be available.

Since the skin segmentation algorithm [22] is still under development, the definitive
version has not yet been established. Consequently, in the future new operations might be
included and some currently implemented operations might be excluded in the following
versions of the algorithm.

The main problem statement which presents the basic motivation for this thesis
project can therefore be formulated as follows:

How can the implementation of the existing skin segmentation algorithm be acceler-
ated such that the gesture recognition system is able to operate at a video frame rate of
25 frames per second and a resolution of 640x480 pixels? Furthermore, how can this
implementation be achieved while providing the flexibility to support new versions of the
algorithm in the future?

1



2 CHAPTER 1. INTRODUCTION

1.3 Objective and plan of approach

The objective of this thesis project is to accelerate the skin segmentation algorithm in
order to meet the real-time requirements of the gesture recognition system at the desired
image resolution and frame rate. A proof of concept has to be developed to demonstrate
the operation of the proposed system. Figure 1.1 shows the conceptual representation of
this thesis project. The PC captures images from a digital camera and sends these to the
accelerator. The accelerator processes the images as required by the skin segmentation
algorithm [22] and returns both a skin segmented image and an absolute difference
image. High level applications can use the accelerator output for further processing. For
example, a hand gesture recognition application may analyze the accelerator output to
interpret hand gestures. The interpretation may result in application specific feedback
such as character movement in a game or sign matching in a sign language training
application.

A contextual black-box representation of the accelerator is depicted in figure 1.2. The
figure shows that a stream of RGB images constitutes the input to the accelerator. The
output consists of both an absolute difference image stream and a skin segmented image
stream. The absolute difference image is used for change detection between subsequent
frames, the skin segmented output is used for hand gesture recognition.

The plan of approach consists of the following phases:

• Literature study, both on hand gesture recognition and real-time image processing
related systems;

• Selection of a suitable implementation platform;

• Architectural exploration and development of suitable processing architecture;

• Implementation, testing and performance evaluation of the architecture and its
components;

• Development of a demonstrator.

1.4 Chapter overview

The remainder of this document is organized as follows. Chapter 2 presents an overview
of previously reported work related to this project. Chapter 3 provides a description
of the image processing operations currently used in the skin segmentation algorithm.
Chapter 4 discusses aspects important to the implementation of the accelerator and
concludes with a motivated choice for a suitable implementation platform. Chapter 5
discusses the accelerator architecture and chapter 6 provides a detailed discussion on the
implementation of this architecture and its components. Chapter 7 provides the system
evaluation, chapter 8 then concludes with a summary of this project.
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Related work 2
This chapter discusses previous related work. First, a short overview of real-time skin
segmentation methods is discussed. Then, an overview of known Field Programmable
Gate Array (FPGA) based solutions for accelerating real-time image processing opera-
tions is presented.

2.1 Real-time skin segmentation

Many computer vision based methods for hand gesture recognition or skin color tracking
have previously been proposed in the literature. An interesting method for tracking
multiple skin colored objects proposed in [2], shows that it is possible to achieve real-time
performance of the proposed algorithm. This skin segmentation algorithm is based on
transforming the 3D color representation (YUV) of input images to a 2D representation
(UV) and calculating the probability of each pixel being a skin color. The reference for
this calculation is determined by a set of training images which has to be constructed
manually. The skin regions of the image are then grown into blobs1 which can be tracked
through time. The disadvantage is the requirement of manual composition of the training
set.

The discussion of a different approach proposed in [18] also claims to provide real-time
performance of the skin segmentation algorithm. This work however lacks information
on the computational complexity of the algorithm, the video resolution and the frame
rate utilized. The method uses a look-up table of skin colors based on a predefined
training set. During run-time the skin segmentation is performed on a low resolution
input image. One disadvantage of this method is the low resolution input image used for
skin segmentation. Such reduced resolution prevents detection of details such as fingers
and hand tilt.

To reduce the computational complexity of hand gesture recognition, several re-
searchers have proposed alternative methods for hand tracking. For example, [19] pro-
poses a method based on ”flocks of features” to track skin colored objects. The method
calculates feature points within the hand area of an image and tracks these points over
time. The advantage of calculating a limited amount of feature points is the reduction
of the computational complexity compared to calculations involving the complete input
image. The disadvantage is the inability to precisely determine hand shape, tilt and
finger positions.

A different approach as mentioned in [1] is based on histogram segmentation. The
method relies on dividing the image into small regions. For each region a histogram
is calculated and matched with a training set. The advantage of this algorithm is a

1Blobs are solid circle or elliptical shaped object which represent a simplification of the object con-
sidered.

5



6 CHAPTER 2. RELATED WORK

reduction of computational complexity but this particular algorithm lacks the ability to
track multiple objects in a single image.

The method utilized in this project is based on the algorithm as proposed in [22]
which is currently under development at the ICT department of Delft University of
Technology. It provides better results compared to other models [22] without requiring
color calibration of the camera.

2.2 FPGA based acceleration of real-time image process-
ing operations

Traditionally, application specific IC’s (ASICs) have been employed to accelerate the
execution of image processing operations. The main drawback of such systems is the
fact that the structure of the system cannot be changed after fabrication. However,
the recent developments of reconfigurable hardware provide means for acceleration of
applications without compromising on flexibility.

Several PCI based implementations of reconfigurable hardware coprocessors for real-
time image processing have been proposed. For example, [28] proposes an architecture
based on specialized image processing modules which can be configured in the FPGA.
This method however only enables a few modules to be used at a certain moment,
which is a limitation in case of complex algorithms like the skin segmentation algorithm
targeted in this project.

A different approach is proposed in [27] and presents a coprocessor specifically de-
signed to accelerate the addressing of pixels within software applications. The disadvan-
tage of this approach is the limited resolution and means to implement complex image
processing operations.

Several authors have proposed a high-level approach for the problem of executing im-
age processing operations in real-time. For example, [24] proposes a method of describing
image processing applications using single assignment C (SA-C). Such a description can
be converted to a dataflow graph by a specialized compiler and implemented in re-
configurable hardware. Another high level method was proposed in [7] and essentially
comprises a specialized compiler based on a set of predefined FPGA configurations.

Customized architectures designed for specific applications have been also discussed
in the literature. For example, an architecture for computer vision based navigation
is proposed in [4]. It accelerates the calculation of image processing operations for
navigation by utilizing several FPGA boards simultaneously.

An FPGA implementation of a pixel processor for object detection applications has
been discussed in [23]. The proposed architecture accelerates the implementation of
object detection by implementing the computationally intensive parts of only one specific
algorithm in hardware.

The implementation of 2-D feature detection on an array of FPGAs has been pre-
sented in [3]. The authors present their implementation of a commonly utilized algorithm
for feature detection on an array of FPGAs. The system is able to track features of input
images in real-time at an image resolution of 320x240 pixels.
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2.3 Conclusion

The discussion in this chapter shows that previous work related to reconfigurable hard-
ware acceleration of image processing operations has been proven successful. The main
disadvantage of the considered proposals is the PCI interface being employed. This limits
the practical application of such accelerators to desktop systems only.

The high level approaches for describing image processing operations for reconfig-
urable hardware may provide interesting alternatives to low level approaches. At this
moment however, the methods lack the possibility to implement complex algorithms
consisting of multiple operations.

Taking into account the above mentioned aspects, we can summarize the requirements
for our accelerator for real-time skin segmentation as follows:

1. Acceleration of the skin segmentation algorithm using a commonly available PC
interface, available on both desktop and laptop systems;

2. Flexible architecture of the accelerator which allows the implementation of future
versions of the skin segmentation algorithms;

3. Possibility to incorporate future developments in high level descriptions of image
processing algorithms in the architecture.
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Image processing operations 3
In order to develop a suitable accelerator, it is important to understand the computational
aspects of the operations involved. This chapter therefore discusses the image processing
operations utilized in the selected version of the skin segmentation algorithm.

3.1 Introduction

Images can be described as two dimensional arrays of pixels, each pixel representing
a measured sample of the ”real-word” brightness and color information at the corre-
sponding coordinates. Image processing involves meaningful transformations of source
images. A wide variety of different image processing operations exist and have all been
thoroughly described in the literature.

Hand gesture recognition systems and - more specifically - tracking systems, involve
tracking of features (blobs, active contours or articulated models). Determining these
features requires spatial information. This implies utilization of image processing algo-
rithms operating at spatial representations instead of frequency based representations.

An important method to classify the image processing operations for still images is
by examining the spatial dependencies of the respective transformations:

• point operations: calculation of the new value depends only on the corresponding
value in the source image (no neighborhood);

• local operations: calculation of the new value depends on the corresponding values
in the (spatial) neighborhood of the source image;

• global operations: calculation of the new value depends on all the values in the
source image.

The following sections discuss the convolution, color space conversion, erosion and
dilation, local count and absolute difference operations used in the skin segmentation
algorithm. Additionally, to provide a perspective on the implementation of these opera-
tions, their algorithmic representations are presented.

These can be classified either as a point operation or a local operation. The color
space conversion and absolute difference calculation can be classified as point operations.
The convolution process used for smoothing filters and the morphological operations such
as erosion and dilation can be classified as local operations.

3.2 Convolution

This section discusses the convolution operation and two examples of smoothing filters
based on the convolution operation. Furthermore, an algorithmic representation of the

9
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source image resulting image

w

n

Figure 3.1: image convolution process

convolution is presented.
Convolution is an operation commonly utilized in many image processing tasks. In

its mathematical definition, the convolution of two functions f and g produces a resulting
function h and is denoted as follows:

h = f ∗ g (3.1)

In two dimensional continuous space, the convolution is formally defined as:

h(x, y) = f(x, y) ∗ g(x, y) =
∫ +∞

−∞

∫ +∞

−∞
f(q, r)g(x− q, y − r)dqdr (3.2)

In two dimensional discrete space, which is the case in digital image processing tasks,
the convolution is defined as:

h[x, y] = f [x, y] ∗ g[x, y] =
+∞∑

q=−∞

+∞∑
r=−∞

f [q, r]b[x− q, y − r] (3.3)

From an algorithmic perspective, convolution is a local operation which scans a win-
dow across the image to calculate the output pixel values. This window is often denoted
the convolution kernel or mask. Figure 3.1 depicts the scanning process, the kernel with
a width of 3 is represented with thick black lines. If both, the width and height of a
source image consist of n pixels, the time complexity of a convolution based algorithm is
O(n2). The computational complexity per pixel is O(w2) with w representing the width
of the kernel. Whenever the convolution filter function is separable1, it is possible to
perform two subsequent one dimensional scans instead of one two dimensional scan.

Convolution constitutes the basis for many digital image processing filter implemen-
tations, smoothing filters are commonly implemented using the convolution method.
Two examples of such smoothing filters, the mean filter and the gaussian smoothing
filter, are discussed in the following subsections.

1A function is denoted ”separable” if the two independent variables can be separated
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Figure 3.2: 5x5 mean filter kernel centered around (0,0)

3.2.1 Mean filter

A mean filter calculates a new pixel value by averaging over the neighborhood in the
source image utilizing a smoothing kernel with equal kernel weights. For example,
smoothing using a 5x5 mean filter kernel can be accomplished using equation 3.4.

S(x, y) =
∑2

j=−2

∑2
i=−2 w(i,j) ∗ p(x+i,y+i)

25
(3.4)

where S denotes the smoothed pixel, w denotes the kernel coefficient at position (i, j)
and p denotes the pixel at neighborhood position (x + i, x + j). The kernel of a 5x5
mean filter is depicted in figure 3.2. As can be seen in this figure, the kernel coefficients
have equal weights. In the case of a 5x5 kernel, the weights are 1/(5 ∗ 5) = 1/25. The
resulting pixel value contains the mean of the pixels in the source image’s neighborhood.

3.2.2 Gaussian smoothing filter

The Gaussian smoothing filter is a second example of a smoothing filter with kernel
weights based on the Gaussian distribution function:

G(x) =
1√
2πσ

e−
x2

2σ2 (3.5)

The gaussian function G in equation 3.5 at x also depends on the parameter σ which
determines the sharpness of this function.

For image processing operations, a two dimensional isotropic Gaussian function is
employed:

G(x, y) =
1

2πσ2
e−

x2+y2

2σ2 (3.6)

where G is the gaussian kernel weight at the location with coordinates x and y. The
σ parameter again determines the sharpness of the gaussian function. This function is
quantized into discrete values in order to develop a convolution kernel of a specific size.
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0,002969 0,013306 0,021938 0,013306 0,002969

0,013306 0,059634 0,09832 0,059634 0,013306

0,013306 0,059634 0,09832 0,059634 0,013306

0,002969 0,013306 0,021938 0,013306 0,002969

0,021938 0,09832 0,1621 0,09832 0,021938

Figure 3.3: 5x5 gaussian filter kernel with σ = 2 centered around (0,0)

Figure 3.4: application of mean filter (middle) and gaussian filter (right)

For example, a 5x5 Gaussian kernel with σ = 2 can be represented as depicted in figure
3.3. The kernel weights shown in the figure have been calculated using equation 3.6.

Application of both mean filter and gaussian filter to an example image yields the
result as shown in figure 3.4. The left image shows the original image, the middle image
shows the application of the mean filter and the right image shows the application of
the gaussian filter. The right image shows a little more detail compared to the middle
image but requires more complex calculations.

3.2.3 Algorithmic representation of the convolution operation

Listing 3.1 provides the algorithmic representation of the convolution operation. Using
this algorithm, the source image s is scanned on a row first basis. The output pixel value
in d is calculated by multiplying the corresponding neighborhood pixels in s with the
kernel weights in w. An odd-sized square kernel centered around (0, 0) is assumed, hence
it is indexed (both horizontally and vertically) from −(w.width− 1)/2 to +(w.width−
1)/2).
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Listing 3.1: Pseudo code for convolution operation

%% s = source image
%% d = de s t i n a t i on image
%% w = kerne l window

for ( i , j ) := 1 to ( s . he ight , s . width ) do
begin

for (m, n) := (−(w. height −1)/2 , −(w. width−1)/2) to
+(w. height −1)/2 , +(w. width−1)/2) do

begin
d [ i , j ] = s [ i+m, j+n ] ∗ w[m, n ] ;

end ;
end ;

3.3 Color space conversion

A color space essentially encompasses all possible combinations of the color components
of a given model, which can be any vector representation of color. The red, green and
blue (RGB) color space presents an example of a regularly utilized color space. Each
color within this color space can be represented by a single RGB vector.

Color space conversion involves the process of converting a given color representation
into another representation by a mapping function. An example of such a mapping is
the RGB to Cyan Magenta Yellow (CMY) color space conversion is shown in 3.7. C

M
Y

 =

 1
1
1

−

 R
G
B

 (3.7)

A conversion employed in the current skin segmentation algorithm converts the RGB
representation into a greyscale representation using the average of the R,G and B com-
ponents as follows:

I (x) =
[

R(x) G(x) B(x)
]  1

3
1
3
1
3

 (3.8)

As can be seen in equation 3.8, the RGB to grayscale conversion process converts a 3-
component input value to a single component output value. An algorithm representation
of this conversion process is given in listing 3.2.

Listing 3.2: Pseudo code for RGB to greyscale color space conversion operation

%% s = source image
%% d = de s t i n a t i on image

for ( i , j ) := 1 to ( s . he ight , s . width ) do
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begin
d( i , j ) := (1/3) ∗ s ( i , j ) .R + (1/3) ∗ s ( i , j ) .G + (1/3) ∗ s ( i , j ) .B

end ;

3.4 Erosion and dilation

Erosion and dilation are two examples of morphological operations. Applying these op-
erations changes the structure or form of an image, the element used to transform an
image is called a structuring element. Both greyscale and binary morphological opera-
tions exist. However, only the binary versions are of interest to this project since these
versions are used in the skin segmentation algorithm2.

The set resulting from the dilation of an input image A with a structuring element
B can be denoted as follows:

A⊕B = {z|[
(
B̂

)
z
∩A] ⊆ A} (3.9)

The dilation of A by B is the set of all displacements z of B denoted B̂, such that
B̂ and A intersect by at least one element. Algorithmically, the process of performing a
dilation with a square shaped structuring element can be described as follows:

Listing 3.3: Pseudo code for a binary dilation operation

%% A = source image
%% B = s t ru c tu r i n g element
%% C = r e s u l t i n g image

for ( i , j ) := 1 to (A. height , A. width ) do begin
sum := 0 ;
for (m, n) := (−(B. height −1)/2 , −(B. width−1)/2) to

+(B. height −1)/2 , +(B. width−1)/2) do
begin

sum := sum + A[ i+m, j+n ] ;
end ;

i f (sum > 0) then
C[ i , j ] := 1 ;

else
C[ i , j ] := 0 ;

end i f ;
end ;

The binary erosion of an input image A with a structuring element B can be denoted
as follows:

2The erosion and dilation operations used in the skin segmentation algorithm operate on the output
of threshold operations. Therefore, only binary erosion and dilation are of interest to this project.
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A	B = {z| (B)z ⊆ A} (3.10)

Thus, the erosion of A by B is the set of all displacements z of B such that B and
A overlap by all elements. The algorithmic representation of an erosion is similar to the
dilation with the exception that the if-condition should read:

Listing 3.4: Pseudo code excerpt for a binary erosion operation
. . .

i f (sum = B. s i z e ) then
C[ i , j ] := 1 ;

else
C[ i , j ] := 0 ;

end i f ;
. . .

The binary opening of an image can be achieved by first applying an erosion followed
by a dilation. This operation effectively smoothes the the contour of objects in the image.
When applying a dilation followed by an erosion, the result consists of the binary closing
of that image. This operation also smoothes the contours of objects but fuses narrow
breaks in the contours.

Figure 3.5 shows the result of an input image (a) processed with a dilation (b), erosion
(c), opening (d) and closing (e). For a detailed discussion on mathematical morphology,
please refer to [11].

3.5 Local count and absolute difference

The binary local count filter scans a kernel across the binary input image and counts the
amount of pixels with a value of 1 within the neighborhood. To a certain extend, the
effect of this operation is similar to that of a uniform filter with kernel weights of 1. The
uniform filter however calculates the average of the pixels in the neighborhood, whereas
the local count calculates the sum of these pixels.

To provide a basic method of motion estimation, the skin segmentation also employs
the computation of the absolute difference between two grey scale images based on 3.11.

D(x) = |It(x)− It−1(x)| (3.11)

where D(x) denotes the absolute difference at location x, It(x) and It−1(x) denote the
intensity of a pixel at location x in a frame at time t and t− 1 respectively.

It provides information on the intensity change between two subsequent grey scale
images. As opposed to the local count operation, this is a point operation and thus it
does not require the neighborhood of each pixel to calculate the output pixel.

3.6 Summary

The image processing operations discussed in this chapter are used in the targeted skin
segmentation algorithm. These operations can be classified either as point operations or
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Figure 3.5: application of a dilation (b), erosion (c), opening (d) and closing (e) operation

local operations. Thus the computation of the results require either only the input pixel
or its neighborhood (defined by the kernel of the operation). It is worth noting that the
local operations share a similar window scanning method.
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The mapping of image processing operations such as those mentioned in the previous
chapter onto a suitable platform requires knowledge of the related implementation as-
pects. This chapter introduces the aspects and concepts related to parallel processing
systems, flexibility and possible candidate implementation platforms. A choice for the
most suitable platform is presented at the end of this chapter.

4.1 Exploiting Parallelism

Through the exploitation of inherent parallelism, operations can be executed consider-
ably faster compared to sequential implementations. Many image processing operations
are suited for implementation utilizing a certain type of parallelism because of the lack
of data dependencies. Before discussing appropriate implementation platforms, a brief
overview of relevant parallelism concepts is presented. First, instruction level parallelism
is introduced. This is a type of parallelism supported by modern processors and thus is
being used in the current software implementation of the skin segmentation algorithm.
Second, task level parallelism is introduced. This is a type of parallelism as perceived
from an application perspective. The discussion is by no means intended to be a com-
prehensive and complete overview. For a detailed discussion, the reader is referred to
literature on parallel processing such as [8] and [12].

4.1.1 Instruction level parallelism

Probably the most popular taxonomy on instruction level parallelism was proposed by
Flynn [9] in 1966. It introduces the following categorization based on instruction and
data streams:

• single instruction stream, single data stream (SISD): this category is also denoted
as ’uniprocessors’ and utilize a single instruction which operates on a single data
set;

• single instruction stream, multiple data stream (SIMD): a single instruction oper-
ates on multiple data sets, multimedia extensions of modern processors are often
SIMD style instruction;

• multiple instruction, single data (MISD): multiple instructions operate on a single
data set, this is a quite uncommon category;

• multiple instruction, multiple data (MIMD): multiple instructions operate on mul-
tiple data sets, this category comprises multiprocessor systems which utilize mul-
tiple processors.

17
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The general purpose uniprocessor presents an example of the commonly utilized
SISD category. The traditional operation of such processors consists of the fetch-decode-
execute-write back or a somehow similar execution cycle. First, an instruction is fetched
from memory, then it is decoded and the relevant functional unit1 is addressed, the ex-
ecution takes place in the functional unit and after completion the results are written
back into memory. This execution cycle allows for a technique denoted pipelining. This
technique allows the staged and concurrent operation inside the execution cycle. For
example, at a certain moment instruction A can be decoded while simultaneously in-
struction B is being fetched from memory. Pipelining is a common technique utilized in
many processors presently available.

It is possible to further parallelize execution through the provision of multiple parallel
execution pipelines. This technique, denoted as super scalar execution, allows for an
instruction to be dispatched to an available pipeline. Effectively, multiple instructions
can be present in the different pipelines concurrently.

Although these techniques allow the execution of multiple instructions per clock cycle,
the data dependencies between subsequent instructions and the non-linear execution
flow introduced through conditional branches2 pose a limit on the effectiveness of these
techniques. Since a conditional branch can depend on the result of an instruction which
is executed at the moment the branch is evaluated, the processor is unable to decide
which consequent instruction to fetch.

Several initiatives to alleviate this problem exist, either depending on hardware or
on software support. A technique commonly found in modern digital signal processors
is based on an instruction format which encodes independent operations into a single
instruction. This instruction format is denoted Very Long Instruction Word (VLIW).
During execution, the operations present in the instruction are separately dispatched
to different execution pipelines. It is vital that these operations do not share data
dependencies, it is the task of the compiler to select operations which can be executed
independently.

The concepts of parallelism present in modern processors have been discussed in the
literature. For a detailed discussion of architectural aspects of parallelism, the reader is
referred to [15].

4.1.2 Task level parallelism

Another level of parallelism can be found at the task level of an operation. By examin-
ing the operation to be performed, different tasks may be identified which can operate
independently without introducing any data hazards.

Since this level of parallelism depends entirely on the type of operation, it is difficult
to provide a general framework for the categorization of task level parallelism.

Task level parallelism can be implemented as thread level parallelism, where each task
is assigned to an execution thread. This thread can then be executed on an available
processing unit. An important aspect introduced by utilizing thread level parallelism is

1Examples of functional units are the Arithmetic and Logic Unit (ALU) and Floating Point Unit
2A conditional branch determines if the current execution flow can continue by evaluating a certain

register or flag
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the communication overhead involved. Different threads may need to communicate with
an arbiter or other threads in order to successfully finish their respective operations.

Algorithmic representation often need to exhibit explicit constructs (for example the
balanced tree construct) and communication operations to utilize task level parallelism.
A detailed discussion of parallelism concepts and the design of parallel algorithms can
be found in [12].

4.2 Flexibility

The term ”flexibility” is a rather broad and subjective term. Generally, the design
problem is often confronted with the compromise between flexibility and performance
improvement. Flexible systems most likely offer less performance compared to less flex-
ible but fully optimized systems. It is therefore necessary to examine the problem more
closely to provide some concrete criteria for the system to be developed. In the context
of this project we therefore define the following relevant concepts:

• flexibility of function; from a functional perspective the system should perform
the image processing operations as defined by the ”skin segmentation” algorithm
employed (as described in detail in appendix A). However, this algorithm will be
improved and therefore modified within the near future. It is therefore required
that a next version of this algorithm can be executed by the system with as little
effort as possible;

• flexibility of operation; several parts of the algorithm contain parameters which
influence the operation they perform. These parameters should not be fixed in
the system but a possibility should be provided to modify these parameters during
system operation;

• flexibility of use; from the end-user perspective the system needs to be flexible in
(daily) use. Therefore, an easy to operate or connect system is preferred over a
system which requires complex installation. Judging by the context of this project
however, this concept is of less importance although it should be considered if
feasible.

4.3 Implementation platforms

A variety of different implementation platforms exist, each exhibiting specific character-
istics which may or may not aid in the acceleration of image processing operations. The
following sections provide a short overview of the possible implementation platforms and
their effectiveness on the implementation of real-time image processing operations.

4.3.1 General purpose processor

General purpose processors (GPP’s) provide an execution environment for general pur-
pose processing tasks. The instruction set architecture is suited to different types of
computations. Some architectures are extended with instructions for specific processing
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tasks. The Pentium processor is an example of a general purpose processor with SIMD
type extensions for multimedia processing. It exhibits instruction level parallelism tech-
niques such as those mentioned in section 4.1.1.

General purpose processors provide little support for true task parallelism, although
emulated parallelism can be achieved by utilizing several threads in an application. How-
ever, threads will not be executed truly in parallel since the instructions will be executed
sequentially.

High level software development for general purpose processors requires little knowl-
edge of the processor architecture. It is therefore suitable for flexible implementations
of image processing operations.

4.3.2 Digital signal processor

Digital signal processors (DSPs) are especially suited for specific signal processing al-
gorithms. Both processor and instruction set architecture utilize special constructs to
optimize execution times for these algorithms. Furthermore, DSPs might use SIMD style
instructions to implement parallel processing.

Software development for digital signal processors often requires knowledge of the
processor architecture to develop an efficient implementation. It is therefore less suit-
able for flexible implementation of image processing operations compared to the general
purpose processor.

The Philips Nexperia processor (also known as the Trimedia) is an example of a digital
signal processor specifically designed for MPEG encoding and decoding. Its instruction
set is based on the VLIW concept and thus it provides means for parallel execution of
instructions.

The graphics processing unit (GPU) commonly found on PC add-on boards, is an-
other example of a digital signal processor. These units most often find their implemen-
tation as accelerator for specialized 3D graphics processing operations.

4.3.3 Application specific IC

Processors as mentioned in the previous sections employ a fixed hardware architecture
which is programmable in the sense that it is able to execute user algorithm instructions.
In contrast, application specific integrated circuits (ASICs) contain optimized circuit
implementations of the desired functionality in hardware.

Hardware description languages (HDLs) can be used to develop an ASIC. These
languages are syntactically similar to imperative languages but provide means to describe
parallel hardware circuits rather than a sequence of processor instructions. Consequently,
a compiler for a hardware description language produces a hardware circuit description
instead of low-level processor instructions.

Another fundamental difference is that hardware circuits inherently operate concur-
rently and thus provide the possibility to develop parallel structures. Moreover, because
of this parallel nature, development of sequential operations requires special techniques
such as finite state machines.
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4.3.4 Programmable hardware

Several different types of programmable hardware exist, but the predominant type cur-
rently is the Field Programmable Gate Array (FPGA). The term ”field programmable”
can be attributed to the fact that once the FPGA is fabricated, its operation can be
adapted ”in the field”. This is contrary to the ASIC which cannot be adapted once
fabricated.

An FPGA contains a large amount of programmable logic cells, each cell typically
containing several registers and logic and performs a variety of different functions ac-
cording to its configuration. The cells are interconnected and thus provide the possibility
to develop logic circuits of a larger scale.

Whereas an ASIC consists of fixed but highly optimized circuitry, FPGA’s provide
a flexible configuration through the utilization of the programmable logic cells and in-
terconnections. Consequently, ASIC implementations often achieve higher performance
compared to FPGA implementations.

Specification and validation of functionality may follow the same approach as for
ASIC development, the actual implementation however differs in the fact that an ASIC
has to be manufactured while an FPGA design may be adapted at any time.

4.4 Conclusion

From the implementation platforms presented, each has advantages and limitations with
respect to efficient implementation of image processing operations. General purpose
processors provide a considerable degree of flexibility but often do not allow a paral-
lel implementation of image processing operations. Digital signal processors provide a
more efficient and thus better performing implementation compared to general purpose
processors, but still do not allow true parallel execution of the image processing opera-
tions. An ASIC implementation would provide the most efficient and best performing
implementation but lacks the required flexibility to adapt the design when necessary.
Furthermore, the cost and time associated with the manufacturing of an ASIC present
an important reason not to consider it as an interesting implementation platform for our
project.

Consequently, the FPGA platform yields the best balance between flexibility and
performance. The design can be adapted relatively easily by modifying the source files
and re-synthesizing the design. A parallel implementation is possible by developing
concurrent hardware circuits (blocks) for each image processing operation.

Development board
To design and implement the accelerator on an FPGA, a suitable development board

is required. This board should provide a communication interface capable of transferring
the images to and from the FPGA.

After a careful investigation, we chose to utilize the Digilent XUP V2P board [14]
for our accelerator. It is a low-cost FPGA board containing a Virtex II Pro FPGA
and various communication interfaces. The manufacturer provides a fully functional
communication stack for 10/100 Mbps ethernet interface, effectively reducing the effort
required to obtain an operational communication link.
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For the remainder of this thesis we will refer to the programmable hardware imple-
mentation using an FPGA simply as ”hardware implementation”.



Architecture design 5
This chapter describes the architectural design of the developed system. It also states the
implementation constraints derived from the system real-time requirements.

5.1 Architecture

The architecture of the system describes the components involved, their function and
their respective interfaces. The next paragraphs present a description of the overall
system architecture and the accelerator architecture. First, the flexibility criteria im-
posed on the architecture are discussed, then the architectures of the overall system, the
accelerator and pixel processing pipeline are presented.

5.1.1 Criteria for architecture design

In the previous chapter we defined the three flexibility criteria for the accelerator to be
developed. From these general criteria we can derive requirements for the system and
accelerator architecture.

The flexibility of use criterion depends both on the accelerator and on the driver
software on the host PC. The accelerator should provide sufficient means to aid in the
flexible use by the user. Connecting and disconnecting should therefore be straight
forward and should not require much user interaction.

To provide flexibility of function, it should be possible to adapt the architecture of
the algorithm in hardware. There are several different methods to implement such a
functionality:

1. A very flexible method can be found by implementing an architecture similar to
those utilized by (digital signal) processors. This will provide the highest flexibility
but the least performance improvement;

2. Using a micro programmable architecture, operations can be implemented by de-
scribing each operation as a sequence of micro operations. The implementation
would involve implementing the micro operations and programming the algorithm
by specifying the required micro operations. This will provide a lower degree of
flexibility but a higher improvement in performance compared to the general pur-
pose architecture approach.

3. A fixed implementation where each algorithm operation is implemented directly
in the reconfigurable hardware. This will provide the highest performance but the
least flexibility.

23
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We decided to implement the operations in hardware (option 3 above) since this
provides the highest performance improvement. Furthermore, since we utilize an FPGA,
we can implement different algorithms by redesigning only the required parts. This
method is therefore not completely inflexible and still allows algorithm modifications.

Flexibility of operation presents an important criterion for the architecture. It is
desirable to control the parameters of several predefined algorithm operations when the
accelerator is in use. The architecture should therefore provide the possibility to access
and modify such parameters.

5.1.2 System architecture

The overall system architecture is depicted in figure 1.1. The system consists of a host
PC connected to the accelerator through an Ethernet network connection. The PC
captures images from a webcam at a frame rate of 25 frames per second and transfers
these images to the accelerator. The accelerator processes the images and returns the
results back. This architecture allows flexibility of use since it can be connected using
a regular network cable. The FPGA allows flexibility of function since the hardware
description of the algorithm can be adapted. Flexibility of operation will be achieved by
allowing algorithm parameters to be changed at run-time.

Considering the Ethernet network connection used and the fact that very high band-
width utilization is essential for the overall system performance, we adopted UDP for
our network communication protocol. There are two packet types: data (also referred
to as pixel packets) that carry consecutive pixel- or accelerator output information and
configuration packets used for system configuration at run-time.

The pixel packets are 1358 bytes long and contain 320 pixels using 4 bytes per pixel
(320*4 = 1280 pixel bytes). The remaining 78 bytes are used for the following headers:
accelerator (38), UDP (8), IP (18) and MAC (14 bytes). The accelerator header contains
a frame number indicating which frame the pixels in this packet belong to and an x and
y coordinate indicating the spatial location of the first pixel present in the packet. To
support a multiple camera setup1, a camera identification number indicates the source
of the pixels. The accelerator output consists of 4 bytes per pixel which contain the
absolute difference, grey value and skin segmented output.

The configuration packets contain parameters values for the accelerator. These pa-
rameters determine the operation of several image processing operations present in the
accelerator. The configuration packets have the same size as the pixel packets in or-
der to simplify the protocol handling on the PowerPC processor present in the FPGA.
The meaningful part of the payload is only 80 bytes. This is, however, not a big issue
considering that configuration packets are usually not intermingled with pixel data at
run-time. Please refer to appendix B for a complete overview of the pixel packet and
configuration packet structure.

1A multiple camera setup allows several cameras to be connected to the host PC and might be used
for example to improve the accuracy of hand gesture recognition. The accelerator supports such a setup
by providing a camera identification number in the accelerator header of the pixel packets.
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5.1.3 Accelerator architecture

The architecture of the accelerator is depicted in figure 5.1 and consists of several distinct
components2 interconnected by busses. The following components are present:

• Ethernet media access layer component (EMAC): the EMAC is responsible for
receiving and sending of data packets. When an incoming packet is received, a
processor interrupt will be raised in order to transfer the packet to the data mem-
ory;

• Processor: the processor is responsible for the overall coordination of the com-
ponents present. Furthermore, it must ensure a timely transfer of data between
the components. The processor transfers incoming and outgoing packets from and
to the EMAC, and it transfers packets to and from the pixel processing pipeline
(PPP) subsystem;

• Data memory: this memory is used as an intermediate buffer between the ethernet
component, the processor and the pixel processing pipeline subsystem;

• Instruction memory: this memory contains the program code (instructions) for the
PowerPC processor;

• Interrupt controller; the processor contains a single interrupt port but the archi-
tecture contains two interrupt sources: the EMAC and the PPP. The interrupt
controller is required to multiplex the two interrupt signals into a single signal;

• Pixel processing pipeline subsystem: the PPP is responsible for the image process-
ing operations performed on the pixel data;

• PLB and OPB bus; the Processor Local Bus (PLB) and On-Chip Peripheral Bus
(OPB) provide shared communication paths between the different components;

• Bus bridge; the system comprises two bus types: a high-speed (PLB) bus and a
low-speed (OPB) bus. The bridge connects these two busses and takes care of the
timing;

• PPP Bus Interface (IPIF): provides an interface to the PLB bus in order to simplify
the design of the PPP subsystem. It also provides two additional FIFO’s for
temporal storage.

• Universal Asynchronous Receiver Transmitter (UART); the UART provides the
processor with a standard input and standard output for status and debug infor-
mation to an external computing system.

The interaction of the different components directly involved in processing pixel pack-
ets will be illustrated by a simple example of a single receive packet event. The example
demonstrates the pixel packet dataflow in the accelerator and is shown in figure 5.2.

The following sequence of actions will be executed upon receiving a pixel packet:
2The EMAC, PLB, OPB, Bus Bridge, IPIF, UART and Interrupt controller are standard components

provided by Xilinx.
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Figure 5.1: system architecture

1. an incoming pixel packet arrives at the EMAC;

2. the EMAC receives the packet in its internal buffer and generates a processor
interrupt;

3. the processor starts the interrupt handler which transfers the packet into the data
memory and analyzes the packet header;

4. the processor transfers the packet to the pixel processing pipeline input buffer
(BUS2IP);

5. the PPP processes the packet on a pixel by pixel basis and stores the results in the
PPP output buffer (IP2BUS), and generates an interrupt when a complete pixel
packet has been processed;

6. the processor executes the interrupt handler which transfers the packet back into
its data memory;
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Figure 5.2: example pixel packet flow

7. the processor transfers the packet to the EMAC and orders the EMAC to transmit
the packet to the host PC;

8. the EMAC transmits the packet to the host PC using the direct Ethernet connec-
tion.

Instead of transferring incoming packets directly to the PPP, the packets are first
transferred to the processor data memory. The reason is that the processor should be
able to examine the packet headers in order to determine whether the packet should be
transferred to the PPP or not. Configuration packets for example must not be transferred
to the PPP but interpreted by the processor instead. In addition, there may be network
traffic unrelated to the accelerator which need to be discarded.

To resolve temporary and irregular delays in the accelerator, for example caused by
two interrupts to be serviced simultaneously, two IPIF FIFO buffers which can contain
multiple packets are used.

5.1.4 Pixel Processing Pipeline subsystem architecture

The skin segmentation algorithm as presented in appendix A can be divided 10 dependent
stages. Each stage contains a certain amount of different independent operations which
can be performed simultaneously.

The PPP subsystem implements the building blocks of this algorithm. We decided
to implement the PPP by utilizing a pixel pipelined architecture in order to be able to
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process several pixels simultaneously. The amount of pixels which can be processed at a
single moment depends on the amount of stages present in the pipeline.

Figure 5.3 shows the architecture of the pixel processing pipeline. The operations
indicated correspond to the operations of the skin segmentation algorithm. The dotted
lines between the pipeline stages represent pipeline registers which contain the temporary
results from the preceding stage. The pipeline controller is responsible for the coordina-
tion of the entire processing pipeline. It determines when all pipeline stages have finished
processing in order to start the next pipeline cycle.

The image buffer present in the algorithm is used to determine the absolute difference
between two consecutive images. It was decided not to implement this buffer in hardware.
This would either require a large amount of block RAM or add additional complexity
for interfacing external Dual Data Rate RAM. Instead, the host PC is responsible for
providing the required pixel values. This can be accomplished if the host PC driver
utilizes at least two image buffers. It includes the corresponding pixels of the previous
image when transmitting an image to the accelerator.

5.2 Implementation constraints

The accelerator is required to process video frames at 25 frames per second. Each
individual video frame has a width of 640 pixels and a height of 480 pixels. Each pixel
consists of a red, green and blue color components, each represented using a single byte.
Additionally, each pixel contains an 8 bit grey value of the corresponding pixel from the
previous frame. Thus each pixel is represented by 32 bits.

5.2.1 Network bandwidth

The decision was made to transfer the video frames to and from the accelerator without
data compression. The advantage of uncompressed data is that we do not require both
a compression component on the host PC and a decompression component within the
accelerator. However, this approach requires a higher amount of bandwidth compared
to the case when data compression is used.

It is also important to consider the communication overhead introduced when uti-
lizing the packet based networking communication. The TCP/IP communication stan-
dard [26] states that a maximum of 1500 data bytes can be transferred per packet.
Additional control and error detection information is appended to the data to allow
communication control between the host PC and the accelerator.

At any given video resolutions and frame rate, the following bandwidth requirement
approximation holds:

BW = depthbits per pixel ∗ Iwidth ∗ Iheight ∗Rframe ∗ Foverhead (5.1)

where the depth indicates the amount of bits required to represent a pixel, Iwidth and
Iheight indicate the image dimensions, R indicates the frame rate and F represents the
overhead factor caused by the additional header data present in a pixel packet.



5.2. IMPLEMENTATION CONSTRAINTS 29

10

1

2

3

4

5

76

9

8

11

color 

space 

convert

color 

space 

convert

color 

space 

convert

dis-

similarity

division

squaring

thres-

holding

thres-

holding

local

count

thres-

holding

thres-

holding

closing

uniform 

filter

absolute 

difference

AND

dilation

1 2 3

4 5 14

9

10

12 13

16

18

Input pixel

[R,G,B, Grey T-1]

Pipeline Controller

6

Output

[Abs Diff, Grey T, Skin Segmentation]

mean 

subtract

mean 

subtract

squaring squaring

7 8

absolute 

differ-

ence

15

17

19

20

Figure 5.3: pixel processing pipeline architecture

As previously explained, the pixel packets contain 1280 bytes pixel data and 78
additional bytes required for protocol headers (as mentioned in section 5.1.2), resulting
in communication overhead factor of approximately 6%.

Given a pixel depth of 32 bits, a frame rate of 25 frames per second and a network
packet overhead factor of 6%, the resulting bandwidth requirements are 62,11 Mbps
for image dimensions of 320x240, 248,44 Mbps for 640x480 and 636 Mbps for 1024x768
pixels. Since our implementation utilizes a 10/100 Mbps Ethernet MAC, it is limited
to image dimensions of 320x240 pixels, however a gigabit Ethernet MAC would enable
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image dimensions of either 640x480 or 1024x768.

5.2.2 Accelerator throughput

We decided to utilize communication packets containing 320 pixels per packet. The
amount of packets to be processed by the accelerator can thus be estimated as follows:

Rpacket =
Iwidth ∗ Iheight

320
∗Rframe (5.2)

where Iwidth and Iheight denote the image dimensions and Rframe indicates the frame
rate. With image dimensions of 640x480 pixels and a frame rate of 25 frames per second,
the processing rate Rpacket is 24000 packets per second. Since Ethernet communication
allows full duplex operation3 this effective packet processing rate doubles to 48000 packets
per second.

To test the PowerPC software overhead of packet handling, we developed two packet
handling approaches. The first approach was based on utilization of a micro kernel4 with
support for processes. We developed processes for receiving packets from the EMAC
and the PPP. The second approach involved two interrupt handlers for the same tasks.
Through empirical observation we concluded that the process based approach was limited
in performance due to the context switching overhead involved. We therefore decided to
implement the interrupt based approach.

The interrupt routines are required to finish processing within the time available for
a single packet. Assuming the CPU clock frequency is 300 MHz, the following amount
of clock cycles are available to each routine:

Tmax =
Fclock

Rpacket
=

300 ∗ 106

48000
= 6250 clock cycles (5.3)

where Rpacket indicates the full duplex packet processing rate and Fclock indicates the
clock frequency. The PowerPC reference manual [30] states that the typical amount of
clock cycles required per instruction is 1. Thus, each routine may consist at maximum
of approximately 6250 instructions.

Since the accelerator utilizes a communication bus, it is important to consider the
available bus bandwidth. The bus conforms to the Processor Local Bus standard [6]
and provides a data transfer width of 64 bits. The PLB bus operates at a maximum
frequency of 100 MHz. When utilizing burst transfers 5 the accelerator is effectively able
to transfer 64 bits of data per bus clock cycle. Thus, the available bus bandwidth can
be approximated as follows:

3Full duplex operations allows for simultaneous sending and receiving of data. On the contrary, half
duplex only allows for either sending or receiving of data at a given moment.

4A micro kernel is a minimal implementation of an operating system. It supports minimal operating
system functionality such as thread management and inter-process communication. The micro kernel
provided with the FPGA and which was used for our evaluation is called Xilkernel.

5Burst transfers consist of a sequence of data transfers initiated by a single command. The effective
throughput of burst transfers can be as high as one data transfer per clock cycle. On the contrary, single
data transfer require a command for each transfer requested.
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BWplb bus = Fclock ∗Wbus = 100 ∗ 106 ∗ 64 ≈ 6104 Mbps (5.4)

where Fclock denotes the bus clock frequency, Wbus denotes the bus width and BWplb bus

denotes the available bus bandwidth. Within the accelerator, a pixel packet will be trans-
ferred four times over the bus (EMAC to memory, memory to PPP, PPP to memory and
memory to EMAC). Consequently, the total bus bandwidth required can be estimated
as follows:

BWrequired = BWnetwork half duplex ∗ 4 = 248, 44 ∗ 4 ≈ 994 Mbps (5.5)

where BWnetwork half duplex denotes the bandwidth required for sending the pixel packets
to the host PC and BWrequired denotes the required bus bandwidth. Since the available
bus bandwidth of 6104 Mbps exceeds the required bandwidth of 994 Mbps, we can
conclude that the available bus bandwidth is sufficient to allow for the targeted data
rate.

5.2.3 Pixel Processing Pipeline throughput

Given the input video dimensions and frame rate, the following pixel processing rate is
required:

Rpixel = Iwidth ∗ Iheight ∗Rframe (5.6)

where Rpixel denotes the pixel processing rate, Iwidth and Iheight denote the image width
and height and Rframe denotes the frame rate. For image dimensions of 640x480 pixels
and a frame rate of 25 frames per second the pixel processing rate is 7680000 pixels per
second.

The following amount of clock cycles is available for each pipeline stage:

Tstage =
Fclock

Rpixel
(5.7)

where Fclock is the clock frequency and Rpixel denotes the pixel processing rate. Assuming
a clock frequency of 100 MHz and a pixel processing rate of 7680000 pixels per second,
the amount of clock cycles available for each pipeline stage is 13.

5.3 Conclusion

The system architecture discussed in this chapter is expected to allow the real-time
processing of input pixels. It is based on an FPGA which is connected to a host PC
using a direct Ethernet connection.

The host PC initially sends a configuration packet containing image processing para-
meters to the accelerator. After initialization, the host PC will send a continuous stream
of pixel packets to the accelerator. The accelerator processes these packets and returns
a stream of output pixel packets.

The main components of the accelerator are the PowerPC processor and the Pixel
Processing Pipeline. The processor is responsible for the network communication and the
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overall system control, the pixel processing pipeline is responsible for the implementation
of the skin segmentation algorithm. The implementation of the pixel processing pipeline
remains fixed during run-time. However, it can be modified by adapting the source code
of the algorithm and resynthesis of the design. The parameters of the skin segmen-
tation algorithm can be updated when the system is operational by sending dedicated
configuration packets to the accelerator.

Since the selected development board contains a 100 Mbps Ethernet network con-
nection, an image resolution of 320x240 pixels can be supported at a frame rate of 25
frames per second. A gigabit Ethernet connection would allow image resolutions of
640x480 pixels at the same frame rate.
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The main components of the architecture of the accelerator are the PowerPC processor
and the Pixel Processing Pipeline. Communication between host PC and the accelerator
occurs via direct network connection. This chapter discusses the implementation of the
accelerator architecture and the pixel processing pipeline. The architecture provides a
generic framework for real-time image processing, whereas the pixel processing pipeline
implements the specific components for the skin segmentation algorithm. The first section
provides details on the implementation of the processor functionality, the second section
discusses the pixel processing pipeline. Details on the timing and resource utilization of
the PPP components are available in appendix D.

6.1 Processor functionality

The PowerPC processor is responsible for the overall coordination of the accelerator. It
implements the functions required by the network protocol and controls the transfer of
pixel packets between the EMAC and the PPP. The following subsections provide details
on the network protocol and packet handling.

6.1.1 Network protocol selection

To establish a reliable communication link between the accelerator and the host PC,
the processor should utilize the most suitable network protocol for the purpose. The
Open System Interconnection (OSI) model for network communication [31] defines a set
of layers that are involved in the communication between network connected systems.
Generally, different software layers present within a system correspond to the different
OSI layers and implement the required functionality.

To minimize the network protocol overhead, we chose to use the User Datagram
Protocol (UDP) [25] instead of the Transmission Control Protocol (TCP). The latter
protocol has significant control overhead in order to guarantee delivery and reception of
correct data packets. This might even result in packet retransmission when these have
been damaged during transmission. The former protocol requires less overhead but does
not guarantee delivery and reception of correct data packets. However, judging by the
real-time objective of our accelerator and the video application being used, we prefer
damaged packets over packet retransmissions.

The performance issues encountered when developing high-speed communication ap-
plications have been discussed in [5], [10] and [16]. The bottlenecks discussed in these
papers are caused by the memory copy, checksum calculation and interrupt overhead
introduced by the network protocol handling. In [5] it is shown that several methods
can be used in order to increase the communication throughput. Several alternative

33
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network protocols ( [21], [20]) have been proposed to reduce the processing overhead.
However, these proposals have not yet been widely implemented and thus will result in
compatibility problems if used in this project.

Our PowerPC software implementation uses the zero memory copy method, this
effectively reduces the amount of packet transfers between software layers. Furthermore,
our implementation omits the checksum calculation phase since this is allowed when using
the UDP protocol. This prevents the host PC to detect errors in a packet but results
in a significant communication performance improvement since checksum calculations
involves all data bytes in the packet.

6.1.2 Interrupt handling

The second task of the processor is coordination of the transfer of pixel packets between
the EMAC, data memory and the PPP. To minimize the transfer overhead, it was de-
cided to implement this functionality using interrupt routines and direct memory access
(DMA).

Currently two types of interrupts have been implemented: the EMAC receive packet
interrupt and the PPP packet processed interrupt. The former will be generated by
the EMAC whenever a network packet has been received, the latter when the PPP has
finished processing a pixel packet.

The interrupt handling routine for the EMAC receive packet interrupt is responsible
for transferring the packet from the EMAC component to the data memory. It also needs
to identify the type of packet and process it accordingly. Currently the following types
of packets are recognized:

• Network protocol packets; both IP protocol and UDP protocol packets are
processed. Furthermore, ICMP (”ping”) packets are recognized to provide the
possibility for testing the communication link between the accelerator and the host
PC. TCP and other network protocol packets will currently be discarded.

• ”Hello” packets; these packets will be send by the host PC in order to inform the
accelerator of the IP address and port number of the host PC. This information is
required by the accelerator to return the processed pixel packets.

• Configuration packets; these packets contain parameter values for the PPP compo-
nents. Upon receiving a configuration packet, the processor writes the appropriate
values to the programmable registers of the PPP.

• Pixel packets; these packets contain pixels which will be transferred to the PPP in
order to be processed.

The interrupt handling routine for the PPP packet processed interrupt first transfers
the packets to the data memory. Then it appends the required protocol headers and
finally transfers the packets to the host PC.

To reduce the per-packet processing time, it was decided that the processor should
not be responsible for the administration of pixel packet header data. Consequently, the
processor only transfers the packets to and from the PPP instead of also having to match
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each processed pixel packet with the corresponding header. Thus, this responsibility is
delegated to the PPP by simply transferring the header data along with the pixel values
into the PPP.

As mentioned earlier, transfer of the pixel packets between the EMAC, system mem-
ory and the PPP uses DMA. This method allows data transfer at a higher throughput
compared to programmed input/output1 (PIO) data transfer. A DMA operation trans-
fers data from a specified source address to a destination address. Since the PLB bus
has a width of 64 bits, a DMA operation effectively transfers 64 bits per clock cycle.
It is required that both source and destination address are aligned on a 64 bit address,
thus the processor needs to align the source and destination memory sections at such an
address.

6.2 Pixel Processing Pipeline

This section discusses the implementation of our pixel processing pipeline. First, the
implementation of the pipeline architecture is presented. Next, the protocol used in the
PPP is discussed. Then the color space conversion, erosion and dilation, uniform filter
and local count components are discussed.

6.2.1 Pipeline implementation

The implementation diagram of the pixel processing pipeline is depicted in figure 6.1.
In addition to the components mentioned in section 5.1.4, figure 6.1 shows the following
components: input multiplexer, header bypass fifo, pipeline registers, delaying pipeline
registers and output demultiplexer.

The multiplexer and demultiplexer are required since a single PLB bus transfer con-
tains 2 pixel values. The input multiplexer at the first pipeline stage therefore splits a 64
bit value into two subsequent pixel values. The output demultiplexer in the last pipeline
stage then concatenates two subsequent processed pixel values into a single 64 bit value.

Since the PPP is responsible for matching the processed pixel values to their corre-
sponding header, a header bypass fifo is present. The fifo depth depends on the amount
of pixel packets that can be present in the pipeline, and is determined by the amount of
pipeline stages and the initial latency of the local operations. These local operations re-
quire several image lines to be present in their local buffers, and thus will contain several
pixel packets. A 5x5 local operation has an initial delay of approximately 2 image lines, a
7x7 local operation approximately 3 image lines. Our implementation uses two pipeline
stages with 5x5 local operations and one pipeline stage with a 7x7 local operation. The
header fifo should therefore be able to accommodate at least 7 headers for 320x240 and
14 for 640x480.

At the start of a new pixel packet, the input multiplexer transfers the header data
to the header fifo. The output multiplexer then reads the header data from the header
fifo at the start of a new processed pixel packet. Both input multiplexer and output
demultiplexer use a current pixel counter to identify the start of a new pixel packet.

1Programmed input/output denotes transfer of data involving processor instructions for each data
unit.
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Figure 6.1: PPP implementation diagram

The operation of several components within the PPP can be configured at run-time by
modifying their respective parameters. These parameters are accessible by the processor
through the PLB slave registers of the PPP. For example, a certain register determines
the threshold value of the absolute difference calculation. Please refer to appendix C for
a detailed overview of these registers.

6.2.2 Pipeline protocol

Each component is required to provide a set of interfaces for correct operation of the
pipeline. It was therefore decided to develop a simple pipeline protocol to which each
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Figure 6.2: pipeline protocol state diagram

component should adhere. The pipeline protocol can best be described by the state
diagram as depicted in figure 6.2 and can be described as follows. The done signals of
all pipeline components are connected to the pipeline controller. This controller issues
a start signal when all components have finished processing to indicate the start of a
new pipeline cycle. A component then starts processing if the valid input is set at its
input. It is required that the component first copies its input operands before starting
the actual processing. When the component is ready, it sets its done output. If the valid
input of the component was set at the start of the pipeline cycle, its output will also be
valid at the end of the pipeline cycle. In that case the component needs to set its valid
output. If the valid input of the component was reset at the start of the pipeline cycle,
then the component is required to reset its valid output. This mechanism is required to
keep the pipeline operational in case of input buffer underrun.

This protocol has been implemented in the PPP components. The following sections
will therefore omit the discussions of the protocol related functions and concentrate on
the implemented operations.
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6.2.3 Color space conversion

The color space conversion block (present in pipeline stage 1) implements the vector by
matrix multiplication as depicted in equation 6.1.

[
Grey Skin1a Skin1b

]
=

[
R G B

]  WgreyR Wskin1aR Wskin1bR

WgreyG Wskin1aG Wskin1bG

WgreyB Wskin1aB Wskin1bB

 (6.1)

where the output Grey contains the grey value representation of the input pixel, the
Skin1a and Skin1b outputs represent the components of the skin model. Since the
input pixel is represented using a red R, green G and blue B color component, the
weights matrix contains conversion weights for each component.

Equation 6.1 consists of 9 multiplications and 6 additions. This can be concluded
when rewriting the individual conversion equations. For example, the grey value is
calculated as shown in equation 6.2

Grey = R ∗WgreyR + G ∗WgreyG + B ∗WgreyB (6.2)

where R, G, and B represent the input pixel color components and WgreyR, WgreyG and
WgreyB represent the conversion weights for the grey scale conversion.

The input pixel components are multiplied with the corresponding weights and the
results are stored in three separate registers. The conversion weights matrix has been
implemented using programmable registers which can be modified at run-time.

The architecture of the color space conversion block is depicted in figure 6.3. As
can be seen in the figure, a single multiply-accumulate (MAC) unit is used. The MAC
multiplies two input operands and accumulates the results of the subsequent operations.
The implementation of the MAC uses the embedded hardware multipliers in the FPGA
to implement the multiplication. The controller is responsible for selecting the color and
weight components and storing the result in the appropriate output registers.

The three color components of the input pixels are represented as unsigned numbers
using 8 bits, ranging from 0 to 255. The conversion weights have been implemented
using 9 bits in 2’s complement format, ranging from -256 to 255. The color components
widths are extended to 9 bits (by appending a zero) to match the conversion weights
width. The color components and conversion weights are subsequently multiplexed into
the operand inputs of the MAC by the controller. The controller uses the First Data
(FD) and Next Data (ND) MAC inputs and Ready (RDY) and Ready For Data (RFD)
to control the operand loading and result storing process.

6.2.4 Neighborhood implementation

The uniform filter, local count, dilation and closing components present in the PPP
implement a 5x5 neighborhood operation. The output for these operations is determined
by examining the neighborhood of the corresponding input pixel. The neighborhood
operation scans the input image pixels with a kernel window on a row basis, starting at



6.2. PIXEL PROCESSING PIPELINE 39

R

(reg_rgb_r)

G

(reg_rgb_g)

B

(reg_rgb_b)

pixel

24 bit

8 bit8 bit8 bit

Multiplexer (rgb_mux)

Multiply Accumulate Unit

(cs_mac)

1a

1b

1c

2a

2b

2c

3a

3b

3c

M
u
ltip
le
x
e
r (w

g
t_
m
u
x
)

A B

Controller

(cs_load_control 

&  

cs_store_control)

FD ND

RDY RFD Q

result grey

(reg_result_grey)

result skin1a

(reg_result_skin1a)

result skin1b

(reg_result_skin1b)

Input pixel (RGB values)

Multiply weights

start reset

Output result registers

9 bit

9 bit

9 bit

9 bit

9 bit

9 bit

9 bit

9 bit

9 bit

17 bit17 bit17 bit

valid

9 bit sign 

extended 9 bit
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Figure 6.4: kernel scanning process

the first row (top left) as depicted in figure 6.4. Please note that the actual operation
depends on the implementation of the specific kernel logic and arithmetic.

Figure 6.5 depicts the implementation of the general 5x5 neighborhood operation.
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Figure 6.5: general structure of a 5x5 neighborhood operation

To implement the scanning behavior of the kernel window, pixels enter the window at
the bottom right. At the start of each pipeline cycle, all pixels in the window are shifted
one position left. Pixels being shifted outside the kernel window enter the local 4 channel
FIFO. After shifting one image row, these pixels are read from the fifo and reenter the
kernel window at the right shifted one row upwards. This effectively implements the
scanning process as depicted in figure 6.4. Note that since the kernel window logic
depends on the operation implemented, this logic is not shown in this figure.

The controller implements the pipeline protocol handling and additionally controls
the read and write signals of the FIFO. Initially, the first pixel of an image enters at
the bottom right position of the kernel. However, the output starts whenever the first
pixel is located in the center position of the kernel window. This initial latency has been
implemented by qualifying the output valid signal with a pixel counter.

The image boundary conditions represent an additional complexity and occur when
the kernel window should include non-existing ”pixels” outside the actual input image.
The implementation should account for these conditions by either replicating the near-
est existing pixels or setting the appropriate values to zero. In order to simplify the
implementation it was decided to set these pixel values to zero. This also prevents the
algorithm to detect false results at the border areas.

The binary erosion, dilation and closing operations and the uniform filter and local
count operations are all based on the above window scanning process. The following
sections therefore concentrate on the kernel logic implemented for these operations.
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6.2.5 Binary erosion, dilation and closing

For binary erosion and dilation (present in pipeline stage 9), the kernel logic remains quite
simple. The implementation of the dilation operation utilizes the logical OR function of
the entire neighborhood as shown in equation 6.3.

Output = W11 + W12 + W13 + W14 + W15 + ... + W55 (6.3)

where the pixels in the neighborhood of the input pixel are denoted as W11 for the top
left and W55 for the bottom right. The input pixel is represented with W33.

Similarly, the implementation of the erosion operation uses the logical AND of the
entire neighborhood as shown in equation 6.4.

Output = W11 •W12 •W13 •W14 •W15 • ... •W55 (6.4)

where the pixels in the neighborhood of the input pixel are denoted as W11 for the top
left and W55 for the bottom right. The input pixel is represented with W33.

Since the binary closing operation is defined as a binary dilation followed by a binary
erosion, the closing operation (present in pipeline stage 11) is implemented by cascading
instances of a dilation operation and an erosion operation. Similarly, the implementation
of a binary opening operation can be similarly achieved by cascading an erosion operation
and a dilation operation.

6.2.6 Convolution filter

The implementation of the convolution filter consists of a 5x5 neighborhood operation
with parameterizable kernel weights. The current implementation is restricted to positive
kernel weights of powers2 of 2. The motivation is that in this case the kernel operation can
be simplified to shifting instead of multiplying the pixel values. However, an advanced
implementation using multipliers allows use of arbitrary kernel weights but increases the
operation time and resource utilization.

The structure of the convolution filter kernel implementation is depicted in figure
6.6. It was decided to split the operation into three subsequent stages:

1. First stage: neighborhood pixel shifting (multiplication); shifts each neighboring
pixel left by the amount of bits specified by the kernel weight. This is depicted in
the figure by kernel window blocks with a pixel value input and a shifting amount
input. The actual shifting process is not shown but is assumed to take place in
these blocks.

2. Second stage: row wise accumulation; accumulates the results of the previous stage
in a row wise fashion. The outputs of the kernel window blocks in each row form
the inputs of the row accumulators.

2The current implementation allows for the following kernel weights: 0, 1, 2, 4, 8, 16, 32, 64, 128 and
256.
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Figure 6.6: (uniform) filter kernel implementation

3. Third stage: column wise accumulation and result shifting; accumulates the results
of the previous stage and shifts the result right by the amount of bits specified by
a configurable parameter. This allows a division of the result by a power of 2.

With this architecture the uniform filter (present in pipeline stage 9) can easily be
implemented by utilizing equal weights throughout the kernel. Furthermore, various
other filter types can be implemented by utilizing different filter weights and shifting the
output if necessary. For example, an approximate implementation of a gaussian filter
might be achieved by applying the appropriate filter weights.

6.2.7 Local count

The local count operation (present in pipeline stage 7) consists of a 7x7 neighborhood
operation, its structure is similar to the 5x5 neighborhood operation as discussed in
section 6.2.4.

The kernel implementation structure is depicted in figure 6.7 and consists of 7 7-
input lookup tables connected to a shared accumulator. The pixels of each window row
form the inputs to the corresponding one count lookup table. This lookup table contains
precalculated one count values for all possible input combinations. Since there are 7
inputs, 27 = 128 possible input combinations are encoded in the lookup table. The
outputs of the lookup tables are subsequently multiplexed into the operand input of the
accumulator. At the end of every processing cycle the accumulator contains the amount
of ones present in the neighborhood.
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Figure 6.7: local count filter kernel implementation

6.2.8 Remaining operations

The remaining processing blocks (addition/subtraction, multiplication, division and
threshold) will not be discussed in detail since these basically consist of standard math-
ematical operations extended with logic required by the pipeline protocol.

The addition, substraction, multiplication and division components are based on
functionality provided by the Xilinx Core Generator. This utility automatically generates
an efficient implementation of the respective operations in hardware. The threshold
components were similarly realized using standard greater or equal comparators.

The absolute difference component implements equation 3.11. It consists of a sub-
tractor with additional operand swapping logic. This logic swaps the input operands of
the subtractor to guarantee that the first operand always contains the largest operand.
Since the operands are positive (both represent grey scale values), the result will be
positive and thus represent the absolute difference between the two operands.

As mentioned in section 6.2.4, the uniform filter, local count and erosion and dila-
tion components introduce an initial latency. The pipeline registers in the same stage
therefore also need to introduce the exact same latency to produce synchronized output.
This is required to guarantee synchronized output of the different components in each
stage. For this purpose, the delaying pipeline ”register” was developed. This register
consists of a FIFO to compensate for the initial delay introduced by the components
mentioned. It only outputs a value if the other components residing in the same pipeline
stage produce a valid output.
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Table 6.1: XC2VP30 utilization summary

used total ratio

Slices 12,141 13,696 88%

Slice registers 11,045 27,392 40%

4-input LUTs 17,459 27,392 63%

Block RAM 124 136 91%

6.2.9 Implementation results

The accelerator architecture, the pixel processing pipeline and the image processing com-
ponents have been implemented using Xilinx Platform Studio 7.1i and Xilinx Integrated
Software Environment 7.1i and synthesized using Xilinx Synthesis Tool. The accel-
erator project files, including the PowerPC software source code and pixel processing
pipeline VHDL files, can be found on the accompanying CDROM. Appendix E provides
an overview of the files on this CDROM.

A summary of the FPGA resources used by the accelerator is shown in table 6.1. The
total utilization of the logic resources (slices) is 88% while only 37% are required for the
implementation of the pixel processing pipeline. The remaining resources are used by
the accelerator architecture. The high utilization of block RAM is due to the instruction
and data memory space needed for the PowerPC processor. A detailed discussion of the
resource utilization of the individual accelerator components is available in appendix D.

6.3 Summary

In the chapter we presented the implementation of both the processor functionality and
the pixel processing pipeline and its components. The implementation method allows
for modification of the operations in next versions of the algorithm. The parameters of
the operations can be modified at run-time by updating the parameter registers of the
pixel processing pipeline.



System verification and
evaluation 7
The component implementations as discussed in chapter 6 have been evaluated and tested
in order to verify their correctness. This chapter presents the verification and test results
of these components. First, the test results of the individual components are discussed,
then the pixel processing pipeline verification results and the overall system test results
are presented.

7.1 Image processing components

The image processing components were individually verified before integrating them in
the complete pixel processing pipeline. The verification methodology involved compar-
ison of the hardware generated output with software generated output. The simulated
hardware output has been achieved through behavioral simulation1 of the components
and writing the output to a text file. The software output was generated by implementing
the operations in software using the OpenCV [17] image processing library and writing
the output to a text file. The resulting text files were read by a comparison program and
the differences were written to another text file. The simulation and software outputs
and the differences were converted into images to allow visible inspection. The following
subsections discuss the verification results of the components.

7.1.1 Color space conversion

Figure 7.1 depicts the results from the color space conversion. The source RGB image
(a) has been converted to grey scale by software (b) and by simulation of the color
space conversion component (c) based on equation 3.8. Differences between software
and hardware simulation are shown in (d). It should be noted that the differences have
been scaled by a factor of 50 to improve visibility, the grey areas therefore represent a
difference in pixel values of 1 between the hardware and the software.

The figure shows that in certain areas differences are present. These differences can
be attributed to the error in the calculation method utilized by the color space conversion
component. For grey scale conversion the following calculation is performed:

Grey =
R ∗ 85 + G ∗ 85 + B ∗ 85

256
(7.1)

where Grey is the resulting grey scale output, R, G and B represent the input pixel color
components. The grey scale conversion averages the color components by multiplying

1Using a hardware description language, components are developed by describing their behavior at
the level of clock cycles. Simulation at this level is denoted behavioral simulation. We used the Modelsim
SE 6.0a software package for behavioral simulation.

45



46 CHAPTER 7. SYSTEM VERIFICATION AND EVALUATION

ba

dc

Figure 7.1: color space conversion results; original (a), software output (b), hardware
simulation output (c) and difference between software and hardware (d)

each component with a factor of 1/3. In our implementation we approximated this factor
by using a factor of 85/256 ≈ 1/3. First, the individual color components (R, G, and
B) are multiplied by 85 and the results are accumulated. Then, an 8 bit right shift
operation, which corresponds to a division by 256, is performed to yield the grey scale
conversion result Grey. It can therefore be seen that the result is an approximation with
the following error factor:

∆E = 1− 3 ∗ 85
256

=
1

256
(7.2)

where ∆E is the error factor. This error factor becomes notable in the higher intensity
areas of the image as can be seen in figure 7.1(d). The error in higher intensities is larger
and thus results in differences because of truncation in hardware.

7.1.2 Binary dilation, erosion and closing

The dilation, erosion and closing components have been tested using a binary input
image. Figures 7.2, 7.3 and 7.4 depict the respective simulation results. The input
images are depicted in (a), the software generated outputs in (b), the hardware simulation
outputs in (c) and the differences between the software output and simulation output
are depicted in the (d) sections of these figures.

The dilation results in figure 7.2 do not show differences between the software output
and the hardware output. We can therefore conclude that the hardware produces the
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a b

c d

Figure 7.2: binary dilation results; original (a), software output (b), hardware simulation
output (c) and difference between software and hardware (d)

correct results.
The erosion results in figure 7.3 do not show differences between the software output

and the hardware output. However, as mentioned in section 6.2.4, the PPP components
assume a value of 0 at the image borders whereas software algorithms often replicate the
nearest border pixels. This might result in differences between the software output and
the hardware output. It occurs in the closing results depicted in figure 7.4. Since the im-
plementation of the erosion consists of the logical AND of all pixels in the neighborhood,
it will always generate output of zero at the border areas. The software output however
replicates the border pixels and thus generates a white output at the border areas. For
our application we consider this acceptable since the border areas of the input image are
of less interest.

7.1.3 Uniform filter

The implementation of the uniform filter was generalized into a convolution operation
for 8 bit pixel values with a configurable 5x5 kernel. Our implementation of the uniform
filter uses weights of 1. The results of the simulation are shown in the figure 7.5.

Apart from the border areas, the hardware simulation produces correct output. The
differences shown in (d) between the hardware simulation output (c) and the software
generated output (b) indicates differences in the border areas of the image. The reason
can be attributed to the fact that the PPP component handles the border situations
differently. Whereas the software algorithm replicates the input pixel values outside the
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a b

c d

Figure 7.3: binary erosion results; original (a), software output (b), hardware simulation
output (c) and difference between software and hardware (d)

a b

c d

Figure 7.4: binary closing results; original (a), software output (b), hardware simulation
output (c) and difference between software and hardware (d)
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a b

c d

Figure 7.5: uniform filter results; original (a), software output (b), hardware simulation
output (c) and difference between software and hardware (d)

borders, the PPP component sets these values to 0.

7.1.4 Local count

Simulation results for the local count operation are depicted in figure 7.6. The output
of both software (b) and hardware simulation (c) have been increased by a factor of 5 in
order to aid visibility.

Apart from the border areas, the hardware simulation produces correct output. Also
for this component the border areas differ with the software implementation because of
the fact that the component assumes values of 0 near these boundaries. In our imple-
mentation this results in darker borders in the output image.

7.1.5 Remaining operations

The simulation results for the threshold operation can be found in figure 7.7. The
threshold value was set to 200, the results show that the hardware simulation (c) produces
output identical to the software implementation (b) since there are no differences visible
in (d).

The remaining operations present in the PPP have been verified through testing of
all possible input combinations. With the exception of the division component, all com-
ponents generate flawless results. The division component results in minor truncation
errors because of the fixed size of the fractional remainder. Since the implementation
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a b

c d

Figure 7.6: local count results; original (a), software output (b), hardware simulation
output (c) and difference between software and hardware (d)

a b

c d

Figure 7.7: threshold results; original (a), software output (b), hardware simulation
output (c) and difference between software and hardware (d)
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a b

c d

Figure 7.8: pixel processing pipeline skin segmentation results; original (a), software
output (b), hardware simulation output (c) and difference between software and hardware
(d)

uses 8 bits for the fractional remainder, the maximum error in the remainder is 2−8.
Increasing the amount of bits for the remainder would decrease the maximum error.
However, the throughput will be lower since the computation of the remainder then
requires more clock cycles.

7.2 Pixel Processing Pipeline

The implementation of the pixel processing pipeline comprises the components as dis-
cussed in section 6.2.1. After integrating these components, a manual stage by stage
verification using behavioral simulation was performed. Then the simulation of process-
ing a complete input image was performed. The verification results of this simulation are
depicted in figure 7.8. The source image is shown in (a), the software generated output
in (b) and the hardware simulation output in (c).

The difference comparison (d) shows that in certain cases the skin segmentation
from the PPP differs in the output generated by the software. The differences can be
attributed to the fact that the color space conversion and division components contain
a fixed precision which introduce minor truncation errors in the conversion weights.
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Figure 7.9: Software algorithm performance

7.3 Integral system performance evaluation

To perform integral system testing we used a stand alone workstation based on a 2,8 GHz
Pentium 4 processor with 1024MB memory running Windows XP Pro as our reference
and measurement system. The system setup additionally consists of a Philips ToUCam
Pro webcam.

First the performance of the algorithm software implementation was estimated. Fig-
ure 7.9 shows both the CPU utilization and the achieved frame rate. As can be observed
from the measurements, the software version is unable to achieve the real-time perfor-
mance criterion of 25 frames per second. It achieves a frame rate close to 14 frames per
second at a CPU utilization rate of 100%.

Figure 7.10 shows the results of the application demonstrator utilizing the hardware
accelerator. The CPU utilization rate varies between 60% to 70% while the frame rate
remains steady around 20 fps. This is a considerable improvement compared to the
software version since the CPU utilization rate is significantly lower while yielding a
higher frame rate. However, the real-time performance criterion of 25 frames per second
is not met in the current implementation. Since the CPU utilization is not yet at 100%,
the cause of the bottleneck remains in the network communication. However, the exact
cause remains to be investigated.

The frame rate speedup gained with our hardware accelerated implementation is
20/14 ≈ 1.43. Moreover, the CPU utilization is 30% to 40% lower compared to the
software implementation using the same computing system. Thus it allows for higher
level applications such as hand gesture recognition to process the skin segmented output.

Future research needs to be performed to identify the exact network bottleneck of the
current implementation which limits the achieved frame rate to 20 frames per second.
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Figure 7.10: Hardware implementation performance

7.4 Conclusion

The evaluation as presented in this chapter shows the correct operation of the different
components involved in the proposed accelerator system. Through behavioral simula-
tion and testing of the implemented components and the pixel processing pipeline we
verified that the skin segmentation algorithm has been successfully implemented in hard-
ware. A demonstration system setup shows that the accelerator achieves a speedup of
approximately 1.43 compared to its software implementation. Moreover, the CPU uti-
lization rate was reduced from 100% to approximately 60% to 70%. Future work should
concentrate on increasing the achieved frame rate and image sizes.
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Conclusions and Future Work 8
This chapter concludes the discussion of this thesis project and provides suggestions for
possible future work.

8.1 Conclusions

This project focused on the design and implementation of an FPGA accelerator for
real-time skin segmentation. This report discussed the architectural exploration, design,
verification and evaluation of both the accelerator architecture and its components.

We implemented the skin segmentation algorithm in hardware in order to meet the
real-time requirements of 25 frames per second at an image resolution of at least 320x240
pixels. The demonstrator developed during this project achieves a frame rate of only
20 frames per second and a resolution of 320x240 pixels. The speedup gained with our
hardware accelerated implementation is 1.43. Moreover, the CPU utilization is 30% to
40% lower compared to the software implementation using the same computing system.
Thus it allows other software layers such as hand gesture recognition to more exactly
interpret the skin segmented output.

Our design utilizes approximately 88% of the resources available in the XC2VP30
FPGA. Only 37% are required by the implementation of the pixel processing pipeline,
the remaining resources are used by the accelerator architecture. The PowerPC processor
operates at a clock frequency of 300 MHz while the pixel processing pipeline operates at
a clock frequency of 100 MHz.

Besides the speedup mentioned above, our accelerator provides a portable solution
due to the used standard network interface. This allows our accelerator to be used with
a wide range of host PC’s (both desktops and laptops).

8.2 Future work

Future work on this accelerator should concentrate on reducing the packet loss and
the communication overhead. Furthermore, the design could also be implemented on a
gigabit ethernet platform (such as presented in [13]) to achieve an input video resolution
of 640x480 pixels at a frame rate of 25 frames per second.

It should be noted that the hardware demonstration application has not yet been
optimized for execution speed. Several optimizations related to network protocol han-
dling (as mentioned in amongst others [5], [10] and [16] ) may be employed to reduce the
communication overhead currently present within the demonstration application. Fur-
thermore, research on possible network bottlenecks need be done to increase the frame
rate of 20 frames per second to at least 25 frames per second.
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A (simple) data compression algorithm can be employed to reduce the required net-
work bandwidth. The overhead of such algorithm can be handled by the second PowerPC
processor present in the FPGA. Furthermore, the following items specifically related to
the pixel processing pipeline may be addressed in the future:

• Utilization of a higher clock frequency for the pixel processing pipeline. Currently,
a clock frequency of 100 MHz is employed since this frequency is also used for the
PLB bus. Higher clock frequencies might be possible but require specific design
considerations regarding the interface with the PLB bus.

• The color space conversion component has been implemented with a shared
multiply-accumulator unit to save FPGA resources. It is desirable to remove this
sharing by instantiating three multiply-accumulator units to improve the through-
put of the color space conversion component.

• Implementation of a ”start of frame synchronization” for the local operations (uni-
form filter, local count, dilation and closing) present in the pipeline. When a pixel
packet is lost during transmission, the entire image line will be lost and thus will
not be processed by the pixel processing pipeline. The local operations however
assume that all pixel packets arrive consecutively in order to determine when the
image boundaries have been reached. When a packet is lost the internal counters
will incorrectly determine when the image boundaries have been reached. Thus
the local operations need to detect the start of a new frame to ’reset’ their internal
image boundary detection counters.
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Skin segmentation algorithm A
One of the first stages involved in the current gesture recognition system consists of
identifying the image regions containing skin colors. This process is denoted ”skin seg-
mentation”. The algorithm employed in this project is proposed in [22] and can de-
scribed as depicted in figure A.1. The algorithm in this figure is annotated with the
basic mathematical operations involved in each stage of the algorithm.

The algorithm produces an absolute difference output (for change detection) and a
skin segmented output (for hand gesture recognition). In figure A.1, the left ”branch”
denotes the operations required to produce the absolute difference output, the middle and
right ”branches” denote the operations required to produce to skin segmented output.
The following paragraphs discuss the change detection and skin segmentation parts of
the algorithm. The numbers indicated correspond to the components in figure A.1.

A.1 Change detection

The algorithm provides an indication of change between two consecutive video frames.
This is accomplished by calculating the absolute difference between the frames on a pixel
by pixel basis. First, the input RGB pixel is converted to a grey scale pixel (1). Then the
absolute difference between two corresponding pixels in consecutive frames is calculated
(14). This can be accomplished by buffering the pixels in an image buffer (11). The
resulting absolute difference image is smoothed using a uniform filter (16). A threshold
(18) is applied to the smoothed image with which the sensitivity of the change detection
can be regulated.

A.2 Skin segmentation

The skin model consists of two components, these are calculated using two color space
conversions (2, 3). From each component a corresponding mean value is subtracted (4,
5). The results are then squared (7, 8) and added (9) to form a density compensated
dissimilarity value. The grey value of the input pixel is also squared (6) before it divides
(10) the density compensated dissimilarity. The result provides an indication of the skin
likelihood and is thresholded using two different threshold values (12, 13). The second
threshold (13) output is processed with a local count filter (15) followed by a threshold
(17). This effectively filters the output of (13) of small regions. It is processed using
a dilation (19) to thicken the contours of the resulting areas of (17). The logical AND
function of the dilation (19) result and the first threshold (12) is then processed with a
closing (20) operation to yield the skin segmented output.
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Figure A.1: skin segmentation algorithm



PPP communication packets B
This appendix provides a description of the pixel and configuration packets as utilized
by the system. The first section discusses the ethernet header structure, then the pixel
packet and configuration packet structures are discussed.

B.1 Ethernet packet header structure

The packet which is transmitted over the network connection comprises several protocol
headers. Figure B.1 depicts the headers utilized in the current version of the system.

The first section of the header data consists of the ethernet header layer. It requires
both a destination and source hardware addresses, (Media Access Control(MAC) ad-
dress), to be present. Furthermore, at this layer it is also required to indicate which type
of protocol is utilized. In all cases this field is set to Internet Protocol (IP).

The second section contains the IP layer header data and contains various IP control
and status fields. Furthermore, it also contains the source and destination IP addresses
and it indicates which protocol is utilized in the subsequent section. The current system
utilizes the UDP protocol.

In the third section the UDP protocol headers are present. This header only contains
the source and destination socket ports, the total length of the remaining data section and
an optional UDP checksum. As mentioned in chapter 6, this checksum is permanently
set to 0 in order to reduce the calculation overhead.

The subsequent section of the ethernet packet is determined by the type of packet
being transmitted. This can either be a pixel packet or a configuration packet, both will
be discussed in the next sections.

Content:

offset 0 1 2 3 4 5 6 7

0 MAC

8 VER + IHL  TOS MAC/IP

16 TTL protocol=UDP IP

24 IP

32 IP/UDP

40 … … … … … … UDP

byte number

Destination MAC address Source …

… MAC address Protocol type (IP/ARP)

total datagram length packet identification flags + fragmentation

header checksum source IP address

checksum = 0

destination …

… IP address source port destination port length (header+data)

Figure B.1: common ethernet packet header structure
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40 IP/-

48 -

56 -

64 0xFF type = 0x01 camera reserved 0XFF reserved accelerator

72 0xFF reserved 0xFF reserved accelerator

80 pixel data

|

240

checksum = 0

reserved

frame number

column number (x)line number (y)

reserved

reserved

pixel data

Figure B.2: pixel packet header structure

B.2 Pixel packet structure

Pixels are communicated using pixel packets as depicted in figure B.2. The indicated
checksum field belongs to the UDP section of the packet.

The first 24 bytes are reserved in order to align the start of the pixel data at a 64 bit
offset address. This requirement is posed by the PLB bus DMA protocol [6].

Then the PPP packet type is indicated, a pixel packet is indicate using type 1. The
camera ID indicates which camera this pixel packet belongs to. The frame number
contains the sequence number of the frame to which the pixels belongs to. The line
number and column number indicate the x and y coordinates of the first pixel present
within the pixel data section. Reserved bytes are also present within the packet to allow
a modified implementation of the header in the future.

The pixel data can either contain input pixels (transferred from the host PC to the
accelerator) or output pixels (transferred from the accelerator to the host PC). The input
pixels are represented as depicted in the following table.

Grey T−1 Blue Green Red

Table B.1: Input pixel format

where Grey T−1 represents the grey value of the corresponding pixel in the previous
frame, Blue, Green and Red represent the blue, green and red color components of the
input pixel.

The output pixels are represented as depicted in the following table.

0 Change Grey T Skin

Table B.2: Output pixel format

where Change represents the change estimation of the processed pixel, Grey T represents
the grey value of the processed pixel and Skin represent the skin segmented output of
the processed pixel. The empty (zero) field was added to ensure that the output pixel
packets have the same size as the input pixel packets. This simplifies the software on
both the PowerPC processor and the host PC.
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Figure B.3: configuration packet header structure

B.3 Configuration packet structure

The structure of a configuration packet is depicted in figure B.3. To indicate that the
packet contains configuration data, the type field should be set to 2. The subsequent
three section then contain the color space conversion weights. Currently the implemen-
tation allows for 9 bit signed conversion weights.

The uniform filter weights are presented using a single byte per weight. Each weight
indicates either a multiplication factor of zero (0) or a shift left value (1-8) for the uniform
filter kernel operation. The uni shift value indicates the amount of bits the result of the
kernel operation should be shifted right.

Two division threshold values are present: the threshold value required before the
local count (threshold 2 lccnt) operation and the threshold value which is directly con-
nected to the AND port before the closing operation. Both threshold values consist of an
integer quotient part and an 8-bit fractional remainder part. This remainder therefore
provides an accuracy of 1/256th.

Both uniform threshold value and local count threshold value are present at the end
of the configuration data packet.
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PPP slave registers C
The pixel processing pipeline contains 16 slave registers which are directly addressable
by the processor. These registers are used as programmable parameters of the pipeline
components an can be changed during run-time by sending configuration packets from the
host PC to the system. Figure C.1 provides an overview of the currently employed slave
registers and their respective function. The organization corresponds to the structure of
the configuration packet structure as discussed in appendix B.

mean 2 mean 1

skin1a3
skin1b3 skin1b2 skin1b1

conv5_w24conv5_w25conv5_w31conv5_w32

63

grey1agrey1bgrey1c

47485556 2324
lower

323940
upper

078151631

conv5_w11conv5_w12conv5_w13conv5_w14

skin1a1skin1a2

conv5_w22conv5_w23 conv5_w15conv5_w21
conv5_w33conv5_w34conv5_w35conv5_w41

conv5_w54
shamt conv5_w55

conv5_w51conv5_w52conv5_w53 conv5_w42conv5_w43conv5_w44conv5_w45

div tr1_remddivision threshold 1div tr2_remddivision threshold 2 (to local count)
uniform filter threshold local count threshold

Figure C.1: PPP slave register organization

The following table provides an overview of the parameters, their function, range and
default values.
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Parameter
name

Description Range Default
value

grey1a Grey scale conversion weight for the red
color component

0 - +255 85

grey1b Grey scale conversion weight for the
green color component

0 - +255 85

grey1c Grey scale conversion weight for the
blue color component

0 - +255 85

skin1a1 Skin model 1a conversion weight for the
red color component

-256 -
+255

-61

skin1a2 Skin model 1a conversion weight for the
green color component

-256 -
+255

245

skin1a3 Skin model 1a conversion weight for the
blue color component

-256 -
+255

-185

skin1b1 Skin model 1b conversion weight for the
red color component

-256 -
+255

50

skin1b2 Skin model 1b conversion weight for the
green color component

-256 -
+255

-120

skin1b3 Skin model 1b conversion weight for the
blue color component

-256 -
+255

-162

conv5 w11 Uniform filter shifting weight 1,1 (top
left)

0 - 256 1

conv5 w12 Uniform filter shifting weight 1,2 0 - 256 1
conv5 w13 Uniform filter shifting weight 1,3 0 - 256 1
conv5 w14 Uniform filter shifting weight 1,4 0 - 256 1
conv5 w15 Uniform filter shifting weight 1,5 (top

right)
0 - 256 1

conv5 w21 Uniform filter shifting weight 2,1 0 - 256 1
...

conv5 w55 Uniform filter shifting weight 5,5 (bot-
tom right)

1 - 256 1

shamt Uniform filter result shift right amount 0 - 8 0
mean1 Mean subtract value for skin1a1 -256 -

+255
-30

mean2 Mean subtract value for skin1a2 -256 -
+255

-6

division
threshold
1

Division quotient threshold to AND 0 - 65536 0

div tr1 remd Division fractional remainder threshold
to AND

0 - 255 4

division
threshold
2

Division quotient threshold to local
count

0 - 65536 0

div tr2 remd Division fractional remainder threshold
to local count

0 - 255 1

local count
threshold

Threshold after local count 0 - 65536 15

uniform filter
threshold

Threshold after uniform filter 0 - 65536 1250
(50*25)

Table C.1: PPP Parameter Descriptions



Implementation data D
This appendix describes the implementation results which provide insights into the re-
source utilization and timing of the individual pixel processing pipeline components. We
implemented the accelerator architecture and its components using the Xilinx Platform
Studio version 7.1i and the Xilinx Integrated Software Environment 7.1i. The synthesis
tool used was Xilinx Synthesis Tool (XST) version 7.1.02i H.42.

The Virtex 2 Pro FPGA contains an array of interconnected Configurable Logic
Blocks (CLB’s). Each CLB contains 4 slices and 2 tri-state buffers. The slices are
equivalent and contain amongst others 2 function generators and 2 storage elements.
The function generators can be configured as either 4-input Lookup-Tables (LUTs), 16-
bit shift registers or 16 bit Random Access Memory (RAM). The storage elements can
be configured as D-type flip flops or level sensitive latches. The FPGA also contains
Block RAM elements which can be used as dual port RAM.

The following tables present implementation details of the accelerator, pixel process-
ing pipeline and the individual image processing components. The amount of finite state
machines (FMSs), adders/subtractors and look-up tables indicated in these tables are
results gained from HDL synthesis and do not necessarily present the low level synthesis
results. The presented results assume an implementation with input image parameters
of 320 width and 240 height. The resource utilization details for a 640x480 implementa-
tion are similar, the initial delay figures however differ. Resource utilization percentages
indicate the utilization of the Virtex 2 Pro-30 [29] FPGA used in our implementation
platform.

Accelerator system
Resource utilization
Slices 12138 (88%)
Flip Flops 11045 (40%)
4-input LUTs 17462 (63%)
Block RAM 124 (91%)
Multipliers 4 (2%)

Table D.1: implementation metrics for accelerator system

Table D.1 shows that the accelerator system uses 88% of the available slices and
40% of the available flip flops. Approximately 63% of the occupied slices are used as
4-input LUTs. Furthermore, the accelerator uses 91% of the available Block RAM, the
majority of which can be attributed to both instruction and data memory required by the
PowerPC processor. The current implementation requires 64 KB of instruction memory
and 128 KB of data memory. Since a single Block RAM can contain a maximum of
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2,25 KB [29], the amount of Block RAM resources used by the PowerPC memories is
(128 + 64)/2, 25 ≈ 86.

Pixel Processing Pipeline
Resource utilization
Slices 5201 (37%)
Flip Flops 5751 (20%)
4-input LUTs 9096 (33%)
Block RAM 21 (15%)
HDL Synthesis
FSMs 32
ROMs 111
Adders/Subtractors 29
Counters 15
Accumulators 2
Registers 2017
Latches 1
Comparators 16
Multiplexers 178
Logic shifters 2
Xors 96

Table D.2: implementation metrics for pixel processing pipeline

Table D.2 summarizes the resource utilization of the pixel processing pipeline. Ap-
proximately 37% of the available slices, 20% of the flip flops and 33% of the LUTs are
used by the pixel processing pipeline. Furthermore, 15% of the available Block RAM is
used.

The HDL synthesis results indicate the logic components involved in the pixel process-
ing pipeline. It shows that 32 Finite State Machines (FSMs) have been inferred. These
FSMs result from VHDL processes often performing a controlling function. The table
shows that 111 ROMs have been synthesized, these are inferred from fixed lookup struc-
tures. Furthermore, 29 Adders/Subtractors, 15 Counters and 2 Accumulators have been
inferred. Along with the 16 Comparators, these are often involved in supporting the
FSMs.

Table D.3 shows the implementation and timing details of the local count component.
The timing details show that this component requires 11 clock cycles to complete its
operation. Consequently, the local count will produce an output 11 clock cycles after
the start of a new pipeline cycle. However, this will not be the case during the first
pipeline cycles. The initial delay indicates that initially 964 pipeline cycles with valid
input to the component must occur before valid output is produced. This initial delay is
typical for all components based on the neighborhood operation principle as explained
in section 6.2.4. The reason is that these components must shift several image lines into
their internal buffers before being able to calculate an output value.

The table also indicates that several Logicores are used in the design. These Intel-
lectual Property (IP) cores are library components developed by Xilinx which can be
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7x7 local count
Timing
Required clock cycles 11
Initial latency 964
Resource utilization
Slices 415 (3%)
Flip Flops 215 (0%)
4-input LUTs 792 (2%)
BRAMs 1 (0%)
HDL Synthesis
FSMs 1
ROMs 7
Adders/Subtracters 1
Counters 2
Registers 71
Multiplexers 1
Logicores
Accumulator
Equal comparator
Greater Equal comparator
FIFO

Table D.3: timing and implementation metrics for 7x7 local count component

used as a black box component in the design. In this case, the component consists of
an Accumulator (accumulating subsequent input values), Equal Comparator (compares
two inputs and sets its output when these are equal), Greater Equal Comparator and
First In First Out (FIFO) buffer.

For the following tables, the resource utilization, HDL synthesis results and the timing
and Logicore details will not be explained further since these can be explained similarly
to the discussions above.
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Absolute difference
Timing
Required clock cycles 4
Initial latency 0
Resource utilization
Slices 46 (0%)
Flip Flops 53 (0%)
4-input LUTs 65 (0%)
HDL Synthesis
FSMs 1
Registers 10
Logicores
Greater Equal comparator
Adder/Subtractor

Table D.4: timing and implementation metrics for absolute difference component

Binary closing
Timing
Required clock cycles 3
Initial latency 1286
Resource utilization
Slices 334 (2%)
Flip Flops 260 (0%)
4-input LUTs 627 (2%)
HDL Synthesis
FSMs 2
Adders/Subtracters 2
Counters 4
Registers 70
Multiplexers 2
Logicores
none
Components
Erosion/Dilation (2x)

Table D.5: timing and implementation metrics for binary closing component
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5x5 uniform filter
Timing
Required clock cycles 9
Initial latency 645
Resource utilization
Slices 1751 (12%)
Flip Flops 1156 (4%)
4-input LUTs 3253 (11%)
BRAMs 2 (1%)
HDL Synthesis
FSMs 3
Adders/Subtracters 1
Counters 2
Registers 110
Multiplexers 2
Logicores
Accumulator (2x)
Equal comparator
Greater Equal comparator
FIFO

Table D.6: timing and implementation metrics for 5x5 uniform filter component

color space conversion
Timing
Required clock cycles 21
Initial latency 0
Resource utilization
Slices 109 (0%)
Flip Flops 117 (0%)
4-input LUTs 175 (0%)
HDL Synthesis
FSMs 2
Registers 20
Multiplexers 2
Logicores
Multiply accumulator

Table D.7: timing and implementation metrics for color space conversion component
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erosion/dilation
Timing
Required clock cycles 3
Initial latency 643
Resource utilization
Slices 237 (1%)
Flip Flops 162 (0%)
4-input LUTs 444 (1%)
BRAMs 1 (0%)
HDL Synthesis
FSMs 1
Adders/Subtracters 1
Counters 2
Registers 35
Multiplexers 1
Logicores
Equal comparator
Greater Equal comparator
FIFO

Table D.8: timing and implementation metrics for erosion/dilation component

24-bit signed adder
Timing
Required clock cycles 3
Initial latency 0
Resource utilization
Slices 58 (0%)
Flip Flops 103 (0%)
4-input LUTs 32 (0%)
HDL Synthesis
FSMs 1
Registers 8
Logicores
Signed adder/subtracter

Table D.9: timing and implementation metrics for 24-bit signed adder component
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19-bit unsigned divider
Timing
Required clock cycles 11
Initial latency 5
Resource utilization
Slices 571 (4%)
Flip Flops 674 (2%)
4-input LUTs 1009 (3%)
HDL Synthesis
FSMs 1
Counters 1
Registers 15
Logicores
Pipelined divider
Greater Equal comparator

Table D.10: timing and implementation metrics for 19-bit unsigned divider component

16-bit signed multiplier
Timing
Required clock cycles 4
Initial latency 0
Resource utilization
Slices 78 (0%)
Flip Flops 136 (0%)
4-input LUTs 8 (0%)
Mult18x18s 1 (0%)
HDL Synthesis
FSMs 1
Registers 11
Logicores
Signed multiplier

Table D.11: timing and implementation metrics for 16-bit signed multiplier component
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32-bit pipeline register
Timing
Required clock cycles 2
Initial latency 0
Resource utilization
Slices 39 (0%)
Flip Flops 68 (0%)
4-input LUTs 12 (0%)
HDL Synthesis
FSMs 1
Registers 6
Logicores
None

Table D.12: timing and implementation metrics for 32-bit pipeline register component

32-bit threshold
Timing
Required clock cycles 3
Initial latency 0
Resource utilization
Slices 56 (0%)
Flip Flops 69 (0%)
4-input LUTs 37 (0%)
HDL Synthesis
FSMs 1
Registers 7
Logicores
Greater Equal comparator

Table D.13: timing and implementation metrics for 32-bit pipeline register component
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1-bit delaying pipeline register
Timing
Required clock cycles cycles reference component+1
Initial latency latency reference component
Resource utilization
Slices 40 (0%)
Flip Flops 40 (0%)
4-input LUTs 76 (0%)
BRAMs 1 (0%)
HDL Synthesis
FSMs 1
Registers 8
Logicores
None

Table D.14: timing and implementation metrics for 1-bit delaying pipeline register com-
ponent

16-bit delaying pipeline register
Timing
Required clock cycles cycles reference component+1
Initial latency latency reference component
Resource utilization
Slices 48 (0%)
Flip Flops 55 (0%)
4-input LUTs 40 (0%)
BRAMs 1 (0%)
HDL Synthesis
FSMs 1
Registers 8
Logicores
None

Table D.15: timing and implementation metrics for 16-bit delaying pipeline register
component
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Design files overview E
The project files are organized into the following categories: accelerator hardware and
software files, individual pipeline components files, verification software files and demon-
stration software files. The organization of the files in these categories will be discussed
in the following sections.

E.1 Accelerator project

The accelerator project files can be found in the \Accelerator directory on the CDROM
and are contained within a Xilinx Platform Studio project. The main project file is
system.xmp and can be loaded into the software environment. Table E.1 lists the im-
portant directories and files of the accelerator project directory.

E.2 Pipeline components

Although the design files of the pixel processing components are contained within the
accelerator project directory, these files are also available as individual projects. This
was used for the design and simulation of the individual components. Table E.2 lists the
directories for these components.

E.3 Verification software

The individual pixel processing pipeline components have been simulated and verified
using comparison software. Different verification software has been developed for each
component. The directory \Verification contains these projects, each project is devel-
oped using Visual Studio C++ Express. The verification results can be found in the
directory \Verification\verification results\*.

E.4 Demonstration software

The demonstration software consists of two projects. The first project comprises a
software equivalent version of the pixel processing pipeline (PPP Software Demo). Its
performance is used as a reference to measure the speedup gained when utilizing the
accelerator (demo1 ). The second project comprises a demonstration application using
the accelerator. Both projects are implemented using Visual Studio C++ Express and
are based on the Microsoft .NET platform. There was no specific reason to use this plat-
form, other than that it is required by the Visual Studio Software to develop applications
with a graphical user interface. The software equivalent project files can be found in the
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Accelerator project files
Main directory \Accelerator\
system.xmp Xilinx Platform Studio Project file
system.log System implementation flow log file
system.mhs Hardware description file, states the com-

ponents and their respective parameters
and ports

system.mss Software description file, states the oper-
ating system and drivers used

drivers\pixelpipeline v1 00 a\ Automatically generated test driver for
the pixel processing pipeline, only pro-
vides test routines

IMPACT PROJECTS\* IMPACT tool project files, used to pro-
gram the Flash PROM with the acceler-
ator configuration

pcores\pixelpipeline v1 00 a\
data\pixelpipeline v2 1 0.bbd

Black Box Definition file, contains the list
of netlist files of the Logicores used in the
accelerator

pcores\pixelpipeline v1 00 a\
data\pixelpipeline v2 1 0.pao

Peripheral Analysis Order file, contains
the ordered list of VHDL files used in the
project.

pcores\pixelpipeline v1 00 a\
devl\bfmsim\*

Contains simulation files required for Bus
Functional Simulation (BFM). Used to
simulate the bus interaction of the pixel
processing pipeline and the other bus
connected components

pcores\pixelpipeline v1 00 a\
hdl\vhdl\*.vhd

Contains the VHDL files of the pixel
processing pipeline and its components.

pcores\pixelpipeline v1 00 a\
hdl\vhdl\PPP ISE.ise

Xilinx ISE project file for development
and simulation of the pixel processing
pipeline

pcores\pixelpipeline v1 00 a\
hdl\vhdl\user logic.vhd

Top level design file of the pixel process-
ing pipeline

pcores\pixelpipeline v1 00 a\ netlist\* Contains the logicores netlists
PPP Main\* Contains the software files for the Pow-

erPC processor. The main software file
is main.c and contains the initialization
code. The additional files contain func-
tionality for network protocol handling
(IP, UDP, ARP, ETH and ICMP), inter-
rupt initialization (int init) and interrupt
handling (handler send, handler receive).

Table E.1: overview of important accelerator project directories and files
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Pipeline components files
Main directory \Components\
absdiff\* Absolute difference component; project

file, design files and simulation files
closing5\* Closing component; project file, design

files and simulation files
conv5\* General 5x5 Convolution component;

project file, design files and simulation
files

csconv\* Color Space Conversion component;
project file, design files and simulation
files

erodil5\* Erosion/Dilation component; project file,
design files and simulation files

localcount\* 7x7 Local Count component; project file,
design files and simulation files

padds24\* 24-Bit Signed Adder component; project
file, design files and simulation files

pdelay1\* 1-Bit Delaying Pipeline Register compo-
nent; project file, design files and simula-
tion files

pdelay1 16\* 1-Bit Delaying Pipeline Register compo-
nent (FIFO depth of 16), design files and
simulation files

pdelay16\* 16-Bit Delaying Pipeline Register compo-
nent; project file, design files and simula-
tion files

divu19\* 19-Bit Unsigned Divider component;
project file, design files and simulation
files

pmults16\* 16-Bit Signed Multiplier component;
project file, design files and simulation
files

preg32\* 32-Bit Pipeline Register component;
project file, design files and simulation
files

pthreshold32\* 32-Bit Threshold component; project file,
design files and simulation files

verification results\* Verification results of the individual com-
ponents

Table E.2: overview of important accelerator project directories and files
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directory \Software\PPPSoftwareDemo, the accelerator demonstration project files can
be found in the directory \Software\demo1.

E.5 Miscellaneous

The CDROM also contains miscellaneous files. The directory \Miscellaneous\TestImages
contains the original source images which have been used to verify the hardware compo-
nents. The directory \Miscellaneous\makeECFmodel contains the Matlab program for
initializing the Accelerator parameters. It will generate an output file c : \pppparam.txt
which contains the parameters for the pixel processing pipeline. These parameters will
be read by the demonstration application demo1 and send to the accelerator upon start
of the application.
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