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ABSTRACT
The discrete wavelet transform (DWT) is used in several im-
age and video compression standards, in particular JPEG2000.
A 2D DWT consists of horizontal filtering along the rows
followed by vertical filtering along the columns. It is well-
known that a straightforward implementation of vertical fil-
tering (assuming a row-major layout) induces many cache
misses, due to lack of spatial locality. This can be avoided
by interchanging the loops. This paper shows, however,
that the resulting implementation suffers significantly from
64K aliasing, which occurs in the Pentium 4 when two data
blocks are accessed that are a multiple of 64K apart, and we
propose two techniques to avoid it. In addition, if the filter
length is longer than four, the number of ways of the L1 data
cache of the Pentium 4 is insufficient to avoid cache conflict
misses. Consequently, we propose two methods for reducing
conflict misses. Although experimental results have been
collected on the Pentium 4, the techniques are general and
can be applied to other processors with different cache orga-
nizations as well. The proposed techniques improve the per-
formance of vertical filtering compared to already optimized
baseline implementations by a factor of 3.11 for the (5, 3)
lifting scheme, 3.11 for Daubechies’ transform of four coef-
ficients, and by a factor of 1.99 for the Cohen, Daubechies,
and Feauveau 9/7 transform.

Categories and Subject Descriptors: C.4 [ Performance
of Systems]: Measurement Techniques.

General Terms: Algorithms, Performance.

Keywords: Discrete Wavelet Transform, memory hierar-
chy, cache, performance.

1. INTRODUCTION
The wavelet transform is mainly used for image and video

compression. Standards such as MPEG-4 and JPEG2000 [13,
15] are based on the 2D discrete wavelet transform (DWT).
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The JPEG2000 compression standard has been created to
provide higher compression ratios than JPEG. It can be very
time-consuming, however. For example, simulation results
presented in [18] show that JPEG2000 encoding can take
up to 34 times longer than JPEG encoding. Furthermore,
results presented in [3, 14] show that the DWT consumes 40
to 60% of the JPEG2000 encoding time.

One way to reduce the execution time of the DWT is by
developing special-purpose hardware. Programmable pro-
cessors, however, are preferable because they are more flexi-
ble and enable different transforms, various filter bank lengths,
and various transform levels. In this paper we, therefore,
focus on the implementation of the 2D DWT on general-
purpose processors, in particular the Pentium 4. Three dif-
ferent filters are considered in this paper, namely the (5, 3)
lifting scheme [9, 21], Daubechies’ transform with four coef-
ficients [22] (Daub-4), and the Cohen, Daubechies and Feau-
veau 9/7 transform [8] (CDF-9/7). The reasons for consid-
ering these filters are (1) the lifting and CDF-9/7 transforms
are included in Part 1 of the JPEG2000 standard [15], and
(2) these transforms have been considered in many recent
papers (e.g., [1, 10, 16, 5, 22, 6]).

A 2D DWT consists of horizontal filtering along the rows
followed by vertical filtering along the columns. It is well-
known that a straightforward implementation of vertical fil-
tering (assuming a row-major layout) generates many cache
misses, due to lack of spatial locality. This can be avoided
by interchanging the loops. Loop interchange, however, does
not solve all cache and memory problems. This is illustrated
in Figure 1, which depicts the speedup of horizontal filtering
over vertical filtering (with interchanged loops) on the Pen-
tium 4, which is equipped with an 8KB 4-way set-associative
L1 data cache with a line size of 64 bytes.

Figure 1 shows that for some image sizes vertical filter-
ing is significantly slower than horizontal filtering while for
other image sizes there is hardly any difference. This behav-
ior should not be attributed to cache misses, however, since
the associativity of the L1 data cache is sufficient to elimi-
nate most conflict misses for the lifting and Daub-4 trans-
forms. This is illustrated in Figure 2, which shows the ratio
of the number of cache misses incurred by vertical filtering
to the number of cache misses incurred by horizontal filter-
ing. These results have been obtained using a trace-driven
cache simulator.

It can be seen that for small images, vertical filtering with
the lifting and Daub-4 transform does not produce more
cache misses than horizontal filtering. For larger images,
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Figure 1: Speedup of horizontal filtering over verti-
cal filtering on the Pentium 4 for various image sizes
and filters

Figure 2: Ratio of the number of cache misses in-
curred by vertical filtering (with loops interchanged)
to the number of cache misses incurred by horizon-
tal filtering for an 8KB 4-way set-associative L1 data
cache with a line size of 64 bytes.

vertical filtering generates approximately 50% more cache
misses than horizontal filtering. This trend is not seen in
Figure 1, however. For example, when the image dimen-
sion is 2048, vertical filtering using the lifting transform is
slower by a factor of approximately 2.1 than horizontal fil-
tering while when the image dimension is 2500 the slowdown
factor is about 1.03. In both cases, however, vertical filter-
ing generates approximately 50% more cache misses than
horizontal filtering. On the other hand, if CDF-9/7 is em-
ployed the cache performance of vertical filtering is much
worse than the cache performance of horizontal filtering, in
particular when the image size is a power of two or a mul-
tiple of a large power of two. But also for this transform
the cache behavior does not match the runtime behavior on
the Pentium 4. Consequently, poor cache performance does
not fully explain why vertical filtering is much slower than
horizontal filtering for some image sizes on the Pentium 4.
Instead, this behavior is due to 64K aliasing [11], which oc-
curs in the Pentium 4 when two data blocks whose addresses
differ by a multiple of 64K need to be cached simultaneously.

The objectives addressed in this paper are to propose
and evaluate techniques to avoid 64 aliasing and to improve
the cache performance for transforms that suffer from many
cache conflict misses. Our main contributions can be sum-
marized as follows:

• We propose and evaluate two techniques to avoid 64K
aliasing. The first technique provides a speedup of up
to 3.3, but for image sizes that do not suffer from 64K

aliasing this technique reduces performance by up to
20%. The second technique improves performance by
up to a factor of 3.1 and incurs no performance penalty
for image sizes that do not suffer from 64K aliasing.

• For those transforms (such as the CDF-9/7 on a 4-way
set-associative cache) that experience many cache con-
flict misses, we propose and evaluate two techniques
to improve cache performance. The first technique im-
proves performance by up to 80% and the second tech-
nique by up to 99%. For image sizes that do not gen-
erate many cache conflict misses both techniques de-
crease performance slightly, due to the overhead (loop
overhead, address calculations) introduced by apply-
ing these techniques.

This paper is organized as follows. Related work is dis-
cussed in Section 2. In Section 3 we have collected various
background information. It describes the wavelet transform
in detail, the experimental environment, and the evaluation
methodology. Section 4 proposes and evaluates two tech-
niques to circumvent 64K aliasing. Section 5 addresses the
cache behavior of transforms such as CDF-9/7 and proposes
and evaluates techniques to avoid conflict misses. Finally,
conclusions are drawn in Section 6.

2. RELATED WORK
Meerwald et al. [14] also observed that caching inefficiency

reduces the performance of vertical lifting significantly and
proposed two techniques, called row extension and aggrega-
tion, to overcome this problem. Row extension adds some
dummy elements to each row so that the image width is no
longer a power of two but co-prime with the number of cache
sets. According to [14], a disadvantage of this method is that
the final coded bitstream is changed. Aggregation filters a
number of adjacent columns consecutively before moving to
the next row, instead of performing vertical filtering column
by column. If the number of columns filtered consecutively
is equal to the image width, aggregation is identical to loop
interchange. However, if the length of the filters is larger
than the number of cache ways, aggregation does not elimi-
nate all conflict misses. In other words, it does not remove
the conflicts that may exist between the input coefficients
needed to compute one output coefficient. This occurs, for
example, in the CDF-9/7 transform (filter length 9) for a
4-way set-associative cache. Meerwald et al. employed the
CDF-9/7 transform.

Chatterjee and Brooks [3] proposed to employ an auxil-
iary matrix to store the results of horizontal filtering. We do
the same, because this auxiliary matrix avoids an expensive
rearrangement step. In addition, they proposed two opti-
mizations: strip-mining and recursive data layout. Strip-
mining is identical to aggregation. The second optimization
modifies the layout of the image data so that each sub-band
is stored contiguously. This increases the locality for subse-
quent decomposition levels, but only the execution time of
the first decomposition level is reported. Both strip-mining
and recursive data layout do not remove the conflicts that
may exist between the input coefficients needed to compute
one output coefficient.

Chaver et al. [4, 5] also considered the memory hierarchy
issue but also vectorized the 2D DWT using an SIMD ex-
tension. They proposed combining aggregation with a line-
based approach [7], which starts vertical filtering as soon as a
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sufficient number of lines (determined by the filter lengths)
has been filtered horizontally. This approach reduces the
amount of memory required. In addition, they considered
different layouts. Although they considered images with a
width equal to a power of two and measured performance on
a Pentium 4 (as well as a Pentium III), they did not men-
tion 64K aliasing. Moreover, their approach also does not
eliminate all cache conflict misses.

There are three main differences between our work and the
works mentioned above. First, the techniques we propose
have not been applied before to optimize vertical filtering.
Second, previous work did not mention nor address 64K
aliasing. Third, our techniques eliminate the conflicts that
may exist between the input coefficients needed to compute
one output coefficient if the filter length is larger than the
number of cache ways. Previous work has focused mainly
on improving spatial locality.

In [17] we considered various ways to implement the 2D
DWT using MMX instructions. In this work we observed
that the performance improvement provided by MMX varies
significantly depending on the image size. Specifically, if
64K aliasing occurs, the speedup is much higher than when
it does not occur. This observation is the main motivation
for the current work.

3. BACKGROUND
In this section we describe the discrete wavelet transform

in detail, the experimental setup, and the reference imple-
mentation with which we will compare our results.

3.1 Discrete Wavelet Transform
The wavelet representation of a discrete signal X consist-

ing of N samples can be computed by convolving X with the
low-pass and high-pass filters and down-sampling the output
signal by 2, so that the two frequency bands each contain
N/2 samples. With the correct choice of filters, this opera-
tion is reversible. This process decomposes the original im-
age into two sub-bands: the lower and the higher band [20].
This transform can be extended to multiple dimensions by
using separable filters. A 2D DWT can be performed by first
performing a 1D DWT on each row (horizontal filtering) of
the image followed by a 1D DWT on each column (vertical
filtering).

Figure 3 illustrates the first decomposition level (d = 1).
In this level the original image is decomposed into four sub-
bands that carry the frequency information in both the hor-
izontal and vertical directions. In order to form multiple
decomposition levels, the algorithm is applied recursively on
the LL sub-band. Figure 4 illustrates the second (d = 2) and
third (d = 3) decomposition levels as well as the layout of the
different bands. As mentioned before, three transforms have
been employed: the integer-to-integer (5, 3) lifting scheme,
Daubechies’ real-to-real transform with four coefficients, and
the Cohen, Daubechies and Feauveau 9/7 transform. The
(5, 3) lifting scheme requires four memory accesses (three
loads and one store) to compute each coefficient, Daub-4
requires five, and CDF-9/7 requires 10.

3.2 Experimental Setup
All programs have been implemented in C and were com-

piled using gcc with optimization level -O2. As experimental
platform we have employed a 3.0GHz Pentium 4 processor.
The main architectural parameters of our system are sum-
marized in Table 1.

Processor Intel Pentium 4
CPU Clock Speed 3.0GHz
L1 Data Cache 8 KBytes, 4-way set associative,

64 Bytes line size
L2 Cache 512 KBytes, 8-way set associative,

64 Bytes line size, On Chip

Table 1: Parameters of the experimental platform.

All programs were executed on a lightly loaded system.
Performance was measured using the IA-32 cycle counter [12].
Cycle counters provide a very precise tool for measuring the
time that elapses between two different points in the execu-
tion of a program [2, 19]. In order to eliminate the effects
of context switching and compulsory cache misses, the K-
best measurement scheme and a warmed up cache have been
used [2]. That means the function is repeatedly (K times)
executed and the fastest time is recorded. Executing the
function at least once before starting the measurement min-
imizes the effects of both instruction and data cache misses.

3.3 Reference Implementation
It is possible to compute the DWT in place. However, in

order to do so, the wavelet coefficients have to be rearranged
in the order expected by the quantization step. To avoid this
rearrangement step, we have employed an auxiliary matrix
that stores the results of horizontal filtering, as proposed
in [3].

The straightforward way of performing vertical filtering is
by processing each column entirely before advancing to the
next column. This method, however, results in excessive
cache misses because it is unable to exploit spatial locality,
since the cache blocks corresponding to the first rows will
have been replaced when the algorithm advances to the next
column. In order to improve spatial locality we have applied
loop interchange, which is a well-known compiler technique.
Figure 5 depicts the effectiveness of loop interchange for ver-
tical filtering. It depicts the speedup of vertical filtering with
interchanged loops over the straightforward implementation
which processes each column entirely before advancing to
the next column for the (5, 3) lifting and Daub-4 transforms.
Clearly, the implementations with interchanged loops are
much more efficient than the straightforward implementa-
tions, especially when the image is large. For this reason we
will compare the performance of our methods to the perfor-
mance attained by the algorithms after loop interchange. In
other words, the implementations with interchanged loops
will be used as reference implementations.

We finally remark that the reason why the speedup for
N = 2500, 3000, 3500 is much larger than for N = 2048, 4096
(for example) is that for N = 2500, 3000, 3500, 64K aliasing
does not occur while for N = 2048, 4096 it does. Conse-
quently, although loop interchange improves spatial locality,
for those image sizes that suffer from 64K aliasing the per-
formance improvement is smaller than for those image sizes
that do not suffer from 64K aliasing.

4. AVOIDING 64K ALIASING
In the Pentium 4 there is a phenomenon known as 64K

aliasing. It occurs if two or more data blocks whose ad-
dresses differ by a multiple of 64K need to be cached si-
multaneously. If this occurs, the associativity of the cache
is useless and the effectiveness of the cache is greatly re-
duced. For some image sizes, the 2D DWT suffers from 64K
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Figure 3: Different sub-bands after first decomposition level.
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Figure 4: Sub-bands after second and third decomposition level.

Figure 5: Effectiveness of loop interchange on
the Pentium 4. This figure depicts the speedup
of vertical filtering with interchanged loops over
the straightforward implementation which processes
each column entirely before advancing to the next
column for the lifting and Daub-4 transforms.

aliasing. For example, Figure 6 depicts the C implementa-
tion of vertical filtering using the Daub-4 transform for an
N ×M image. It can be seen that one iteration of the inner
loop accesses input_img[i][j] and input_img[i+N/2][j].
Consequently, since the matrices are stored in row-major
order, 64K aliasing occurs if cNM/2 is a multiple of 64K
bytes, where c is the number of bytes needed to represent
one wavelet coefficient. In this section we propose and eval-
uate two techniques to circumvent 64K aliasing.

The first idea we explore is loop splitting. By calculat-
ing the low-pass (input_img[i][j]) and high-pass values
(input_img[i+N/2][j]) in separate loops, the 64K alias be-
tween them is removed.

void Daub_4_vertical() {
int i, j, jj;
float low[] ={-0.1294, 0.2241, 0.8365 , 0.4830};
float high[]={-0.4830, 0.8365, -0.2241, -0.1294};
for (i=0, ii=0; ii<N; i++, ii +=2)

for(j=0; j<M; j++) {
input_img[i][j] = output_img[ii][j] *low[0]

+ output_img[ii+1][j]*low[1]
+ output_img[ii+2][j]*low[2]
+ output_img[ii+3][j]*low[3];

input_img[i+N/2][j]=output_img[ii][j]*high[0]
+ output_img[ii+1][j]*high[1]
+ output_img[ii+2][j]*high[2]
+ output_img[ii+3][j]*high[3];

}
}

Figure 6: C implementation of vertical filtering us-
ing the Daub-4 transform. Note that the loops have
been interchanged w.r.t. the straightforward imple-
mentation.

Figure 7 depicts the speedup resulting from this program
transformation. For those image sizes that suffer from 64K
aliasing (powers of two larger than 256 × 256 and 1280 ×
1280), loop splitting indeed improves performance signif-
icantly. In these cases the speedup ranges from 1.97 to
2.94 for the lifting transform, from 2.36 to 3.31 for Daub-4,
and from 1.27 to 1.75 for CDF-9/7. For CDF-9/7, the per-
formance improvements are smaller than for the other two
transforms, because it also suffers from many cache con-
flict misses while the other two transforms do not. Further-
more, for those image sizes that do not suffer from 64K alias-
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Figure 7: Speedup resulting from loop splitting.

Figure 8: Performance improvement achieved by the
offsetting technique.

ing, loop splitting reduces performance by up to 20%. This
is because this transformation removes the temporal reuse
that exists between the calculation of the high-pass and low-
pass values. For example, as Figure 6 shows the coefficient
output_img[ii][j] is needed to compute input_img[i][j]
as well as input_img[i+N/2][j]. When the loop is split,
this temporal reuse is no longer exploited. In addition, loop
splitting slightly increases loop overhead.

The second technique we propose is to offset the memory
address of the high-pass value by one row (or, equivalently,
by cM bytes, where c is the number of bytes per wavelet co-
efficient and M is the number of columns). In other words,
instead of storing the high-pass value in input_img[i+N/2][j],
it is stored in input_img[i+N/2+1][j]. By applying this
offsetting technique, the distance between the two addresses
is no longer a multiple of 64K, but in order to apply this
method, the matrices have to be extended with one row.

Figure 8 depicts the speedup achieved by the offsetting
technique over the reference implementation. For those im-
age sizes (N = 256, 512, 1024, 1280, 2048, 4096) that suffer
from 64K aliasing, offsetting improves performance by a fac-
tor ranging from 2.17x to 3.11x for the lifting transform,
from 2.99x to 3.11x for Daub-4, and from 1.41x to 1.69x for
CDF-9/7. Furthermore, offsetting technique does not incur
a performance penalty for image sizes that do not suffer from
64K aliasing (N = 64, 120, 128, 400, 800, 2500, 3000, 3500).
This is because this technique does not destroy the tempo-
ral locality between the calculation of the low and high-pass
values. Concluding, the offsetting technique is better than
loop splitting.

Figure 8 also shows that the speedups are higher for the
lifting and Daub-4 transforms than for the CDF-9/7 trans-
form, as was the case for the loop splitting technique. Again
this is due to the fact that vertical filtering using the CDF-
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Figure 9: Associativity-conscious loop splitting.

9/7 transform not only suffers from 64K aliasing but also
from many cache conflict misses. For the other two trans-
forms, on the other hand, the associativity of the L1 data
cache is sufficient to eliminate most conflict misses. The fol-
lowing section discusses this problem in detail and presents
two solutions.

5. AVOIDING CACHE CONFLICTS
The Pentium 4 microprocessor is equipped with a rela-

tively small (8KB) 4-way set-associative cache with a line
size of 64B. As shown in the introduction (Figure 2) and as
can be seen analytically, the associativity is sufficient to re-
move most cache conflict misses incurred by vertical filtering
for the (5, 3) lifting and Daub-4 transforms, since in the lift-
ing transform three input coefficients are needed to compute
one output coefficient and in Daub-4 four input coefficients
are required to compute one output coefficient. When us-
ing the CDF-9/7 as well as other transforms, however, the
number of input coefficients (9) needed to compute one out-
put coefficient exceeds the number of ways. This leads to
excessive cache misses in vertical filtering if the rows needed
to compute one row of wavelet coefficients map to the same
cache set(s). In this section we present and evaluate two
techniques to avoid such cache conflicts. Although experi-
mental results are presented for the CDF-9/7 transform and
the Pentium 4, both techniques are general and architecture
independent. By this we mean that they can also be applied
to other transforms and to other cache organizations, since
they take the associativity of the cache and the lengths of
the low- and high-pass filters into account.

The first method is referred to as associativity-conscious
loop splitting (ACLS). The idea is to split the loop that
computes one row of wavelet coefficients into multiple loops
so that each loop accesses at most n rows, where n is the
number of ways. The first loop computes the partial results
that can be computed by accessing the first n rows of input
coefficients. The remaining loops add their results to these
partial results. Specifically, let Lmax = max{Llow, Lhigh},
where Llow and Lhigh are the lengths of the low- and high-
pass filters of the DWT. We calculate one row of wavelet
coefficients using Lmax/n loops, and each loop accesses n
rows of input coefficients. This transformation is illustrated
in Figure 9 and pseudo-code that illustrates the transfor-
mation is depicted in Figure 10. For simplicity, we have
assumed that n divides Lmax.

In the second scheme, which is called lookahead, the rows
of input coefficients are processed in a skewed manner. There
is only one loop for vertical filtering, as in the original al-
gorithm. In each loop iteration we process n rows of in-

257



for (i=0, ii=0; ii<N; i++, ii+=2)
for(j=0; j<M; j++) {

input_img[i][j] = output_img[ii][j]*low[0] + output_img[ii+1][j]*low[1]
+ . . . + output_img[ii+L_max-1][j]*low[L_max-1];

. . .
}

(a)

for (i=0, ii=0; ii<N; i++, ii+=2) {
for(j=0; j<M; j++)

input_img[i][j] = 0.0;
for(L=0; L<L_max ; L+=n)

for(j=0; j<M; j++) {
input_img[i][j] += output_img[ii+L][j]*low[L]

+ output_img[ii+L+1][j]*low[L+1]
+ . . . + output_img[ii+L+n-1]*low[L+n-1];

. . .
}

}
(b)

Figure 10: (a) reference implementation and (b) associativity-conscious loop splitting technique.
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n input coefficients the same
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Figure 11: Illustration of the lookahead algorithm
for vertical filtering.

put coefficients for one particular output coefficient (say
input_img[i][j]) but, in the same iteration, we process
the next n rows for the output coefficient that is located
B/c columns ahead (input_img[i][j+B/c]), where B is the
cache line size in bytes and c is the number of bytes per co-
efficient, and so on. So Lmax/n partial results are computed
in one loop iteration. In later iterations, partial results that
correspond to the same column are added together. This
scheme ensures that no more than n input coefficients ac-
cessed in one loop iteration map to the same cache set. This
algorithm is illustrated in Figure 11 and pseudo-code that
illustrates the transformation is given in Figure 12. For
brevity and simplicity, start-up and clean-up code has been
omitted.

Figure 13 depicts and compares the performance obtained
by the associativity-conscious loop splitting and lookahead
techniques. It depicts the speedup obtained by applying
both techniques compared to the reference implementation.
To avoid 64K aliasing, the offsetting technique has been ap-
plied. For image sizes that suffer from excessive conflict
misses (2m × 2m where m ≥ 8 and 1280 × 1280), both
techniques indeed improve performance significantly. For
these image sizes the performance improvement provided
by ACLS ranges from 59% to 80% and the improvement
achieved by the lookahead technique ranges from 71% to
99%. In general, except for two image sizes (N = 2500

Figure 13: Speedup obtained by applying
associativity-conscious loop splitting and the
lookahead technique as well as offsetting technique
over the reference implementation in the CDF-9/7
transform.

and N = 3500), the lookahead technique performs slightly
better than ACLS. This is because it incurs less loop over-
head than ACLS. For image sizes that do not generate many
conflict misses, both schemes generally slightly decrease per-
formance. This is due to overhead needed for managing loop
and index variables and address calculations.

As remarked before, both ACLS and the lookahead tech-
nique are general and architecture independent. By this
we mean that, although results have been measured for the
CDF-9/7 transform and on the Pentium 4, they can also
be applied to other transforms and processors with different
cache configurations. For example, for certain image sizes,
the (5, 3) lifting and Daub-4 transforms would incur many
cache conflict misses for a 2-way set-associative cache. But
in these cases the same techniques can be applied with the
parameters Lmax = 4 and n = 2.

To validate this claim, Figure 14 depicts the speedup ob-
tained by applying ACLS on the Intel Pentium III (Katmai)
and AMD Opteron processors. The Pentium 3 is equipped
with a 16KB L1 data cache with a line size of 32 bytes,
and the Opteron with a 64KB L1 data cache with a line
size of 64 bytes. Both caches are 2-way set-associative. We
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for (i=0, ii=0; ii<N; i++, ii+=2)
for (j=0; j<M; j++) {

input_img[i][j] = output_img[ii][j]*low[0] + output_img[ii+1][j]*low[1]
+ . . . + output_img[ii+L_max-1][j]*low[L_max-1];

. . .
}

(a)

for (i=0, ii=0; ii<N; i++, ii+=2)
for (j=0; j<M - L_max/n*B/c; j++) {
input_img[i][j] += output_img[ii][j]*low[0]

+ output_img[ii+1][j]*low[1]
+ . . . + output_img[ii+n-1]*low[n-1];

input_img[i][j+B/c] += output_img[ii+n][j+B/c] * low[n]
+ output_img[ii+n+1][j+B/c]* low[n+1]
+ . . . + output_img[ii+2*n-1][j+B/c]*low[2*n-1];

. . .
input_img[i][j+L_max/n*B/c] += output_img[ii+L_max-1-n][j+L_max/n*B/c]*low[L_max-1-n]

+ output_img[ii+L_max-1-n+1][j+L_max/n*B/c]*low[L_max-1-n+1]
+ . . . + output_img[ii+L_max-1][j+L_max/n*B/c]*low[L_max-1];

}
(b)

Figure 12: (a) reference implementation and (b) lookahead technique.

Figure 14: Speedup obtained by applying
associativity-conscious loop splitting technique
over the reference implementation in the CDF-9/7
transform on the Pentium 3 and AMD processors.

have determined experimentally that the Pentium III suf-
fers from many conflict misses for N = 1024, 2048, 4096 and
the Opteron for N = 2048, 4096 and, to a lesser extent,
for N = 1280. Figure 14 shows that for these image sizes
ACLS provides a performance improvement ranging from
20% to 25% on the Pentium III and from 10% to 110% on
the Opteron. For all other image sizes, however, it reduces
performance by up to 20%, due to the overhead introduced.
This shows that it is necessary to provide different versions
of the code and, depending on the image size and the cache
configuration of the target platform, to branch to the most
efficient version.

Finally, Figure 15 depicts the speedup of horizontal fil-
tering over vertical filtering after the offsetting technique
has been applied to avoid 64K aliasing (for all three trans-
forms) and the lookahead technique has been applied to re-
duce cache conflicts (for the CDF-9/7 transform). In most
cases vertical filtering is at most 20% slower than horizon-
tal filtering, which indicates that there is not much room for
further improvements. In a few cases, after applying the pro-
posed techniques, vertical filtering is even faster than hori-

Figure 15: Speedup of horizontal filtering over ver-
tical filtering after avoiding both 64K aliasing and
cache conflict misses problems.

zontal filtering. Comparing Figure 15 to Figure 1 shows that
the proposed techniques improve the performance of verti-
cal filtering tremendously compared to the often reported
implementation with interchanged loops.

6. CONCLUSIONS
In this paper several techniques have been proposed to

improve the memory behavior of the vertical filtering phase
of the 2D DWT on the widespread Pentium 4 processor.
It has been shown that although loop interchange improves
performance significantly, the resulting implementation still
suffers from 64K aliasing for certain image sizes. Further-
more, depending on the transform employed, the associativ-
ity of the cache, and the image size, vertical filtering can
generate many cache conflict misses, even when the loops
are interchanged. Previous work did not address 64K alias-
ing and mainly focused on improving spatial locality, while
our caching techniques eliminate the conflicts between the
input coefficients needed to compute one output coefficient.

To avoid 64K aliasing two techniques have been applied:
loop splitting and offsetting. For image sizes that suffer from
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64K aliasing, loop splitting provides a speedup that ranges
from 1.97 to 2.94 for the lifting transform, from 2.36 to 3.31
for Daub-4, and from 1.27 to 1.75 for CDF-9/7. Loop split-
ting, however, destroys the temporal locality between the
calculation of the low- and high-pass values. Consequently,
for those image sizes that do not suffer from 64K aliasing it
reduces performance by up to 20%. For image sizes that suf-
fer from 64K aliasing, offsetting achieves speedups between
2.17 and 3.11 for the lifting transform, between 2.99 and 3.11
for Daub-4, and between 1.41 and 1.69 for CDF-9/7. Fur-
thermore, because it does not destroy the temporal reuse, it
does not incur a performance penalty for image sizes that
do not suffer from 64K aliasing. We conclude that offsetting
is better than loop splitting.

If the filter length exceeds the number of cache ways, con-
flicts may occur if the input coefficients needed to compute
one output coefficient map to the same cache set. For the
4-way set-associative cache of the Pentium 4, this only oc-
curs for the CDF-9/7 transform. To avoid these conflicts we
have proposed and evaluated two techniques: associativity-
conscious loop splitting (ACLS) and lookahead. For image
sizes that experience many cache conflict misses ACLS im-
proves performance by a factor that ranges from 1.59 to
1.80, while the lookahead technique provides a speedup be-
tween 1.71 and 1.99. For image sizes that do not gener-
ate many conflict misses both schemes generally decrease
performance slightly, due to the loop overhead needed for
managing index variables and address calculations. With
the exception of two image sizes, the lookahead technique
performs slightly better than ACLS, because it incurs less
loop overhead. Both ACLS and lookahead are general be-
cause they can also be applied to other cache organizations
and/or filter lengths.

We are currently vectorizing the 2D DWT implementa-
tions discussed in this paper using the MMX and SSE in-
struction set extensions. Our final goal is to obtain a high-
performance, parameterizable implementation of this impor-
tant kernel.
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