Static Cache Partitioning Robustness Analysis
for Embedded On-Chip Multi-Processors

A.M. Molnos, S.D. Cotofana
Computer Engineering Laboratory
Delft University of Technology
Mekelweg 4, 2426 CD, The Netherlands

(A.M.Molnos,S.D.Cotofana)@tudelft.nl

ABSTRACT

In this paper we analyze the robustness of multi-tasking ap-
plications when mapped on an on-chip multiprocessor plat-
form. We assume a multiprocessor structure which embeds
a hierarchical cache organization with two levels. The first
one is private to the processor cores while the second one is
shared among the processors. To enable compositionality,
i.e, to be able to evaluate the system’s performance out of
the individual task’s performance, the second level of cache
(L2) is partitioned per task basis. Two robustness aspects
are relevant in this context: internal (performance devia-
tions are caused by the tasks comprising the application)
and external (performance variations are caused by exter-
nal stimuli). First we introduce two metrics to quantify the
robustness. The internal robustness is estimated by a sen-
sitivity function which measures the performance variations
induced by the inter-task cache interference. The external
robustness is quantified by a stability function which reflects
the variations induced by different input data on the parti-
tioned L2 behavior. Subsequently, we exercise our method
on two applications (H.264 and picture-in-picture TV) run-
ning on a CAKE multi-processor platform. Our experiments
indicate that, if the cache is partitioned, the sensitivity is
8% and 5% for the H.264 and PiPTV, respectively. For the
shared cache scenario the sensitivity is 40% and 50% for the
H.264 and PiPTV, respectively. The variations induced in
the L2 behavior by various input data sets are at most 4%
for the PiPTV application, respectively 9% for the H.264
decoder. This accounts for a stability of at least 96%, re-
spectively 91%, therefore, for the investigated applications,
we can conclude that the static cache partitioning is quite
robust to input stimuli.

Categories and Subject Descriptors

C.3 [Special-purpose and application-based systems]:
Real-time and embedded systems; B.3.2 [Design Styles]:
Cache memories—robustness measures

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CF’ 06, May 3-5, 2006, Ischia, Italy.

Copyright 2006 ACM 1-59593-302-6/06/0005 ...$5.00.

M.J.M. Heijligers, J.T.J. van Eijndhoven

Philips Research Eindhoven
HTC 5, 5656 AE, The Netherlands

marc.heijligers@philips.com,
jos.van.eijndhoven@philips.com

General Terms

Reliability, performance, theory.

Keywords

Robustness, multi-processors, cache partitioning.

1. INTRODUCTION

State-of-the-art media applications are characterized by
high requirements with respect to computation and mem-
ory bandwidth. On the computation side, the embedded
domain low power and low cost demands make the use of
general purpose architectures with clock frequencies in the
order of several GHz inappropriate. Instead, on-chip multi-
processor architectures are preferred. On the memory side,
media applications process large amounts of data residing
off-chip. The availability of these data at the right moments
in time is critical for the application performance, therefore
a common practice is to buffer parts of the data on an on-
chip memory.

A possible organization of the on-chip memory which alle-
viates the data availability problem is based on hierarchical
caches. In such a context each and every processor core
has associated its private cache memory (called L1 cache in
this paper). As these L1 caches cannot provide the required
application bandwidth [1], shared level two (L2) caches are
used [2], [3]. The advantage of an L2 is that large part of
the data is kept on chip, where the access is at least 10 times
faster than an off chip access [5]. The disadvantage of such a
shared L2 cache is that different tasks may flush each others
data out of the cache, leading to an unpredictable number
of L2 misses. As a consequence, the system’s performance
cannot any longer be derived from the individual task’s per-
formance (property addressed as compositionality).

For media applications guaranteeing the completions of
tasks before their deadlines is of crucial importance. There-
fore, predictability and robustness are among the main re-
quired properties in this domain. A solution for the pre-
dictability problem is to use static partitioning of the cache
as proposed in [6]. In this approach, the compositionality
is induced by allocating parts of the L2 cache, exclusively,
to each individual task in the application. However, the
compositionality is not 100% ensured because the L1 cache
is assumed to be private to each and every task during its
execution and only the L2 is partitioned. Thus, in order to
guarantee performance, one should be able to estimate the
variations induced by the L1 inter-task sharing.

Moreover, static cache partitioning is utilized, thus the
application may use only one partitioning ratio during its
entire execution. This cache partitioning ratio is computed
utilizing the application’s statistics for a given input data
set [10]. However, during the application execution differ-
ent other input data might have to be processed. It is quite
probable that for these new data sets the partitioning ratio
for which the application has its best performance is differ-
ent than the one which is in use. To be able to guarantee
performance, the designer should be able to estimate these
deviations too.

In the view of previously mentioned phenomena two ro-
bustness aspects are relevant in our context: (1) the vari-
ations introduced by the inter-task L1 interference (2) the
variations induced in the L2 behavior by various input data
sets. The first robustness type is addressed as ”intern” be-
cause instabilities are caused by the tasks comprising the
application. The second robustness type is addressed as
?extern” because variations in performance are caused by
the extern input stimuli.

In this paper we propose an approach to assess the robust-
ness of an application running on a multi-processor system
with statically partitioned L2. As previously mentioned, for
this type of systems the internal robustness is determined
by inter-task interference in the L1 cache. This interference
strongly depends on the task switching rate. To estimate the
internal robustness we introduce a sensitivity metric which
reflects the variation in L2 misses number for different task
switching rates. To assess the external robustness, we in-
troduce the stability metric. It measures the performance
deviations for the case when the application processes an-
other input data set than the one utilized to determine the
static partitioning ratio. An application is considered to be
stable if its number of misses obtained with a certain input
data is close to the least number of misses possible for that
input data.

To demonstrate our approach we analyze two parallel ap-
plications: a picture-in-picture video decoder and a H264
decoder. We utilize a CAKE multi-processor instance [3] as
simulation platform, the input stimuli available at [7], and
we compare the robustness of the shared and partitioned
cache cases. For both applications, we evaluate the sensi-
tivity function (internal robustness) and the stability func-
tion (external robustness). Our experiments indicate that,
if the cache is partitioned, the sensitivity is 8% and 5% for
the H.264 and PiPTV, respectively. For the shared cache
scenario the sensitivity is 40% and 50% for the H.264 and
PiPTV, respectively. Thus comparing the internal robust-
ness of the two cases, one can see that the shared cache is
5 times for the H.264 decoder, respectively 10 times for the
PiPTV decoder, more sensitive than the partitioned one.
The variations induced in the L2 behavior by various in-
put data sets are at most 4% for the PiPTV application,
respectively 9% for the H.264 decoder. This accounts for a
stability of at least 96%, respectively 91%, therefore, for the
investigated applications, we can conclude that the static
cache partitioning is quite robust to input stimuli.

The remainder of the paper is organized as follows. Back-
ground information over the considered multi-processor plat-
form and the cache partitioning method are introduced in
Section 2. The robustness evaluation method is described
in Section 3. Section 4 presents practical experiments and
results, and Section 5 concludes the paper.

2. BACKGROUND

This section introduces the targeted system, the applica-
tion model, and the cache management scheme.

2.1 Target architecture

The envisaged multi-processor architecture consists of a
homogeneous network of computing tiles on a chip [3]. Each
tile contains a number of CPUs, a router (for out of tile com-
munication), and memory banks. The processors are con-
nected to memory by a fast, high-bandwidth interconnection
network. Each of the processor cores has its own L1 cache.
Since this L1 cache’s latency directly relates to the proces-
sor’s cycle time, there are very strict timing requirements
for this cache. Therefore, the L1 caches are relatively small.
The on-tile memory is actually used as a large, unified L2
cache, shared between processors, facilitating a fast access
to the main memory which resides outside the chip. If data
are not present in the L1 cache the L2 is accessed, so if the
L1 performance varies the L2 is impacted. In this paper we
use one tile of the multi-processor like the one depicted in
Figure 1.

CPU CPU CPU
L1 cache L1 cache . . L1 cache
[interconnection network]
' | memory memory memory L2 i
| bank bank bank cache
ON CHIP

DRAM MEMORY

Figure 1: Multi-processor target architecture

The applications executed on this architecture consist of
sets of tasks that communicate through the memory hier-
archy, thus through the shared L2. Each task can be re-
garded as a process consuming input data and producing
output data. In this way the tasks are naturally synchro-
nized based on data availability. A task temporarily stops
its execution (is swapped out) in two cases: (1) when task’s
input data buffers are empty or its output buffers are full,
(2) when an interrupt occurs. Between two executions of the
same task, a processor can execute other tasks. Moreover,
in order to support a natural load balancing, the tasks may
freely migrate from one processor to another, depending on
the processors availability.

2.2 Cache partitioning

In the considered multi-tasking environment it is possible
that two tasks T; and T; have their data mapped in the same
cache location. Therefore, when T3’s data is loaded into the
cache it may flush T}’s data, eventually causing a future T
miss. This kind of unpredictability constitutes a major prob-
lem for real-time applications. Ideally, the designer would
like to have a compositional system such that the overall
application performance can be predicted based on the per-
formance of its individual tasks. For this purpose exclusive
L2 cache parts are statically allocated to tasks and inter-

task communication buffers using the method introduced in
[6].

We assume a conventional cache to be a rectangular array
of memory elements arranged in ”sets” (rows) and ”ways”
(columns). We perform two partitioning types. First, each
task and each inter-task communication buffer gets an ex-
clusive part of the cache sets. Second, inside the cache sets
of a communication buffer each task accessing it gets a num-
ber of ways. The used partitioning ratio is determined such
that the overall application number of misses is minimized
[10]. Let us assume that the application is composed out
of N tasks, T = {T;}(=1,n)- The process of finding this
optimized ratio require first an information gathering phase
during which every task Tj is individually simulated having
different amounts of cache. Subsequently, the best partition-
ing ratio is computed such that the sum of all task misses
is minimized, under the constraint that all allocated cache
cannot be larger than the available cache. This best parti-
tioning ratio BPR is a set of cache sizes {¢;}(—1,n), where
¢; is the cache allocated to task T;.

3. ROBUSTNESS EVALUATION METHOD

This section presents the proposed approach to assess the
robustness of an application running on a multi-processor
as the one described in Subsection 2.1. We consider two
aspects of robustness: (1) internal robustness defined as the
sensitivity of the L2 misses of a task on the other tasks’
behavior, (2) external robustness defined as the variations
induced in the L2 behavior by various input data sets.

3.1 Internal robustness

In a memory organization like the one we consider, the
internal variations in task performance are due to the fact
that task switching pollutes the L1 caches. When, on a pro-
cessor Py, a task T; is swapped out by a task Tj, T;'s data
are gradually flushed out of P,’s L1 by T; memory accesses.
The amount of data that T; might still find in the cache on
its next execution on P, depends on how long T; executed
and on whether other tasks were executed in the mean time
on Pj. High task switch rate are likely to pollute L1 caches
less at a time, but for many times. Low task switch rate
are likely to pollute the L1 cache more at a time, but rarely.
The exact amount of L1 pollution depends on the applica-
tion. For a picture-in-picture video decoder our experiments
indicate that when the average task switching rate almost
doubles (from 24K times/second to 41K times/second) the
number of accesses to the L2 cache increase with 60%. Un-
der these conditions, if a certain off-chip bandwidth has to
be guaranteed, the robustness of the system to task switch-
ing rate has to be investigated.

For the internal robustness analysis we propose to use
the L2 sensitivity function. In order to define it, let us
assume that the application is composed out of N tasks,
T = {T:}(—1,~) and that SW R = {swr»}(»=1,r) is the set of
investigated task switching rates. The number of L2 misses
of task T; depends on T;’s allocated cache size ¢;, and on
the task switching rate swr,. We denote these T;’s misses
with missi(c;i, swr,). The L2 sensitivity corresponding to a
task T; is defined as being the maximum difference in the
number of L2 misses among the investigated task switching
rates, when a given L2 cache size ¢; is allocated to T;. To
give an idea about the impact of this variation on the ap-
plication performance, we define the task sensitivity relative

to the number of misses obtained when the tasks switch at
a reference rate, swr:

sensi(c;) =

max {miss;(c;,swr — min {miss;(c;,swr
max {miss; (cs,swrn)} - min {miss; (ciswrs))

x 100%.

> miss;(c;,swr)

i=

For a relevant estimation, the reference task switching rate
swr should be the most probable, real, task switching rate.
If this value is not know or variable, the designer might
choose to relate to the application misses obtained for one
of the swr,, or an average over them.

In the same way as the task’s sensitivity, we define the ap-
plication’s sensitivity sensa as being the relative maximum
difference in overall number of misses over the investigated
task switching rates, when a certain L2 partitioning ratio is
applied:

senss = ITr'lggA(P{sensi (i)}
T

The smaller sensa the more robust is the application.
Ideally, we would like to get semsa = 0, but this cannot
be achieved for the case when only L2 is partitioned. How-
ever, due to typical small sizes, L1 is unsuited for static
partitioning. In a multi-processor system, if L1 is statically
partitioned the application’s tasks should be statically as-
signed to processors (it makes no sense to allocate cache
for a task on a processor where that task might never run).
This is not a preferred option because it restricts the run-
time processors’ load balancing options. For example in a
video decoder where all tasks concur for processing frames
at a certain rate, restricting run-time load balancing can di-
minish the performance. In the case that L1 is dynamically
partitioned, the application’s sensitivity sensa still cannot
be zero because the repartitioning is dictated at run-time,
therefore variations may occur.

3.2 External robustness

This subsection presents a method to determine the per-
formance deviations for the case when the application pro-
cesses another input data set than the one utilized to deter-
mine the static cache partitioning ratio. First we illustrate
the analysis of external robustness by using a small exam-
ple, and after that we present the general formulation of this
analysis.

Let us assume that the investigated application has three
tasks (IV = 3) and two relevant sets of input data in; and
ing are considered in the cache partitioning process. Let us
assume that when the application uses ini (in2) as input
data its best performance is achieved if tasks have as parti-
tioning ratio BPR:1 = (ci,c3,c3) (BPRa = (ci,c3,¢3)), as
depicted in Figure 2. BPR, and BPR> are calculated such
that the application’s L2 misses is minimum, under the con-
straint that the allocated cache is smaller that the available
cache (12 units in our case).

It can be observed that the best partitioning ratio BPR;
and BPR, are different. When using static cache parti-
tioning the application may use just one single partitioning
ratio, BPR = (c1, ¢c2,c3). This ratio can be BPR1, BPR»,
or any compromise between those two. For instance any par-
tition with ¢; € [min(ci, ¢7), max(ci, ¢?)], c2 € [min(c3, c3),
max(c3, c3)], and c3 = ¢} = ¢3 can be utilized.

Allocated cache sinputdata1
10 : = +inputdata 2
[
]] he
& T
4 Wc_,,
2 1 el
3
5 b %
0 T
T T2 T3 Tasks

Figure 2: Example: Partitioning ratios correspond-
ing to two input data

If, for example, BPR; is not used as the partitioning ra-
tio, in case the application is processing in; as input data,
its performance is deviating from the best achievable one.
In this case it is of interest to estimate an upper bound
of the potential performance degradation. For this pur-
pose, we calculate the worst partitioning ratio, BPR; =
(ci,cd,cl), with (c},cl,cl) bounded by BPR; and BPR,;.
BPR, is determined utilizing the same optimization method
as for BPR;, but with the constraints that ¢! € [min(cl,c?),

max(cl, c?)], ¢b € [min(c3, ¢3), max(ch, ¢2)], and ¢t = ¢ =

2. Because we want to estimate the worst performance, the
number of misses is maximized instead of minimized.

Let us assume that, for example, for input data in; the
application minimum number of misses is denoted by M;
and it is given by the following:

My = missi(ct,in1) + missa(ch,in1) + misss(cs, in1).

where miss; 23 are the number of misses corresponding to
the three tasks of the application, when processing data in;.
Thus for input in: and any valid partition BPR the largest
number of misses is given by the following:

My = missi(ct,in1) + missa(cl,ini) + missa(cl, iny).

The same type of investigation can be done for in» also

and the values % and % reflect the robustness of the
system to input data.

In media applications, time deadlines are imposed for pro-
cessing a number of data units (for example a video decoder
might have to decode 25 frames in a second). Therefore,
it is also interesting to evaluate the variations in L2 behav-
ior caused by different data units belonging the same input
stimuli. This means that, for instance, input data in; may
consists of the first frame of a video stream and ¢no may be
the next frame of the same video stream. Such a stability
evaluation is useful because it gives a bound of the dynamic
behavior inside the same input stream.

For a general application having N tasks T = {T;};=1,n),
let IN = {ini}=1,) be the set of relevant input data sets.
A task T;’s number of misses miss;i(c;, in;) depends on task’s
allocated L2 size ¢; and on the input data in;. When the ap-
plication processes the input data in;, its number of misses,
is denoted with M; and it is given by the following:

N
M; = Y miss;(ck,im).
i=1

For every input data 4n; € IN the best partitioning ratio
BPR, is the set of tasks’ allocated cache sizes (¢}, c}, ..., ciy).
As previously mentioned, it is possible that the best parti-
tioning ratio BPR; differ among each other. The final par-
titioning ratio, BPR = (c1, ¢2, ...,cn) can be BPR;, BPR,,

., BPRy, or any compromise among them, that respects
the following condition:

¢i € [lgl}vn{d}, max{c; }] :

In order to estimate an upper bound of the potential per-
formance degradation in the case of in; we calculate the
worst partitioning ratio that respects the previous condi-
tion. We denote this ratio as being BPR; = (¢}, cb, ..., c4).
To determine BPR; we use the same calculation method as
for BPR,, with the constraints that ¢! € [I}l}lvn{ci}, n}g’x{ci}]

and instead of minimizing the number of misses, we maxi-
mize it (we are looking for worst behavior). The application
largest number of L2 misses under the previous conditions
is denoted with M;, and it is given by the following formula:

N _
M, =Y missi(c,in).
i=1

We define the application’s stability stab; to in; as being
the relative variation between M; and M;:

stab; = % x 100%.
The overall application stability is defined as the worst
stability over the set of input data IN:

staba = I}l}lvn{stabl}.

If the stability is close to 100% the application behaves
good for all its representative input data, so it is externally
robust. If the difference between M; and M; are large, the
static cache partitioning is not robust to input data varia-
tions and for better performance a dynamic repartitioning
should be considered. In the next subsection we briefly dis-
cuss a number of dynamic cache repartitioning options.

3.3 Robustness considerations for dynamic
cache repartitioning

An good overview of dynamic cache repartitioning schemes
is given in [4]. There are mainly two types of cache reparti-
tioning. The first is the ” associativity based” repartitioning.
The number of cache ways (cache organization) limits the
granularity of this partitioning type. Repartitioning is cheap
because data correctness can be preserved without flushing
the cache. The second is the "set based” repartitioning.
Typically in a cache there are more sets than ways, thus this
method can potentially offer finer partitioning granularity.
However, at repartitioning data correctness cannot be pre-
served without flushing parts of the cache. This makes this
second type of cache repartitioning more expensive than the
first type.

The existing dynamic cache repartitioning scheme are as-
sociativity based [8] [9]. In these schemes the task that have
either high priority [9] or large cache needs [8] dynamically
"steals” cache ways from the other tasks. The purpose is to
increase performance of high priority tasks [9] or to improve
the overall hit rate [8].

An allocation scheme in which a task will be granted all
the requested cache can lead to cache ”starvation” of some
of the tasks. For example, a repartitioning strategy that at-
tempts to improve the overall hit rate will eventually give a
large part of cache to an erroneous task asking for it. Given
this fact, the system will fail. Therefore, in a robust sys-
tem, the cache repartitioning cannot be done fully at tasks
requests, like in the existing approaches. The cache man-
ager should have a global view on the application’s tasks
and their allocated cache, to prevent starvation and system
failures. Our future work will include robust dynamic cache
repartitioning strategies.

4. EXPERIMENTAL RESULTS

For our experiments we used a CAKE multi-processor
platform [3] with 4 Trimedia processor cores and 4 ways as-
sociative L2 cache. Each and every Trimedia processor core
has separate instructions and data L1 caches. The shared
L2 cache is unified (it contains both data and instructions).
We use the set-based L2 partitioning described in [6]. The
experimental workload consists of two video multi-tasking
applications: an H.264 decoder and a picture-in-picture-TV
(PiPTV) decoder. We adapted the L2 cache sizes to the
applications’ requirements [6], while taking in consideration
that typical L2 sizes for the CAKE platform are around 1-2
MBytes [3]. For the H.264 decoder the used L2 cache size is
1MB, and for the PiPTV decoder the used L2 cache size is
2MB. We executed these applications with standard defini-
tion input test sequences. We used the stimuli available at
[7], which exhibit different degree of detail and movement.
To have insight in the dynamic behavior of an input stream,
we also investigate the stability variations among different
number of frames of the same stimuli.

The data communication and synchronization among the
tasks is done through FIFOs. The tasks are switched in
two cases: (1) when they have no available input data or
output buffer space or (2) when an interrupt occurs. On our
experimental platform, for the purpose of our investigations,
we induce higher task switching rate by shrinking the FIFOs
sizes. For FIFOs larger than a certain size the task switching
rate does not decrease anymore because a value intrinsic to
the application is reached. We consider this lowest value as
the reference task switching rate, as defined in the Section
3.1. In our case, both applications have the least number
of misses for the lowest task switching rate. The internal
robustness is relative to this number of misses, therefore the
presented results reflect the largest deviations.

In the remainder of this section both application are briefly
described and then the robustness assessment methods we
introduced in Section 3 are applied. The results obtained for
the case of the partitioned cache are compared with the ones
for the shared cache. To our knowledge, no cache related ro-
bustness investigation method exists in the literature, there-
fore we cannot compare our proposal with previous work.

4.1 H.264

The H.264 decoder consists of several tasks [11]. First an
entropy decoder task processes the input stream and passes
the data via a data scheduler to a set of transform decoders
and loop filters tasks doing inverse quantization, transfor-
mation, prediction and deblocking on different parts of the
image (Figure 3). The total number of tasks of this appli-
cation is 15.

|transform decoder 0 | | loop filter 0 |

vy 7

transform decoder 1 | | loop filter 1 |
7
A

| loop filter N |

H.264 entropy

—=>
decoder M

transform decoder N |

frame buffer
YUV

Figure 3: H.264 parallel application’s tasks

Task L2 sensitivity M partitioned L2
60000 Oshared L2
50000
40000 — M
30000 B
20000
il

i m w | B 0 - e,
g 9 > °© .9 N v Y - T L.
&

,;)‘,@ 90 ,,c)‘g’ &7 &7 &0 & &7 & & &

Q] 7 o&xs N K0 4 K AR
& B E & & ©
& O <& & & & &
Tasks

Figure 4: H.264 tasks L2 misses variation with task
switching rate: shared vs. partitioned cache

To investigate the internal robustness we apply the tech-
nique in Section 3.1. The investigated average task switch-
ing range is from 41K times per second (corresponding to
4KB FIFOs) to 74K times per second (corresponding to
0.5KB FIFOs). For FIFOs larger than 4KB the average
task switching rate does not decrease anymore because the
value intrinsic to the application is reached. For FIFOs
smaller than 0.5KB the application deadlocks, so the aver-
age task switching rate cannot be increased anymore. This
task switching variation accounts for 30% difference in the
number of L2 accesses.

The L2 sensitivity of tasks is compared for the partitioned
and the shared cache case (Figure 4). In Figure 4 are de-
picted only the tasks with L2 misses variation larger than
0.5% of the H.264’s overall misses. It can be observed that,
in general, the shared L2 is more sensitive than the parti-
tioned one. There are few tasks for which the sensitivity of
the partitioned L2 cache is larger than the one of the shared
cache. However, for all those tasks the sensitivity is smaller
than 0.5%, so they can be considered irrelevant. Over all the
application, the shared cache is 5 times more sensitive than
the partitioned one. For a partitioned cache, over the inves-
tigated task switching range, the application’s sensitivity as
defined in Section 3.1 is at most 8%.

In the analysis of H.264 external robustness we found that
the differences among the best partitioned ratio correspond-
ing to different input data are relatively small. Across differ-
ent input data the cache sizes for the transform decoders and
loop filters vary with 32 cache sets (16KB of cache) which

input data mobcal | parkrun | shields | stockholm

H.264 stability 96% 96% 100% 98%

Table 1: H.264 stability for different input data

@
(ecoding (
video
muxing
- ——
decoding

Figure 5: PiPTYV parallel application’s tasks

represents 1.5% of the entire cache. The cache size allocated
to the entropy decoder task is always the same. Table 1 de-
picts the stability corresponding to each input data stream
investigated. For some input data the partitioning ratio is
non-optimal and this induces a performance degradation of
maximum 4%. This corresponds to a stability of 96%, as de-
fined in Section 3.2. Taking this facts into account, we can
conclude that the static cache partitioning for the H.264 ap-
plication is robust to input stimuli. A stability comparison
between the shared and the partitioned cache is not possible
because the stability, as defined in Section 3.2, is linked to
the partitioned ratio, thus it cannot be computed for the
shared cache scenario.

4.2 PiPTV

The picture-in-picture-TV (PiPTV) application decodes
two different video streams and outputs raw pictures con-
taining both video stream images, scaled with a given fac-
tor. This application consists of the following tasks (Figure
5): video demultiplexing of transport stream, two mpeg2
decoders (every one having multiple tasks [12]), two video
scalers, video multiplexing the two images, and output. The
PiPTV is described in YAPI and it is based on the work in
[13]. The tasks connected in the graph depicted in Figure 5
are communicating data using FIFOs.

To investigate the internal robustness we vary the task
switching rate. For every of the 4 Trimedia cores, the aver-
age task switching range is varied from 24K times per sec-
ond (corresponding to 2KB FIFOs) to 41K times per second
(corresponding to 0.4KB FIFOs). This task switching range
accounts for 66% variation in the number of L2 accesses.

The L2 sensitivity of tasks is compared for the partitioned
and the shared cache case. We depict in Figure 6 the L2 task
sensitivity values for the tasks that experience the largest L2
variations. As it can be observed in the figure, the shared
L2 is more sensitive than the partitioned one for most of
the tasks. The L2 misses variation of tasks that are an
exception from the previous observation are actually very
small (in the range of 0.1% of the application’s L2 misses).
For the entire PiPTV application, the shared cache is 10
times more sensitive to L1 variations than the partitioned
one. In the case of a partitioned cache, over the investigated
task switching range, the application sensitivity, as defined
in Section 3.1, is at most 5%.

For the PiPTV application the differences among the data
dependent best partitioned ratio are at most 8 cache sets per

Task L2 sensitivity M partitioned L2
OsharedL2

30000 —

35000

S & N &
£ &
S R S S
Hs ¥ g o ST P SO A RN N 3
R - -

LT ART R RTRC T

Tasks

Figure 6: PiPTYV tasks L2 misses variation with task
switching rate: shared vs. partitioned cache

input data frames | 10 15 30 60 |
PiPTV stability | 92% | 100% | 93% | 98% |

Table 2: PiPTV stability for different input data

task. The total best cache ratio varies with 80 sets, which
represents 7% of the total cache size. This partitioning ratio
variations correspond to a maximum performance degrada-
tion of 9%. This corresponds to a stability of 91%, as defined
in Section 3.2. We also exemplify the analysis of inside input
stream dynamic behavior in Table 2. This table presents the
stability figures corresponding to different number of frames
from an input stimuli. In this case, we can observe that the
minimum stability is 92%. Therefore, we can conclude that
the static cache partitioning for the PiPTV application is
robust to input stimuli. As already mentioned, the stability
is defined in relation to the partitioning ratio, therefore the
shared vs. partitioned cache comparison is not applicable
for this metric.

5. CONCLUSIONS

In this paper we proposed a method to analyze the static
cache partitioning robustness of an application mapped on
an on-chip embedded multi-processor. In this context we
considered a memory organization which has two levels of
cache: (1) L1, private to every processor and (2) L2, shared
between the processors, but partitionable per task basis. For
applications executed on this multi-processor, two types of
robustness are discussed: internal (determined by inter-task
interference in the L1 cache) and external (determined by
the variations of the L2 behavior due to various input data
sets). For both types of robustness we introduced quantifi-
cation metrics. For internal robustness we defined the sen-
sitivity function which measures the deviation of L2 misses
caused by the L1 variations over a range of task switching
rates. To assess external robustness we introduced the sta-
bility function which measures the performance deviation
for the case the application processes another input data set
than the one utilized to determine the static L2 partitioning
ratio.

To demonstrate our approach we analyzed two parallel
applications: a picture-in-picture video decoder and a H.264

decoder and we used as simulation platform a CAKE multi-
processor instance [3]. In the internal robustness case, if
the cache is partitioned, the H.264 sensitivity is 8% and the
PiPTYV sensitivity is 5%. Comparing the internal robustness
of the shared and partitioned cache cases, we found that the
shared cache is 5 times for the H.264 decoder, respectively
10 times for the PiPTV decoder, more sensitive than the
partitioned one. This is an interesting fact on itself, because
it suggests that the optimizations processes for L1 and L2
caches can be decoupled if the L2 is managed on a task
centric manner.

The variations induced in the L2 behavior by various in-
put data sets are at most 4% for the PiPTV application,
respectively 9% for the H.264 decoder. This accounts for
a stability of at least 96%, respectively 91%, therefore, for
the investigated applications, we can conclude that the static
cache partitioning is quite robust with respect to input stim-
uli variations.

6. REFERENCES

[1] A. Stevens, "Level 2 Cache for High-performance ARM
Core-based SoC Systems”, ARM white paper, 2004

[2] B.A. Nayfeh and K. Olukotun, ”Exploring the Design
Space for a Shared-Cache Multiprocessor”, In
Proceedings, ISCA, pages 166-175, 1994

[3] J.T.J. van Eijndhoven, J. Hoogerbrugge, M.N. Jayram,
P. Stravers, and A. Terechko, ” Cache-Coherent
Heterogeneous Multiprocessing as Basis for Streaming
Applications”, In ”Dynamic and robust streaming
between connected CE-devices”, Kluwer Academic
Publishers, 2005

[4] P. Ranganathan, S. Adve, and N.P. Jouppi,
”Reconfigurable caches and their application to media
processing”, In Proceedings, 27th Annual International
Symposium on Computer Architecture, pages 214-224,
2000

[6] J.L. Hennesy and D.A. Patterson, ” Computer
Architecture: A Quantitative Approach”, Morgan
Kaufmann Publishers, 2003

[6] A.M. Molnos, M.J.M. Heijligers, S.D. Cotofana, and
J.T.J. van Eijndhoven, ” Compositional, efficient caches
for a chip multi-processor”, In Proceedings, Design,
Automation and Test in Europe, to appear in 2006

[7] ftp://ftp.ldv.e-technik.tu-
muenchen.de/pub/test_sequences/

[8] G.E. Suh, L. Rudolph, and S. Devadas, ” Dynamic
Partitioning of Shared Cache Memory”, The Journal of
Supercomputing, volume 28, number 1, pages 7-26, 2004

[9] Y. Tan and V.J. Mooney, ” A Prioritized Cache for
Multi-tasking Real-Time Systems”, In Proceedings of
the 11th Workshop on Synthesis And System Integration
of Mixed Information Technologies, pages 168-175, 2003

[10] A.M. Molnos, M.J.M. Heijligers, S.D. Cotofana, and
J.T.J. van Eijndhoven, ” Compositional memory systems
for multimedia communicating tasks”, In Proceedings,
Design, Automation and Test in Europe, pages 932-937,
2005

[11] E.B. van der Tol, E.G. Jaspers, and R.H. Gelderblom,
”Mapping of H.264 decoding on a multiprocessor
architecture”, In Proceedings, SPIE Conference on
Image and Video Communications and Processing, 2003

[12] P. van der Wolf, P. Lieverse, M. Goel, D. La Hei, K.A.
Vissers ” An MPEG-2 Decoder Case Study as a Driver
for a System Level Design Methodology”, In
Proceedings, 7th International Workshop on
Hardware/Software Co-Design, pages 33-37, 1999

[13] E. A. de Kock, W. J. M. Smits, P. van der Wolf, J.-Y.
Brunel, W. M. Kruijtzer, P. Lieverse, K. A. Vissers, and
G. Essink ”YAPI: application modeling for signal
processing systems”, In Proceedings, 37th conference on
Design Automation, pages 402-405, 2000

