Integrating Uni- and Multicast Scheduling in
Buffered Crossbar Switches

Lotfi Mhamdi, Stamatis Vassiliadis
Computer Engineering Lab., TU Delft, The Netherlands
E-mail: {lotfi, stamati§ @ce.et.tudelft.nl

Abstract— Internet traffic is a mixture of unicast and multi-  the input queuing structure, integrated scheduling algaons
cast flows. Integrated schedulers capable of dealing with both have been proposed. They were mainly proposed for the
traffic types have been designed mainly for Input Queued (IQ) it queued (1Q) crossbar fabric based switching architec
buffer-less crossbar switches. Combined Input and Crossbar b f it lability. | hard . ¢ d
Queued (CICQ) switches, on the other hand, are known to have | ec_au_se _O s _Scaa iy, OW ardware requweme_n S an
better performance than their buffer-less predecessors dueot Its Intrinsic mul“cast CapabllltlesMOSt Of these algonthms
their potential in simplifying the scheduling and improving the were based on input VOQs for unicast traffic and one FIFO
switching performance. The design of integrated schedulers in queue for multicast traffic [3] [4]. Other algorithms [5] uke

CICQ switches has thus far been neglected. In this paper, we VOQs for unicast and: queues for multicast traffic, where

propose a novel CICQ architecture that supports both unicast N . .
and multicast traffic along with its appropriate scheduling. 1 <k < 2% — 1. The major drawback of these algorithms

In particu|ar’ we propose an integrated round robin based lies in their |nab|l|ty to either achieve h|gh performana’eﬂm’l
scheduler that efficiently services both unicast and multicast at high speed. This is mainly due to their centralized design
traffic simultaneously. Our scheme, named Multicast and Unicast and to the nature of the crossbar fabric switching architect
Round robin Scheduling (MURS), has been shown to outperform  \yhen small buffers are added inside the crossbar fabric

all existing schemes while keeping simple hardware requirements. _, . . . - .
Simulation results suggested that we can trade the size of the chip of an 1Q switch, the architecture is called Combined

internal buffers for the number of input multicast queues. Input and Crossbar Queued (CICQ) switch [6]. The presence
of internal buffers simplifies the scheduling and makes it
distributed. Instead of one centralized and complex sdeedu
a CICQ switch maintains one scheduler per input as well
I, INTRODUCTION as one scheduler per oquut. These sc.hedulers are ther_efore
) i o decoupled and can work independently in parallel, imprgvin
The growing number of newly emerging applications sudfe switching performance. Substantial work has focused on
as teleconferencing, distance learning, IPTV etc. on the Igegigning unicast algorithms for the CICQ switching arit
temet has rg;ulted in an increasing proportion of "mult|cat:are (7] [8] [9] [10]. However, fewer results have appeared
traffic. In addition to point-to-point (unicast) COMMUMECAS,  ¢5r mylticast scheduling in CICQ switches [11] [12]. These
a network node (high speed IP routers and ATM switchegjyqrithms, unicast and multicast, have been shown to have
is also required to deal with point-to-multipoint (Multsta g perior performance than all algorithms proposed for @e |
communications and the combination of the two. Contrarily frer-less switching architecture.
to traditional switch design Where.un'lcast and' mulltlcwifltr. Despite the CICQ switches potential in solving the scalabil
flows are treated separately, designing a switching alyarit jiy ang scheduling complexity issues faced by their buiiies
capable of scheduling heterogenous, yet simultaneousy-dif yredecessors, the problem of scheduling integrated (smica
ent traffic types is becoming increasingly important. — and multicast) traffic in CICQ switches has not been adddesse
~ To date, little research has been done on the design gfihis paper, we fill this gap and propose the followings:
mtegrated algorithms tha_t support both unicast and ”_HHUC « An integrated CICQ switching architecture that supports
traffic types. The scheduling algorithms presented aredhga concurrent unicast and multicast flows. The proposed
combination of earlier unicast and multicast algorithmdied architecture, Fig. 1, is based on input VOQs for unicast
in one integrated scheduler. The input queueing structage h traffic andk’(l < k;’<< 2N _ 1) FIFO queues per input
also. been a c_:ombination of unicgst queuing ;tructure e}nd for multicast traffic. An efficient cell assignment scheme
multicast queuing structure. The Wlde_ly used unicast qeui is proposed to place multicast cells in thequeues.
structure is the virtual output queueing (VOQ) [1], since it | A simple round robin scheduling algorithm, called Mul-
avoids the head-of-line (HoL) blocking problem [2]. As for  ioast and Unicast Round robin Scheduling (MURS), that
multicast traffic, a multicast packet (cell) can have momnth g capaple of arbitrating both traffic types simultaneously
one.destlnatlor], known as itianout set Cpnsequently, a MURS was shown, through simulation, to achieve high
multicast queuing structuj\rfe can vary from J_USt one multicas performance and outperform alternative algorithms. Sim-
FIFO queue per input 13" — 1 queues per input, whery ulation results showed that we can trade the size of the
is the number of output ports of the switch. Depending on jnierma puffers for the number of input multicast queues.
This work was supported bthe European Commissidn the context of Th_e remainder of this article is organized as follows:
the SARC integrated proje¢t27648 (FP6) Section Il presents background knowledge and related work.

Index Terms— Integrated scheduling, Buffered crossbar fabric.



In Section Ill, we introduce the integrated CICQ switchingffer in reducing the scheduling complexity and scaling the
architecture. We discuss the multicast queues managem@mitching performance. Obviously, these advantages do not
and propose an efficient multicast cell assignment schenseme for free. For aiV x N CICQ switch, N2 small buffers
We then introduce the proposed MURS algorithm, along wittre added inside the crossbar. Fortunately, VLSI densiy in
two variations: one for unicast priority scheduling and thereases made it possible to embed enough memory inside
other for multicast priority scheduling. Section IV preten the crossbar fabric chip. CICQ use distributed scheduters,
the performance study of our algorithms with a comparison feer input (input scheduler) and one per output (output sched
existing schemes. Finally, Section V concludes the paper. uler). These schedulers can work independently in parallel
and were shown to achieve good performance while being
Il. BACKGROUND AND RELATED WORK easily implementable in hardware. Many unicast scheduling
. . ) » . algorithms were proposed. These algorithms can be clabsifie
The scheduling algorithm is a critical block for highyny, \yeighted based schemes [9] [10] and Round Robin (RR)
speed switches. When incoming traffic reaches the switgiseq schemes [7][8]. Not much attention, however, has been
input cards, the scheduling algorithm resolves contealionye jicated to scheduling multicast traffic in CICQ switchas.
finds a conflict free match between input-output pairs angls nronosed a CICQ multicast switching architecture tase
decides which inputs (outputs) are eligible to send (r&eivo, one FIFO queue per input along with a multicast round
data. Designing schedulers capable of keeping up with thgyn nased scheduler [11]. This architecture was shown to
scalability of the switch in line speed and/or ports COUMdSS gy pihit petter performance than all previous resuilts. A QIC
important as challenging. switching architecture wittt input multicast queues per input
was proposed in [12]. Because a cell placement scheme is
A. Background needed to enqueue the incoming data, the authors presented
The problem of packet scheduling has been extensivaedgme cell placement schemes, such as CRRA and BRRA [12].
studied over the past two decades for 1Q buffer-less crosshéhile these cell placement schemes ensure a fair and good
based switches. Most of the research work has focused eittistribution of the traffic over the input queues, they fail t
in a purely unicast or a purely multicast context. A plethofa prevent the packets out of sequence problem.
unicast scheduling algorithms have been proposed. Ircégpe
of the incoming traffic, the input queuing structure influesc B- Related Work
the scheduling algorithm and the over all switch perfornganc Despite the substantial work advocated to either unicast or
When FIFO input queues are used, the HoL blocking problemulticast scheduling, only little has been done on intéggat
severely limits the throughput of the system. This blockingnicast and multicast traffic. Except [20], where the asthit
can be prevented by adopting the VOQ structure [1]. Optimilre is a shared memory, the few other algorithms have been
scheduling algorithms have been proposed for 1Q packmtoposed for the IQ buffer-less switching architecture[4fp
switches with VOQs [13], however they are too complex to rutihe problem of integration of unicast and multicast has been
at high speed. As a result, many practical iterative algor# addressed and its hardness has been derived. At each input,
have been proposed [14] [15]. the queuing architecture was based on VOQs for unicast and
Likewise, multicast traffic scheduling has been studied amhe multicast queue for multicast. A practical algorithmswa
many scheduling algorithms were proposed. When a multicgsbposed that consists of scheduling multicast traffic firsd
packet (cell) arrives at an input port, it can have one or mokeaving the unicast traffic for idle inputs (or outputs). Vé¢hil
destination(s) indicated by ifanout setFor anN x N switch, this solution achieves good performance, it leads to peemtan
the fanout of a cell can range from one2d — 1. Because of starvation of unicast flows. In more recent work [5], the inpu
the importance of the input queuing structure, differerdwpt queueing structure used was based on VOQs for unicast and
ing strategies were proposed for multicast traffic. Therogti a small numberk, of multicast queues for multicast per
solution is where2" — 1 different queues are maintained atnput. The authors proposed integrated algorithms based on
each input [16]. This structure completely avoids the Hoprevious unicast and multicast scheduling algorithms. The
problem. However, this architecture and its scheduling-algintegration was based on some priority metrics, such as time
rithm are impractical even for a medium sized switch. A singland/or multicast service ratio. These algorithms perforamyn
FIFO per input along with multicast scheduling algorithmgerations in order to achieve good performance, limitingit
were proposed [17]. However, the HoL limits the performancszalability in port counts and/or speed per port.
of these algorithms. As a compromise between using only oneThe CICQ switching architecture has shown superior per-
multicast FIFO per input or matching the whole number dbrmance over 1Q switches, especially in terms of schedulin
fanout configurations, other researchers propose to &Hoc@unicast and/or multicast). In CICQ switches, no centealiz
a small numberf, of multicast queues per input [18] [19].scheduler nor many iterations are required. A scheduling
Becausek is smaller than the fanout set cardinality, how ta@ycle consists of three independent and parallel phaspst in
distribute incoming traffic over thé queues is important asscheduling, output scheduling and flow control [21]. To the
it affects the scheduling performance. Specific cell plae@m best of our knowledge, no work has been done with respect to
schemes have been presented to address this issue [18] [18egrating unicast and multicast scheduling in CICQ st
Similar to the work on IQ switches, CICQ switches hav®lotivated by the above, in the remainder of this article,
drawn a lot of interest recently due to the advantages thexe propose an integrated CICQ based switching architecture



scheduler at output examines the content of P; ; {i | 1 <

1 < N} and selects one cell to be transferred to the output port.
Both input and output scheduling are discussed in Sectlen Il
C. A flow control mechanism is implemented to continuously
communicate the state of the internal buffers to the input
schedulers to preverX Ps overflow.

Input 1

R B. Multicast Cell Assignment

Since the number oM @s, k, maintained at each input is
much smaller than the number of all fanout configurations,
a cell assignment policy is required in order to map incom-
ing cells to theM@s. This has a significant effect on the
scheduling performance. Previous work [19] has pointed out
o ) ) some criteria in designing such a polidy) The heads of the
along with its appropriate scheduling, that supports bo{y s should bediversein order to span a large number of
unicast and multicast traffic simultaneously. the outputs. This would ensure more scheduling opporasmiti

and work conservation(i:) Cells with the same, or similar,
I1l. THE INTEGRATED CICQ SWITCHING ARCHITECTURE  fanout sets should be stored in the same queue, to reduce

We consider the CICQ switch model depicted in Fig. JHoL blocking and prevent out of sequence delivery problem.
Incoming variable size packets are segmented into fixed si@ny cell assignment schemes existed, such as majority [19]
units, calledcells upon their arrival to the input queues ofMDQ [18]. While they succeed in meeting some, or all, of
the switch. Cells are reassembled back into packets befthe aforementioned criteria, their implementation canvero
their departure from the output ports. Time is slotted sudiot cost effective.
that every time slot is equal to a scheduling cycle (as definedOur queuing structure implements a simple and efficient cell

Fig. 1. The Integrated CICQ Switching Architecture

in Section II-B). assignment scheme. Our scheme works as follows: At every
_ input, 4, each incoming multicast cell with fanout set, is
A. Reference Architecture assigned taV/Q; ; where{j | j = ® mod(k)}. In addition to

The proposed switch model consists of &nx N buffered its simplicity, especially if the number a¥/@s, k, is a power
crossbar fabric. This architecture differs from convemtio of two, our scheme meets all previously mentioned criteria
CICQ switches [6] in its input queuing structure as well as ifor efficient cell assignment. To better understand thiss le
input scheduling. There ar® input ports, each maintaining consider an example. Assume we havelan8 switch and 2
two types of queues: unicast traffic queues and multicaffictra multicast queues per inpuk & 2). At each input,, the cell
gueues. The VOQ structure is adopted for unicast queues asdignment scheme will place cells with even fanout sets in
there areN VOQs per input, one per output. When a unicast/Q; o and those with odd fanout setsi@); ;. This way, the
cell, destined to outpug, arrives at inputi, it is placed in heads of thel/Qs can span large numbers of destinations (i.,e.
VOQ; ;. A multicast cell can have a fanout se, where HoL of MQ;, =6 and HoL of M Q; 1 = 3). Moreover, cells
{® | 1 < & < N}. To cover all possible fanout sets wouldwith the same fanout sets are ensured to be queued in the same
require2”V — 1 multicast queues, one per fanout set. This i8/Q, avoiding the out of sequence problem. Additionally,
clearly infeasible for a medium or large switching systenour scheme is a fair scheme in the sense that is gives equal
In our model, each input maintains a small nhumber,of opportunities to the cells to advance to the head of the queue
multicast FIFO queues per input, whele| 1 < k < 2V —1}. irrespective of their number of destinations. This is intgot
At each input, multicast queues are denotedMd¥); ; where as there are scheduling algorithms that use the fanout sie¢as
{(4,7) | 1 <i< N;1<j <k} A cell assignment polichas weight for priority scheduling and, unless the cells fansets
to take place in order to map incoming cells to the multicaper M Q) are diverse M @ starvation (unfairness) can occur.
queues. This is discussed in Section III-B. )

The buffered crossbar fabric chip containg distributed C- Integrated Scheduling
cross-point buffers, denoted P. A cell, coming from input  This section introduces the proposed integrated scheglulin
¢ and destined to outpyt, is buffered inX P; ; while inside algorithms, Multicast and Unicast Round robin Scheduling
the crossbar chip. In addition to the input queuing strigturlMURS). Because the input queuing structure consists of two
each input card contains dntegrated input scheduleiThe types of queues and two types of traffic (unicast and mullicas
scheduler, at each input, examines the HoL of #tigible extra care has to be taken of the input scheduler at each input
queues belonging to that input and selects one cell to Bhe input scheduler, not only is required $electcells to
transmitted to the buffered crossbar fabric chip. An inpGtQ¥ be transmitted to the fabric chip, but also needs to decide
is deemed eligible if it is not empty and its correspondinghen to pick a cell from which set of queues (VOQs or
X P is not full. An input multicast queuey/Q, is considered M Q). This is called theintegration phase of the scheduler.
eligible if it is not empty and at least one of its destinatiohe selection policy of our scheme is based on round robin
output ports corresponds to a non fulP. Each output because of its fairness and simple hardware implementation
contains an output buffer and an output scheduler. The butdine selection policy is fixed and independent of the intégmat



phase. Each input scheduler maintains two priority poftemunicast and multicast traffic, MURf will always favor the
a unicast pointerl{ P) and a multicast pointerM/ P). If the VOQ set of queues to receive service and leave remaining
VOQs (MQ) set of queues is chosen to select a cell fronidle connections to multicast flows. As a result, this scheme
the round robin pointer will be based dhP (M P). Please will produce more one-to-one connections than one-to-many
note that we considdianout splittingwhen serving multicast connections. This causes performance degradation undey he
flows [17]. The integration phase is responsible for makingads because when a unicast cell is chosen to be sent from
the decision of which set of queues to chose from. As tla input port containing multicast cells, only one ce&lbgy)
traffic can be unicast, multicast or a mix of the two, wavill be transmitted to the buffered crossbar fabric. Whereas
derived three integration policies. The first is called MURS if we give preference to multicast flows in the presence of
(unicast first) and always gives priority to unicast trafficunicast flows at the same input, this would result in more
The second, MURSnIx, is designed to be a fair policy andcells (copieg being transmitted to the buffered crossbar. As a
treats both traffic types equally. MURSIx gives priority to result, the performance can greatly scale up. This is exactl
unicast traffic during even time slots, while multicastficals what MURSmf algorithm does, by favoring multicast flows
favored during odd time slots. The third integration polisy over unicast flows. Despite the performance differencegthe
named MURSmMf (multicast first) and always gives priority are similarities between MURSf and MURSm(f. They both
to multicast traffic. The specification of the selection andave the same performance when the traffic is either purely
integration policies are as follows: unicast or purely multicast. Additionally, both schemes ar
o Select.Queue(Queue_type , Pointer_type) unfair . Each of them tries to monopolize the switch bandwidth
A = number of queues in Queue.iype: = current nput to its preferred traffic flows and this is undesirable.
Starting from the Pointgr-type’s _Iolt:at}on, ‘select the first eligible As a COI'T]pI'OI'T:IiSG betwggn MURS _and M_URsmf: we
ﬂ/luoevueepgﬁég srgi Tgr:g;tfoiggtlto%el(lj tﬁT;(lgfg;a]ﬂV l;uffer (XPi ;5. propose MURSMiIx. In addition to its fairness in the presence
) ' of different traffic types, the MUR®nix algorithm exhibits
« Each integration policy corresponds to an input scheddftle same performance as the other two algorithms when
ing (IS): the trafng is all unllcast or all mu_It|cast. The. propert|e§ of
MURS_mix makes it a good candidate for being an optimal

— MURS_uf /*Always Unicast traffic first (prioritized)*/ . . . i .
integrated scheme becaugg) It is fair and starvation free

{

ﬁe'ect—Queue(VOfQStvéJP): both on the traffic level as well as the flow level. In the

s;‘;&f’éﬂi&?ijgfcﬁp); presence of different traffic types, MURSIix gives equal

_ S chances (even and odd time slots) to heterogenous trafés typ

B MURS‘”{“X *priority is time slot dependent */ to be served. At the flow level, the round robin scheduling

If current time slot is even  /*Unicast is served first*/ mechanism ensures fairness to flows belonging to different

ﬁﬂgctacgﬁgu;ggg;,eglﬂ); gueues (whether unicast or multicast) and schedules thém wi

59|e§_Queue(MQ . MP); the same likelihood(ii) MURS_mix requires simple hardware

g'esl‘zct ueue(MQ MP)/_*MU'“CW is served first"/ allowing it to run at high speed(iii) Finally, MURSmix

If no queue was selected shows enhanced performance in terms of high throughput and

Select.Queue(VOQs , UP); low cell latency by comparison to existing algorithms. Tisis

}

- MURS.mf /*Always Multicast traffic first (prioritized)*/ shown in the followmg section.

{
Select_Queue(MQ , M P);
If no queue was selected IV. PERFORMANCERESULTS
Select_Queue(VOQs , UP); ) ] ) ]
This section presents the simulation study ofSa8 CICQ

Irrespective of the input scheduling algorithm, we used tfavitching system employing the MURS set of algorithms. We

same output scheduling algorithm. It is a simple round robfPmpared the performance of MURSIx to the Eslip algo-
scheduling, with the following specification: rithm which uses buffer-less crossbar switch [3]. Simoladi

« Output Scheduling (OS) run for 1 million time slots and statistics are gathered when
. All outputs share the same output pointer and it is incremented, tenth of the total simulation length has elapsed. We andlyze
each time slot, by one mod (V). ‘ _ the delay and throughput performance of the algorithms with
Starting from the pointer’s index, each output, j, selects the first . ..
non empty internal buffer, X P; ;, and sends its HoL cell to the different M) numbers, k. Additionally, we observed the
output port. stability of the input queues under different traffic, input
The input scheduling, MURS, plays an important role iqueueing and internal buffer size settings.
the overall performance of_the system. The three va_rlatlonsmcoming traffic is generated according to a uniform i.i.d
we proposed above are different and would have differeBernoulli process and a bursty uniform process, respdgtive
performance especially in the presence of concurrent shicarriving cells can be either unicast or multicast. Cellsiar
and multicast traffic. MURSuf always gives priority to unicast with a rate denoted by. Since the traffic is uniform) is the
flows over multicast flows. Therefore, in the presence of ohixeénput load of the switch. The departure rate is denotediby
. , _ _ _ Similarly, i is the output load of the switch. We consider ad-
If the cell is multicast, then only copies destinedd®utputs are sent, . ibl ffi . . bscribed. Reea
where{c| ¢ € {1,..., N} and X P; . is not full}. Other copies will have MISSIDI€ traffic, no Input or output is oversubscribed.
to compete in later time slots. the traffic is a combination of unicast and multicast flows, th



8x8 Switch under Bernoulli Uniform Traffic 8x8 Switch under Bernoulli Uniform Traffic 8x8 Switch under Uniform Traffic

—¥— MURS_mix

S| & Esip 1

= /
—O- Eslip 4

Throughput

—%— MURS_mix (8-1)
—A Eslip (B=1)
—— MURS_mix (B-16)
—O- Eslip (B=16)

04 05 06 07 08 09 1 04 05 06 07 08 09 1 04 05 06 0.7 08 09 1 0 o1 02 03 04 05 06 07 08 03 1
Input Load Output Load Output Load Multicast Fraction

(@) (b) (©) (d)

Fig. 2. Delay Performance of MURSIix and Eslip with different multicast fractiong;,,. (a): f» = 0, corresponding to unicast traffic only. (b, = 0.5,
resulting in evenly distributed input traffic over unicasidamulticast flows. (c);f», = 1 corresponding to multicast traffic only, with uniform Bertioand
uniform Bursty arrivals (burst length, B=16). (d): Maximunhrdughput as a function of Multicast Fractiofi,{ ranging from 0 to 1).

input load consists of a multicast fractioffi,{) and a unicast 8x8 Switch under Beroulli Uniform Traffic
. - ¢ [ % —mURs_m T JR]
fraction (f..), where{(fm, fu)lfm = 1— fu}. The fanout set, 10" g % - MRS i) ’/73/
®, of multicast cells is uniformly distributed between 2 and oMty i/
8 and all outputs have equal chances to be the destination of 10| wgﬂmuazjmix(z) '
. . . —HE— MURS_uf(2)
a multicast cell. Based on the above, the relationship betwe —— MURS_mit4)
—A— MURS_mix(4)

the switch input and output loads is expressed by Equatipn (1
= Afu+ Pfm). @

In our simulation, we averaged the cells fanout set tdbe 4.
Following our settings and substituting with f,,, we have:
p=A1+3fm). @)
For example, if we sef,, to be 0 in Equation (2), the traffic
is all unicast. When we set it to 1, the traffic becomes &flg. 3. Average Delay of MURS with Different Numbers of Mulist Queues
multicast. Whereas, if we fix to 1 for example (switch fully P’ 'nputand Mixed Input Trafficf, = 0.5).
loaded), we can vary,,, and see its effect on the throughput.
When f,, = 0.5, the incoming traffic is evenly distributeddistributed traffic over unicast and multicagt,(= 0.5). As
between unicast and multicast flows. expected, the MURShf scheme has the best delay. This is
In Fig. 2, we compare the average delay performance fpecause it gives priority to multicast flows over unicast Sow
MURS._mix and Eslip. Because Eslip is based only on orfgsulting in more connections per scheduling cycle. Ttesite
multicast queue per input, we used the same settings witblds independently of the number 8fQ used per input.
MURS.mix (k = 1) for fair comparison. Please note thaMURS uf, however, has the worst delay because it prioritizes
Eslip.i refers to Eslip withi iteration(s). As depicted in unicast over multicast. MUR®ix has a medium average
Fig. 2, irrespective of the incoming traffic, MURSIx always delay because it treats both traffic types with the sameityior
achieves far shorter delay than Eslip when the traffic iseeithOn overall MURSmix is the best due to its fairness.
all unicast (Fig. 2-(a)) or all multicast (Fig. 2-(c)). Wheaoh Due to the importance of the internal buffers in simplifying
traffic type shares half the input load ((Fig. 2-(b)) MUR8x the scheduling, we simulated our algorithms under differen
still achieves better performance than Eslip. Howevers thinternal buffer sizes. Fig. 4-(a) depicts the average delay
corresponds to only one setting of a mixed traffic. performance of the MURSix algorithm under three different
Checking all possibilities of mixed traffic requires tuningscenarios. Incoming traffic is either all unicagt,(= 0), or
fm from 0 to 1 and observe the throughput. To this end, asix (f,, = 0.5) or all multicast {,, = 1). We varied the
depicted in Fig. 2-(d), we fixed the output load,to be 100% number of input multicast queues per input as well as the size
(fully loaded system) and recorded the throughput of eadfithe internal buffers and studied their effect under eeaffi¢
algorithm asf,, varies from 0 to 1. Again, MURSniX is scenario. For example, “@P(14) Ucast” corresponds to the
always superior to Eslip by an order of magnitude. MURE MURS_mix algorithm with 1 multicast queue per input €
reaches its lowest performance whgp = 1. This is because 1), 4 cells per internal bufferX P = 4) and incoming traffic
the traffic is all multicast and only a single multicast quésie consisting of unicast cells only. “QP(41) Mix” corresponds
used per input. Please note that, while all our set of algmst to MURS mix with 4 MQs & = 4) per input, 1 cell per
have better delay than Eslip, we chose MUR because X P and a mixed incoming traffic over unicast and multicast
it is more analogous to Eslip in the sense that is does rftdws (f,,, = 0.5). Simulation results show that, irrespective
prioritize one traffic type over an other. of the incoming traffic type, the performance of MURS is the
The remainder of the simulation is done for multicast quelsame when we decrease the input multicast buffers by 75%
set, M@ per input, equal to or bigger than oné ¢ 1). at the expense of increasing the size of each internal buffer
Fig. 3 shows the average cell delay performance of eachtofaccommodate 4 cells instead of 1. This result is the same
our algorithms fork = 1, 2 and 4 respectively and evenlywhen we also use MURSf, as depicted in Fig. 4-(b).

F| —H=— MURS_uf(4)

Average Cell Delay
3

I I I I
0.75 0.8 0.85 0.9 0.95 1
Normalized Output Load



8x8 Switch under Bernoulli Uniform Traffic 8x8 Switch under Bernoulli Uniform Traffic

8x8 Switch under Bernoulli Uniform Traffic 8x8 Switch under Bernoulli Uniform Traffic

L[ —5—axP(14) Ueast
—A- QXP(14)_Mix
—%- Q-XP(14) Mcast

* L[ —B—axP(14) Ucast
—A- QXP(14)_Mix

—%- QXP(14)_ Mcast ; )
—A— QXP(41)_Uoast /
—f— QP Mix /"
—O- QXP(41) Meast n

—A— Q-XP(41)_Ucast
oL 2 s
10 Q-XP(41)_Mix 10
—O- QXP(41) Meast / //

Average Cell Delay
Average Cell Delay

o [ B 0oe(14) Ucast

" —E- e Moast

o| [—B—axP(1a) Ucast
—A- QXP(14)_Mix
—%- QXP(14)_ Mcast
—A— QXP(41)_Uoast
—¥—QxP(an) Mix 7
—0- aXP(a1) Meast 7

—A- QXP(14) Mix
—%— QXP(14) Moast
—A— QP(41)_Uoast
—¥— QXP41)_Mix

08 092 094
Normalized Output Load

(a)

0.96 085

Normalized Output Load

(b)

0.95 1

095 09 097
Normalized Output Load

(c)

095 0% 097
Normalized Output Load

(d)

0.98

Fig. 4. Delay and Stability Performance with Different Nurmdef Input Multicast Queues, Different Internal Buffer Sizand Different Traffic Scenarios.
(a): Average Delay of the MUR®ix Algorithm. (b): Average Delay of the MUR®f Algorithm. (c): Thel — two Norm Vector at Time = 1 million time

slots, MURSmix is employed. (d): Thé — two Norm Vector at time = 1 million

time slots, MURSf is employed.

Because the trade off between the input multicast queubat can schedule concurrent unicast and multicast traffic
and the internal buffers is not straightforward (on chiflows. In particular, the MURSnix algorithm has been shown
memory vs. off chip memory), we studied the stabilityo exhibit very good performance and outperform previous
of the input queues under the same settings as aboakgorithms. Simulation results suggested that a profitahlte
We used thel — two norm vector representing the occu-off between the number of input multicast queues and the size
pancy of all input queues. LeVOQ); ;(n) be the num- of the internal buffers is possible.

ber of unicast cells queued iVOQ;; at time slotn
and MQ;,(n) be the number of multicast cells queued
in MQ,; at time slotn. The [ — two norm vector at
time slotn is denoted by||L(n)|| and defined as follows:

Il =S (S voouwr + S meuty)

In addition to representing the occupancy of the inpur[4
gueues, thé — two norm vector can be used to analyze the
distribution of cells over the input queues as well as theiinp 5]
buffer requirement per input port. As depicted in Fig. 4gnjl
(d) respectively, the input queues occupancies remainatime s (6]
whether we use only 1 multicast queue per input and internal
buffer size of 4 cells or 4 multicast queues per input and’
internal buffer size of 1 cell. This is very important becaus 8]
of the gain we can achieve by this trade off, due the small
amount of internal buffers compared to the size (and numben)!
of multicast input queues. By considering that a switch iedhou[10
hold up to100ms worth of packets [22] and if we consider a
switch runningl0 Gbps port speed, the buffer requirement pek;
port would bel25 M B. Assuming64 B cell size and ouBx 8
CICQ switch, every input queue is approximatély.4 M B.
In our case, reducing the multicast queues set by 75% (using
just 1 MQ per input instead of 4) corresponds to increasin[é3]
the size of each internal buffer to hold 4 cells. This resints [14]
saving250M B of off chip memory, at the expense of adding
approximately12.3K B of internal buffers while keeping the [15]
same overall input buffer requirement as well as achievi
the same cell delay. This translates into a considerabiagav
while maintaining the same high performance of the systent.”

(18]

[
[2]

[12]

V. CONCLUSION

Combined Input and Crossbar Queued (CICQ) switché¥)
have been known to outperform IQ switches due to thgo
simplicity of their scheduling. The problem of integrating
unicast and multicast traffic scheduling has been studietf¥o 21
switches only. In this paper, we proposed a CICQ switching
architecture able to support both traffic types. We preskeate [22]
simple set of integrated scheduling algorithms, named MURS

REFERENCES

McKeown. N., Scheduling algorithms for input-queued cell switchek.D. thesis,
University of California at Berkeley, May 1995.

M. Karol, M. Hluchyj, and S. Morgan, “Input Versus Output Queuing onpa&e-
Division Packet Switch,IEEE Trans. on Commuywol. 35, no. 09, pp. 1337-1356,
Dec. 1987.

N. McKeown, “A fast switched backplane for a gigabit switched routBijsiness
Commun. Reyvol. 27, no. 12, 1997.

] M. Andrews, S. Khanna, and K Kumaran, “Integrated Scheduling of Unicast and

Multicast Traffic in an Input-Queued Switch[EEE INFOCOM pp. 1144-1151,
1999.

M. Song and W. Zhu, “Integrated Queuing and Scheduling for Unicast and
Multicast Traffic in Input-Queued Packet Switche$XSTED Int. Conference on
Communication and Computer Networks (CCN 20Mgv. 2004.

M. Nabeshima, “Performance Evaluation of Combined Input-and Crosspoint-
Queued Switch,"IEICE Trans. On Communvol. B83-B, no. 3, March. 2000.

1 R. Rojas-Cessa, Z. Jing E. Oki, and H. J. Chao, “CIXB-1: Combined Inm&-O

Cell-Crosspoint Buffered Switch,JEEE HPSR pp. 324-329, 2001.

K. Yoshigoe and K. J. Christensen, “A Parallel-Polled Virtual Output @aeu
Switch with a Buffered Crossbar/EEE orkshop on High Performance Switching
and Routing pp. 271-275, 2001.

T. Javadi, R. Magill, and T. Hrabik, “A high-throughput algorithm fouffered
crossbar switch fabric,IEEE ICC, pp. 1581-1591, June 2001.

] L. Mhamdi and M. Hamdi, “MCBF: A High-Performance Scheduling Algorithm

for Buffered Crossbhar Switches|EEE Communications Lettersol. 07, no. 09,

pp. 451-453, Spet. 2003.

L. Mhamdi and M. Hamdi, “Scheduling Multicast Traffic in Internally Buffered
Crossbar SwitchesEEE ICC, pp. 1103-1107, June 2004.

S. Sun and S. He and Y. Zheng and W. Gao, “Multicast Scheduling in Buffered
Crossbar Switches with Multiple Input QueuedEEE HPSR pp. 73-77, May
2005.

A. Mekkittikul, Scheduling Non-Uniform Traffic In High Speed Packet Switches
and Routers Ph.D. thesis, Stanford University, Nov 1998.

T. Anderson, S. Owicki, J. Saxe, and C. Thacker, “High Speed Switch Sc¢hedul
for Local Area Networks,’”ACM Transactions on Computer Systems. 319-352,
1993.

N. McKeown, “iSLIP Scheduling Algorithm for Input-Queued Switche$ZEE
Trans. On Networkingvol. 07, no. 02, pp. 188-201, Apr. 1999.

M. A. Marsan, A. Bianco, P. Giaccone, E. Leonardi, and F. Neri,
Multicast Scheduling in Input-Queued SwitchefZEE ICC, 2001.

B. Prabhakar, N. McKeown, and R. Ahuja, “Multicast Scheduling for Input-
Queued Switches,JEEE JSAC pp. 2021-2027, June 1997.

A. Bianco and E.and Neri F.and Piglione C. Giaccone, P.and Leonardi, “On the
Number of Input Queues to Efficiently Support Multicast Traffic in Input Qadeu
Switches,”|IEEE HPSR pp. 111-116, June 2003.

S. Gupta and A. Aziz, “Multicast Scheduling for Switches with Mukighput-
Queues,"Proc. of Hot Interconnectspp. 28-33, 2002.

C. Minkenberg, “Integrating Unicast and Multicast Traffic Scheduling in A
Combined Input- and Output-Queued Packet-Switching Syst&@CN, pp. 127—
234, 2000.

L. Mhamdi, M. Hamdi, C. Kachris, S. Wong, and S. Vassiliadis, “High-
Performance Switching Based on Buffered Crossbar Fabi@sfiputer Networks
Journal, To appear in 2006

H. J. Chao, “Next Generation Router§foceedings of the IEEE/0l. 90, no. 9,

pp. 15181558, Sept. 2002.

“Optimal



