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Abstract— Internet traffic is a mixture of unicast and multi-
cast flows. Integrated schedulers capable of dealing with both
traffic types have been designed mainly for Input Queued (IQ)
buffer-less crossbar switches. Combined Input and Crossbar
Queued (CICQ) switches, on the other hand, are known to have
better performance than their buffer-less predecessors due to
their potential in simplifying the scheduling and improving the
switching performance. The design of integrated schedulers in
CICQ switches has thus far been neglected. In this paper, we
propose a novel CICQ architecture that supports both unicast
and multicast traffic along with its appropriate scheduling.
In particular, we propose an integrated round robin based
scheduler that efficiently services both unicast and multicast
traffic simultaneously. Our scheme, named Multicast and Unicast
Round robin Scheduling (MURS), has been shown to outperform
all existing schemes while keeping simple hardware requirements.
Simulation results suggested that we can trade the size of the
internal buffers for the number of input multicast queues.

Index Terms— Integrated scheduling, Buffered crossbar fabric.

I. I NTRODUCTION

The growing number of newly emerging applications such
as teleconferencing, distance learning, IPTV etc. on the In-
ternet has resulted in an increasing proportion of multicast
traffic. In addition to point-to-point (unicast) communications,
a network node (high speed IP routers and ATM switches)
is also required to deal with point-to-multipoint (multicast)
communications and the combination of the two. Contrarily
to traditional switch design where unicast and multicast traffic
flows are treated separately, designing a switching algorithm
capable of scheduling heterogenous, yet simultaneous, differ-
ent traffic types is becoming increasingly important.

To date, little research has been done on the design of
integrated algorithms that support both unicast and multicast
traffic types. The scheduling algorithms presented are in fact a
combination of earlier unicast and multicast algorithms unified
in one integrated scheduler. The input queueing structure has
also been a combination of unicast queuing structure and
multicast queuing structure. The widely used unicast queuing
structure is the virtual output queueing (VOQ) [1], since it
avoids the head-of-line (HoL) blocking problem [2]. As for
multicast traffic, a multicast packet (cell) can have more than
one destination, known as itsfanout set. Consequently, a
multicast queuing structure can vary from just one multicast
FIFO queue per input to2N − 1 queues per input, whereN
is the number of output ports of the switch. Depending on
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the input queuing structure, integrated scheduling algorithms
have been proposed. They were mainly proposed for the
input queued (IQ) crossbar fabric based switching architecture
because of its scalability, low hardware requirements and
its intrinsic multicast capabilities. Most of these algorithms
were based on input VOQs for unicast traffic and one FIFO
queue for multicast traffic [3] [4]. Other algorithms [5] used
VOQs for unicast andk queues for multicast traffic, where
1 < k � 2N − 1. The major drawback of these algorithms
lies in their inability to either achieve high performance or run
at high speed. This is mainly due to their centralized design
and to the nature of the crossbar fabric switching architecture.

When small buffers are added inside the crossbar fabric
chip of an IQ switch, the architecture is called Combined
Input and Crossbar Queued (CICQ) switch [6]. The presence
of internal buffers simplifies the scheduling and makes it
distributed. Instead of one centralized and complex scheduler,
a CICQ switch maintains one scheduler per input as well
as one scheduler per output. These schedulers are therefore
decoupled and can work independently in parallel, improving
the switching performance. Substantial work has focused on
designing unicast algorithms for the CICQ switching architec-
ture [7] [8] [9] [10]. However, fewer results have appeared
for multicast scheduling in CICQ switches [11] [12]. These
algorithms, unicast and multicast, have been shown to have
superior performance than all algorithms proposed for the IQ
buffer-less switching architecture.

Despite the CICQ switches potential in solving the scalabil-
ity and scheduling complexity issues faced by their buffer-less
predecessors, the problem of scheduling integrated (unicast
and multicast) traffic in CICQ switches has not been addressed.
In this paper, we fill this gap and propose the followings:

• An integrated CICQ switching architecture that supports
concurrent unicast and multicast flows. The proposed
architecture, Fig. 1, is based on input VOQs for unicast
traffic andk (1 ≤ k � 2N − 1) FIFO queues per input
for multicast traffic. An efficient cell assignment scheme
is proposed to place multicast cells in thek queues.

• A simple round robin scheduling algorithm, called Mul-
ticast and Unicast Round robin Scheduling (MURS), that
is capable of arbitrating both traffic types simultaneously.
MURS was shown, through simulation, to achieve high
performance and outperform alternative algorithms. Sim-
ulation results showed that we can trade the size of the
internal buffers for the number of input multicast queues.

The remainder of this article is organized as follows:
Section II presents background knowledge and related work.



In Section III, we introduce the integrated CICQ switching
architecture. We discuss the multicast queues management
and propose an efficient multicast cell assignment scheme.
We then introduce the proposed MURS algorithm, along with
two variations: one for unicast priority scheduling and the
other for multicast priority scheduling. Section IV presents
the performance study of our algorithms with a comparison to
existing schemes. Finally, Section V concludes the paper.

II. BACKGROUND AND RELATED WORK

The scheduling algorithm is a critical block for high-
speed switches. When incoming traffic reaches the switch
input cards, the scheduling algorithm resolves contentions,
finds a conflict free match between input-output pairs and
decides which inputs (outputs) are eligible to send (receive)
data. Designing schedulers capable of keeping up with the
scalability of the switch in line speed and/or ports count isas
important as challenging.

A. Background

The problem of packet scheduling has been extensively
studied over the past two decades for IQ buffer-less crossbar
based switches. Most of the research work has focused either
in a purely unicast or a purely multicast context. A plethoraof
unicast scheduling algorithms have been proposed. Irrespective
of the incoming traffic, the input queuing structure influences
the scheduling algorithm and the over all switch performance.
When FIFO input queues are used, the HoL blocking problem
severely limits the throughput of the system. This blocking
can be prevented by adopting the VOQ structure [1]. Optimal
scheduling algorithms have been proposed for IQ packet
switches with VOQs [13], however they are too complex to run
at high speed. As a result, many practical iterative algorithms
have been proposed [14] [15].

Likewise, multicast traffic scheduling has been studied and
many scheduling algorithms were proposed. When a multicast
packet (cell) arrives at an input port, it can have one or more
destination(s) indicated by itsfanout set. For anN×N switch,
the fanout of a cell can range from one to2N −1. Because of
the importance of the input queuing structure, different queue-
ing strategies were proposed for multicast traffic. The optimal
solution is where2N − 1 different queues are maintained at
each input [16]. This structure completely avoids the HoL
problem. However, this architecture and its scheduling algo-
rithm are impractical even for a medium sized switch. A single
FIFO per input along with multicast scheduling algorithms
were proposed [17]. However, the HoL limits the performance
of these algorithms. As a compromise between using only one
multicast FIFO per input or matching the whole number of
fanout configurations, other researchers propose to allocate
a small number,k, of multicast queues per input [18] [19].
Becausek is smaller than the fanout set cardinality, how to
distribute incoming traffic over thek queues is important as
it affects the scheduling performance. Specific cell placement
schemes have been presented to address this issue [18] [19].

Similar to the work on IQ switches, CICQ switches have
drawn a lot of interest recently due to the advantages they

offer in reducing the scheduling complexity and scaling the
switching performance. Obviously, these advantages do not
come for free. For anN ×N CICQ switch,N2 small buffers
are added inside the crossbar. Fortunately, VLSI density in-
creases made it possible to embed enough memory inside
the crossbar fabric chip. CICQ use distributed schedulers,one
per input (input scheduler) and one per output (output sched-
uler). These schedulers can work independently in parallel
and were shown to achieve good performance while being
easily implementable in hardware. Many unicast scheduling
algorithms were proposed. These algorithms can be classified
into weighted based schemes [9] [10] and Round Robin (RR)
based schemes [7] [8]. Not much attention, however, has been
dedicated to scheduling multicast traffic in CICQ switches.We
first proposed a CICQ multicast switching architecture based
on one FIFO queue per input along with a multicast round
robin based scheduler [11]. This architecture was shown to
exhibit better performance than all previous results. A CICQ
switching architecture withk input multicast queues per input
was proposed in [12]. Because a cell placement scheme is
needed to enqueue the incoming data, the authors presented
some cell placement schemes, such as CRRA and BRRA [12].
While these cell placement schemes ensure a fair and good
distribution of the traffic over the input queues, they fail to
prevent the packets out of sequence problem.

B. Related Work

Despite the substantial work advocated to either unicast or
multicast scheduling, only little has been done on integrating
unicast and multicast traffic. Except [20], where the architec-
ture is a shared memory, the few other algorithms have been
proposed for the IQ buffer-less switching architecture. In[4],
the problem of integration of unicast and multicast has been
addressed and its hardness has been derived. At each input,
the queuing architecture was based on VOQs for unicast and
one multicast queue for multicast. A practical algorithm was
proposed that consists of scheduling multicast traffic firstand
leaving the unicast traffic for idle inputs (or outputs). While
this solution achieves good performance, it leads to permanent
starvation of unicast flows. In more recent work [5], the input
queueing structure used was based on VOQs for unicast and
a small number,k, of multicast queues for multicast per
input. The authors proposed integrated algorithms based on
previous unicast and multicast scheduling algorithms. The
integration was based on some priority metrics, such as time
and/or multicast service ratio. These algorithms perform many
iterations in order to achieve good performance, limiting their
scalability in port counts and/or speed per port.

The CICQ switching architecture has shown superior per-
formance over IQ switches, especially in terms of scheduling
(unicast and/or multicast). In CICQ switches, no centralized
scheduler nor many iterations are required. A scheduling
cycle consists of three independent and parallel phases: input
scheduling, output scheduling and flow control [21]. To the
best of our knowledge, no work has been done with respect to
integrating unicast and multicast scheduling in CICQ switches.
Motivated by the above, in the remainder of this article,
we propose an integrated CICQ based switching architecture,
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Fig. 1. The Integrated CICQ Switching Architecture

along with its appropriate scheduling, that supports both
unicast and multicast traffic simultaneously.

III. T HE INTEGRATED CICQ SWITCHING ARCHITECTURE

We consider the CICQ switch model depicted in Fig. 1.
Incoming variable size packets are segmented into fixed size
units, calledcells, upon their arrival to the input queues of
the switch. Cells are reassembled back into packets before
their departure from the output ports. Time is slotted such
that every time slot is equal to a scheduling cycle (as defined
in Section II-B).

A. Reference Architecture

The proposed switch model consists of anN ×N buffered
crossbar fabric. This architecture differs from conventional
CICQ switches [6] in its input queuing structure as well as its
input scheduling. There areN input ports, each maintaining
two types of queues: unicast traffic queues and multicast traffic
queues. The VOQ structure is adopted for unicast queues and
there areN VOQs per input, one per output. When a unicast
cell, destined to outputj, arrives at inputi, it is placed in
V OQi,j . A multicast cell can have a fanout set,Φ, where
{Φ | 1 ≤ Φ ≤ N}. To cover all possible fanout sets would
require2N − 1 multicast queues, one per fanout set. This is
clearly infeasible for a medium or large switching system.
In our model, each input maintains a small number,k, of
multicast FIFO queues per input, where{k | 1 ≤ k � 2N−1}.
At each input, multicast queues are denoted byMQi,j where
{(i, j) | 1 ≤ i ≤ N ; 1 ≤ j ≤ k} A cell assignment policyhas
to take place in order to map incoming cells to the multicast
queues. This is discussed in Section III-B.

The buffered crossbar fabric chip containsN2 distributed
cross-point buffers, denotedXP . A cell, coming from input
i and destined to outputj, is buffered inXPi,j while inside
the crossbar chip. In addition to the input queuing structure,
each input card contains anintegrated input scheduler. The
scheduler, at each input, examines the HoL of theeligible
queues belonging to that input and selects one cell to be
transmitted to the buffered crossbar fabric chip. An input VOQ
is deemed eligible if it is not empty and its corresponding
XP is not full. An input multicast queue,MQ, is considered
eligible if it is not empty and at least one of its destination
output ports corresponds to a non fullXP . Each output
contains an output buffer and an output scheduler. The output

scheduler at outputj examines the content ofXPi,j {i | 1 ≤
i ≤ N} and selects one cell to be transferred to the output port.
Both input and output scheduling are discussed in Section III-
C. A flow control mechanism is implemented to continuously
communicate the state of the internal buffers to the input
schedulers to preventXPs overflow.

B. Multicast Cell Assignment

Since the number ofMQs, k, maintained at each input is
much smaller than the number of all fanout configurations,
a cell assignment policy is required in order to map incom-
ing cells to theMQs. This has a significant effect on the
scheduling performance. Previous work [19] has pointed out
some criteria in designing such a policy:(i) The heads of the
MQs should bediverse in order to span a large number of
the outputs. This would ensure more scheduling opportunities
and work conservation.(ii) Cells with the same, or similar,
fanout sets should be stored in the same queue, to reduce
HoL blocking and prevent out of sequence delivery problem.
Many cell assignment schemes existed, such as majority [19],
MDQ [18]. While they succeed in meeting some, or all, of
the aforementioned criteria, their implementation can prove
not cost effective.

Our queuing structure implements a simple and efficient cell
assignment scheme. Our scheme works as follows: At every
input, i, each incoming multicast cell with fanout set,Φ, is
assigned toMQi,j where{j | j = Φ mod(k)}. In addition to
its simplicity, especially if the number ofMQs, k, is a power
of two, our scheme meets all previously mentioned criteria
for efficient cell assignment. To better understand this, let’s
consider an example. Assume we have an8× 8 switch and 2
multicast queues per input (k = 2). At each input,i, the cell
assignment scheme will place cells with even fanout sets in
MQi,0 and those with odd fanout sets inMQi,1. This way, the
heads of theMQs can span large numbers of destinations (i.,e.
HoL of MQi,0 = 6 and HoL ofMQi,1 = 3). Moreover, cells
with the same fanout sets are ensured to be queued in the same
MQ, avoiding the out of sequence problem. Additionally,
our scheme is a fair scheme in the sense that is gives equal
opportunities to the cells to advance to the head of the queue
irrespective of their number of destinations. This is important
as there are scheduling algorithms that use the fanout set asthe
weight for priority scheduling and, unless the cells fanoutsets
per MQ are diverse,MQ starvation (unfairness) can occur.

C. Integrated Scheduling

This section introduces the proposed integrated scheduling
algorithms, Multicast and Unicast Round robin Scheduling
(MURS). Because the input queuing structure consists of two
types of queues and two types of traffic (unicast and multicast),
extra care has to be taken of the input scheduler at each input.
The input scheduler, not only is required toselect cells to
be transmitted to the fabric chip, but also needs to decide
when to pick a cell from which set of queues (VOQs or
MQ). This is called theintegration phase of the scheduler.
The selection policy of our scheme is based on round robin
because of its fairness and simple hardware implementation.
The selection policy is fixed and independent of the integration



phase. Each input scheduler maintains two priority pointers:
a unicast pointer (UP ) and a multicast pointer (MP ). If the
V OQs (MQ) set of queues is chosen to select a cell from,
the round robin pointer will be based onUP (MP ). Please
note that we considerfanout splittingwhen serving multicast
flows [17]. The integration phase is responsible for making
the decision of which set of queues to chose from. As the
traffic can be unicast, multicast or a mix of the two, we
derived three integration policies. The first is called MURSuf
(unicast first) and always gives priority to unicast traffic.
The second, MURSmix, is designed to be a fair policy and
treats both traffic types equally. MURSmix gives priority to
unicast traffic during even time slots, while multicast traffic is
favored during odd time slots. The third integration policyis
named MURSmf (multicast first) and always gives priority
to multicast traffic. The specification of the selection and
integration policies are as follows:

• Select Queue(Queue type , Pointer type)
{

. N = number of queues in Queue type; i = current input

. Starting from the Pointer type’s location, select the first eligible
queue EQi,j and send its HoL cell1 to the internal buffer (XPi,j ).

. Move Pointer type to the location (j + 1) (mod N).
}

• Each integration policy corresponds to an input schedul-
ing (IS):

– MURS uf /*Always Unicast traffic first (prioritized)*/
{

. Select Queue(V OQs , UP );

. If no queue was selected

. Select Queue(MQ , MP );
}

– MURS mix /*Priority is time slot dependent */
{

. If current time slot is even /*Unicast is served first*/
Select Queue(V OQs , UP );
If no queue was selected
Select Queue(MQ , MP );

. Else /*Multicast is served first*/
Select Queue(MQ , MP );
If no queue was selected
Select Queue(V OQs , UP );
}

– MURS mf /*Always Multicast traffic first (prioritized)*/
{

. Select Queue(MQ , MP );

. If no queue was selected

. Select Queue(V OQs , UP );
}

Irrespective of the input scheduling algorithm, we used the
same output scheduling algorithm. It is a simple round robin
scheduling, with the following specification:

• Output Scheduling (OS)

. All outputs share the same output pointer and it is incremented,
each time slot, by one mod (N).

. Starting from the pointer’s index, each output, j, selects the first
non empty internal buffer, XPi,j , and sends its HoL cell to the
output port.

The input scheduling, MURS, plays an important role in
the overall performance of the system. The three variations
we proposed above are different and would have different
performance especially in the presence of concurrent unicast
and multicast traffic. MURSuf always gives priority to unicast
flows over multicast flows. Therefore, in the presence of mixed

1If the cell is multicast, then only copies destined toc outputs are sent,
where{c | c ∈ {1, ..., N} and XPi,c is not full}. Other copies will have
to compete in later time slots.

unicast and multicast traffic, MURuf will always favor the
VOQ set of queues to receive service and leave remaining
idle connections to multicast flows. As a result, this scheme
will produce more one-to-one connections than one-to-many
connections. This causes performance degradation under heavy
loads because when a unicast cell is chosen to be sent from
an input port containing multicast cells, only one cell (copy)
will be transmitted to the buffered crossbar fabric. Whereas,
if we give preference to multicast flows in the presence of
unicast flows at the same input, this would result in more
cells (copies) being transmitted to the buffered crossbar. As a
result, the performance can greatly scale up. This is exactly
what MURSmf algorithm does, by favoring multicast flows
over unicast flows. Despite the performance difference, there
are similarities between MURSuf and MURSmf. They both
have the same performance when the traffic is either purely
unicast or purely multicast. Additionally, both schemes are
unfair . Each of them tries to monopolize the switch bandwidth
to its preferred traffic flows and this is undesirable.

As a compromise between MURSuf and MURSmf, we
propose MURSmix. In addition to its fairness in the presence
of different traffic types, the MURSmix algorithm exhibits
the same performance as the other two algorithms when
the traffic is all unicast or all multicast. The properties of
MURS mix makes it a good candidate for being an optimal
integrated scheme because:(i) It is fair and starvation free
both on the traffic level as well as the flow level. In the
presence of different traffic types, MURSmix gives equal
chances (even and odd time slots) to heterogenous traffic types
to be served. At the flow level, the round robin scheduling
mechanism ensures fairness to flows belonging to different
queues (whether unicast or multicast) and schedules them with
the same likelihood.(ii) MURS mix requires simple hardware
allowing it to run at high speed.(iii) Finally, MURS mix
shows enhanced performance in terms of high throughput and
low cell latency by comparison to existing algorithms. Thisis
shown in the following section.

IV. PERFORMANCERESULTS

This section presents the simulation study of an8x8 CICQ
switching system employing the MURS set of algorithms. We
compared the performance of MURSmix to the Eslip algo-
rithm which uses buffer-less crossbar switch [3]. Simulations
run for 1 million time slots and statistics are gathered when
tenth of the total simulation length has elapsed. We analyzed
the delay and throughput performance of the algorithms with
different MQ numbers,k. Additionally, we observed the
stability of the input queues under different traffic, input
queueing and internal buffer size settings.

Incoming traffic is generated according to a uniform i.i.d
Bernoulli process and a bursty uniform process, respectively.
Arriving cells can be either unicast or multicast. Cells arrive
with a rate denoted byλ. Since the traffic is uniform,λ is the
input load of the switch. The departure rate is denoted byµ.
Similarly, µ is the output load of the switch. We consider ad-
missible traffic, no input or output is oversubscribed. Because
the traffic is a combination of unicast and multicast flows, the
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Fig. 2. Delay Performance of MURSmix and Eslip with different multicast fractions,fm. (a): fm = 0, corresponding to unicast traffic only. (b):fm = 0.5,
resulting in evenly distributed input traffic over unicast and multicast flows. (c):fm = 1 corresponding to multicast traffic only, with uniform Bernoulli and
uniform Bursty arrivals (burst length, B=16). (d): Maximum Throughput as a function of Multicast Fraction (fm ranging from 0 to 1).

input load consists of a multicast fraction (fm) and a unicast
fraction (fu), where{(fm, fu)|fm = 1− fu}. The fanout set,
Φ, of multicast cells is uniformly distributed between 2 and
8 and all outputs have equal chances to be the destination of
a multicast cell. Based on the above, the relationship between
the switch input and output loads is expressed by Equation (1).

µ = λ(fu + Φfm). (1)

In our simulation, we averaged the cells fanout set to beΦ = 4.
Following our settings and substitutingfu with fm, we have:

µ = λ(1 + 3fm). (2)

For example, if we setfm to be 0 in Equation (2), the traffic
is all unicast. When we set it to 1, the traffic becomes all
multicast. Whereas, if we fixµ to 1 for example (switch fully
loaded), we can varyfm and see its effect on the throughput.
When fm = 0.5, the incoming traffic is evenly distributed
between unicast and multicast flows.

In Fig. 2, we compare the average delay performance of
MURS mix and Eslip. Because Eslip is based only on one
multicast queue per input, we used the same settings with
MURS mix (k = 1) for fair comparison. Please note that
Eslip i refers to Eslip with i iteration(s). As depicted in
Fig. 2, irrespective of the incoming traffic, MURSmix always
achieves far shorter delay than Eslip when the traffic is either
all unicast (Fig. 2-(a)) or all multicast (Fig. 2-(c)). When each
traffic type shares half the input load ((Fig. 2-(b)) MURSmix
still achieves better performance than Eslip. However, this
corresponds to only one setting of a mixed traffic.

Checking all possibilities of mixed traffic requires tuning
fm from 0 to 1 and observe the throughput. To this end, as
depicted in Fig. 2-(d), we fixed the output load,µ, to be 100%
(fully loaded system) and recorded the throughput of each
algorithm asfm varies from 0 to 1. Again, MURSmix is
always superior to Eslip by an order of magnitude. MURSmix
reaches its lowest performance whenfm = 1. This is because
the traffic is all multicast and only a single multicast queueis
used per input. Please note that, while all our set of algorithms
have better delay than Eslip, we chose MURSmix because
it is more analogous to Eslip in the sense that is does not
prioritize one traffic type over an other.

The remainder of the simulation is done for multicast queue
set, MQ per input, equal to or bigger than one (k ≥ 1).
Fig. 3 shows the average cell delay performance of each of
our algorithms fork = 1, 2 and 4 respectively and evenly
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Fig. 3. Average Delay of MURS with Different Numbers of Multicast Queues
per Input and Mixed Input Traffic (fm = 0.5).

distributed traffic over unicast and multicast (fm = 0.5). As
expected, the MURSmf scheme has the best delay. This is
because it gives priority to multicast flows over unicast flows
resulting in more connections per scheduling cycle. This result
holds independently of the number ofMQ used per input.
MURS uf, however, has the worst delay because it prioritizes
unicast over multicast. MURSmix has a medium average
delay because it treats both traffic types with the same priority.
On overall MURSmix is the best due to its fairness.

Due to the importance of the internal buffers in simplifying
the scheduling, we simulated our algorithms under different
internal buffer sizes. Fig. 4-(a) depicts the average delay
performance of the MURSmix algorithm under three different
scenarios. Incoming traffic is either all unicast (fm = 0), or
mix (fm = 0.5) or all multicast (fm = 1). We varied the
number of input multicast queues per input as well as the size
of the internal buffers and studied their effect under each traffic
scenario. For example, “QXP(14) Ucast” corresponds to the
MURS mix algorithm with 1 multicast queue per input (k =
1), 4 cells per internal buffer (XP = 4) and incoming traffic
consisting of unicast cells only. “QXP(41) Mix” corresponds
to MURS mix with 4 MQs (k = 4) per input, 1 cell per
XP and a mixed incoming traffic over unicast and multicast
flows (fm = 0.5). Simulation results show that, irrespective
of the incoming traffic type, the performance of MURS is the
same when we decrease the input multicast buffers by 75%
at the expense of increasing the size of each internal buffer
to accommodate 4 cells instead of 1. This result is the same
when we also use MURSmf, as depicted in Fig. 4-(b).
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Fig. 4. Delay and Stability Performance with Different Numbers of Input Multicast Queues, Different Internal Buffer Sizes and Different Traffic Scenarios.
(a): Average Delay of the MURSmix Algorithm. (b): Average Delay of the MURSmf Algorithm. (c): Thel − two Norm Vector at Time = 1 million time
slots, MURSmix is employed. (d): Thel − two Norm Vector at time = 1 million time slots, MURSmf is employed.

Because the trade off between the input multicast queues
and the internal buffers is not straightforward (on chip
memory vs. off chip memory), we studied the stability
of the input queues under the same settings as above.
We used thel − two norm vector representing the occu-
pancy of all input queues. LetV OQi,j(n) be the num-
ber of unicast cells queued inV OQi,j at time slot n

and MQi,l(n) be the number of multicast cells queued
in MQi,l at time slot n. The l − two norm vector at
time slot n is denoted by‖L(n)‖ and defined as follows:

‖L(n)‖ =

√

∑n

i=1

(

∑n

j=1
V OQi,j(n)2 +

∑k

l=1
MQi,l(n)2

)

In addition to representing the occupancy of the input
queues, thel − two norm vector can be used to analyze the
distribution of cells over the input queues as well as the input
buffer requirement per input port. As depicted in Fig. 4-(c)and
(d) respectively, the input queues occupancies remain the same
whether we use only 1 multicast queue per input and internal
buffer size of 4 cells or 4 multicast queues per input and
internal buffer size of 1 cell. This is very important because
of the gain we can achieve by this trade off, due the small
amount of internal buffers compared to the size (and number)
of multicast input queues. By considering that a switch should
hold up to100ms worth of packets [22] and if we consider a
switch running10 Gbps port speed, the buffer requirement per
port would be125 MB. Assuming64 B cell size and our8×8
CICQ switch, every input queue is approximately10.4 MB.
In our case, reducing the multicast queues set by 75% (using
just 1 MQ per input instead of 4) corresponds to increasing
the size of each internal buffer to hold 4 cells. This resultsin
saving250MB of off chip memory, at the expense of adding
approximately12.3KB of internal buffers while keeping the
same overall input buffer requirement as well as achieving
the same cell delay. This translates into a considerable saving
while maintaining the same high performance of the system.

V. CONCLUSION

Combined Input and Crossbar Queued (CICQ) switches
have been known to outperform IQ switches due to the
simplicity of their scheduling. The problem of integrating
unicast and multicast traffic scheduling has been studied for IQ
switches only. In this paper, we proposed a CICQ switching
architecture able to support both traffic types. We presented a
simple set of integrated scheduling algorithms, named MURS,

that can schedule concurrent unicast and multicast traffic
flows. In particular, the MURSmix algorithm has been shown
to exhibit very good performance and outperform previous
algorithms. Simulation results suggested that a profitabletrade
off between the number of input multicast queues and the size
of the internal buffers is possible.
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