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Abstract— This paper investigates the implementation of high-
radix multiplication based on the Electron Counting (EC)
paradigm in Single Electron Tunneling (SET) technology. First
we propose a multiplication scheme which conceptually speaking
follows the structure of traditional full-tree multipliers. The high-
radix EC multiplication scheme comprises three steps and of
each an implementation is presented. Second, an 8-bit radix 4
EC multiplier is designed and verified by means of simulation.
The high-radix multiplication scheme is evaluated in terms of
area and delay for different operand sizes and compared with
corresponding binary multiplication schemes in SET technology.
Both type of implementations prove to have similar delay times,
but the EC based scheme requires up to five times less area.

Index Terms— single electron tunneling, high-radix multiplica-
tion, computer arithmetic.

I. INTRODUCTION

It is generally expected that current semiconductor tech-
nologies, i.e., CMOS, cannot be pushed beyond a certain limit
because of problems arising in the area of power consumption
and scalability. A promising alternative is Single Electron
Tunneling (SET) technology [1], which has the potential of
performing computation with lower power consumption than
CMOS and is scalable to the nanometer region and beyond [2].

Several proposals have been made to implement computa-
tional operations using SET technology and these implementa-
tions are mainly categorized in two types (see for example [1],
[3]). The first type of implementation represents logic values
by voltage (see [3] for an overview) while the second type
of implementation represents bits by single electrons. Single
Electron Encoded Logic (SEEL) [4] is an example of the latter.

Using the second type of implementation, arithmetic units
can be designed in a conventional logic design styles, e.g.,
using Boolean and/or threshold gates (see for example [5]).
The Electron Counting (EC) paradigm [6], on the other hand,
uses a novel design style and appears promising as an efficient
computational paradigm for the implementation of SET based
arithmetic operations, e.g., addition and multiplication. Previ-
ous EC based adder and multiplier implementations assumed
that an unlimited amount of electrons could be transported
within the EC building blocks, which does not hold true in
practice. Therefore, a limit to the operand size of the previous
proposed schemes is implied by the available SET fabrication
technology. One way to alleviate this problem is to do high-
radix computation [7] and a high-radix addition scheme was

proposed in [8]. In this paper we propose a high-radix EC
multiplication scheme.

The remainder of this paper is organized as follows. Sec-
tion II briefly describes the single electron tunnel phenomenon
and introduces the EC paradigm. Section III introduces the
proposed high-radix multiplication scheme. In Section IV the
high-radix EC multiplier scheme is compared with a SEEL
multiplication scheme and Section V concludes the paper.

II. BACKGROUND

SET circuits are based on tunnel junctions which consist
of an ultra-thin insulating layer in a conducting material (see
Figure 1). In classical physics no charge transport is possible
through an insulator. However, when the insulating layer is thin
enough the transport or tunneling of charge can be controlled
in a discrete and accurate manner, i.e., one electron at a
time. Tunneling through a junction becomes possible when
the junction’s current voltage Vj exceeds the junction’s critical
voltage Vc = qe

2(Ce+Cj)
[9], where qe = 1.602 · 10−19C, Cj is

the capacitance of the junction, and Ce is the capacitive value
of the remainder of the circuit as seen from the junction. In
other words, tunneling can occur if and only if |Vj | ≥ Vc.
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Fig. 1. Schematic representation of the tunnel junction.

Electron tunneling is stochastic in nature and as such the
delay cannot be analyzed in the traditional sense. Instead, for
each transported electron one can describe the switching delay
as td = −ln(Perror)qeRt

|Vj |−Vc
, where Rt is the junction’s resistance

and Perror is the chance that the desired charge transport has
not occurred after td seconds. In this paper we assume Rt =
105Ω and Perror = 10−8. Each transported electron reduces
the system energy by ∆E = qe(|Vj | − Vc) from which the
consumed energy can be calculated.

Note that the implementations discussed in here are tech-
nology independent. SET tunnel junctions can for example
be implemented by classical semiconductor lithography or by
carbon nanotubes [10]. Therefore, circuit area is evaluated in
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terms the total number of circuit elements (capacitors and
junctions).

As mentioned in the introduction, there are many ways to
do computation using SET technology of which the Electron
Counting paradigm seems to exploit the potential of SET most
of all. In the EC paradigm, the ability to control the transport
of individual electrons is utilized to encode integer values
X directly as a charge Xqe. Once binary values have been
encoded as a number of electrons, one can perform arithmetic
operations directly in electron charges, which reveals a broad
range of novel computational schemes, generally referred to
as Electron Counting (EC).

III. HIGH-RADIX EC MULTIPLIER

The high-radix EC multiplication scheme we propose is
based on the full-tree multiplication strategy [11] often used
in fast multipliers, and comprises three steps. In the first step
all partial products are produced at once in parallel. When
assuming binary operands this can be done by simple AND-
gates and for n-bit operands, this first step produces n rows of
bits. In the second step the number of rows is reduced using
one or more stages of counters. With each stage of counters,
the number of rows is reduced until only two rows are left
over. In the last step these two rows of bits are added, often
by using a fast addition scheme like carry look-ahead.

The strategy of the high-radix EC multiplication we pro-
pose, which is depicted in Figure 2 for the case of 8-bit radix
4 multiplication, comprises the same three steps with some
adjustments. In the next paragraphs each step is explained in
more detail.

x

+

A

B

Fig. 2. 8-bit radix 4 EC multiplication strategy

In the first step, the partial products are formed. Since we
work in radix r, the operands are split into digits of log2r bits.
Assuming an operand size of n bits, this results in � n

log2r �
digits for each operand. The multiplication of these digits is
performed by EC multipliers, of which a 2-bit instance is
depicted in Figure 3, and which operate as follows. Each bit
of operand B is connected to an MV ke block [6], which
adds 2iqe charge to the bottom charge reservoir if input bi

is logic ’1’. Consequently, the charge reservoir contains the
intermediate sum IS = Σ1

i=0bi2iqe. This intermediate sum
is feeded into a next set of MV ke blocks, of which each
block adds IS ∗ ai ∗ 2iqe charge to the top charge reservoir,
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Fig. 3. 2-bit EC multiplication scheme

which consequently contains the result of the multiplication.
The value in the top reservoir is analog and it is not converted
to the digital domain, since the next step is designed to accept
analog values. The multiplication scheme contains an OpAmp
which has not been designed yet, but which can potentially be
implemented using a hybrid FET-SET technology [12], [13].

The direct application of the EC multiplication scheme for
step one requires ( n

log2r )2 such multipliers. However, we can
reduce the number of elements if we observe that each digit
of B can be converted to analog once, after which this analog
value is used by all multipliers in the same row (see Figure 4).
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Fig. 4. Step one of high-radix EC multiplication.

In the second step the number of rows is reduced by EC
counters, which functionality is similar to normal population
counters [14] used for binary operands. However, an EC
counter assumes a number (k) of analog high-radix (r) inputs,
all having the same weight, i.e., the inputs are all in the same
column. The EC counter produces a number of outputs (s)
in the same radix as the inputs, representing the sum of the
inputs values, i.e., it produces a row. In the remainder of this
paper we denote a specific instance of such an EC counter as
EC (k,r;s) counter.

An EC counter implementation is depicted in Figure 5 for
the case of four radix 16 inputs and operates as follows. Each
analog input is buffered and amplified before it is fed into the
MPSF blocks [15] in order to eliminate feedback effects. The
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Fig. 5. EC (4,16;2) counter

MPSF blocks perform both the addition of the inputs and the
conversion of the intermediate sum to the digital domain.

An MPSF block implements a Periodic Symmetric Func-
tion (PSF) Fs whose output is logic ’1’ within an interval
from a to b, and with a period T (see Figure 6). Each bit si

of a digital representation of a value X can be described as a
PSF of X as si = Fs,i(X), where the period is 2i+1. Thus,
utilizing an MPSF block for each bit an analog to digital
conversion can be performed. Once the intermediate sum is
converted to the digital domain by the MPSF blocks, it is
split into digits of log2r bits, in order to guaranty that the
output is in the correct radix. These digits are each converted
back to the analog domain by sets of MV ke blocks and the
final result is stored in charge reservoirs.

Since in our case the maximum sum is 64, six MPSF
blocks are required each one producing one bit. The first four
of these bits are used to produce the analog sum output, which
is done by four MV ke blocks [6]. The last two bits are used
to produce the carry signal, which is done by two more MV ke
blocks.

1

0
a b b+T a+2Ta+T b+2T

Period

Fig. 6. Periodic Symmetric Function.

We note here that the partial products produced by the first
step do not all have the same weight. In Figure 2 this is
graphically represented, as the partial products in the bottom
four rows have a different alignment as the ones in the top
four rows. In order to end up with equal aligned intermediate
sums, an adjusted counter can be used for the partial products
in the bottom rows.

In counter based binary full-tree multiplication, the number
of rows is reduced to two, which subsequently is reduced to
one row using a fast adder. However, as opposed to standard
adders, EC adders can perform k:1 reduction (within certain
limits for k) in almost the same delay as 2:1 reduction [15].
Therefore, in the high-radix EC multiplication scheme the
number of rows does not have to be reduced to two, and
the reduction process can be stopped earlier than in binary
multiplication schemes. For example in the 8-bit radix 4 EC
multiplication in Figure 2 only one stage of five counters is
required.

The third step of the high-radix EC multiplication is the
final addition of a number of rows of intermediate sums. In
general, this step of the multiplication is performed by some
fast addition scheme like carry look-ahead, carry-skip, etc. For
the EC paradigm, such a fast addition scheme is not designed
yet, thus in this paper we use a ripple carry structured adder.

The addition scheme we use in here, consists of several EC
addition blocks, as depicted in Figure 7, and which functions
as a high radix, multiple input full adder. The addition block
has l inputs, a carry-in, and a carry-out all in radix r2 and
2 log r output bits. The number of inputs l is limited to a
maximum of r to ensure that the carry-out does not exceed
the maximum possible value (r2). The EC addition block
functions similar to the EC counter, excepts that the first part
of bits is not converted to the analog domain. The bits of the
second part are converted to the analog domain, which forms
the carry-out signal. To create an adder, the addition blocks are
cascaded in parallel with the carry-out of block i connected
to the carry-in of block i + 1.
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Fig. 7. EC Addition Block

To verify the high-radix multiplication scheme we simulated
the 8-bit radix 4 multiplier in SIMON [16]. We used an
approach of partitioning to simulate the whole multiplier, for
the following reason. Although SIMON contains the OpAmp
as circuit element, using it in SET circuitry causes some
random effects to occur. Partitioning the circuit in parts ending
with an OpAmp resolves this problem. To simulate the entire
circuit, the output of each OpAmp was stored and used as an
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input in the next part. The simulation results indicated that the
multiplier functions correctly.

IV. COMPARISON

To assess the efficiency of our proposal, we compared the
high-radix EC multiplication scheme, with respect to area
and delay, with a binary multiplication scheme based on SET
Threshold Logic Gates (TLGs) [17]. The SET TLG multiplier
uses a similar strategy as the EC multiplier, i.e., first partial
products are calculated, which are next reduced to two rows,
which are finally added by a carry look-ahead adder. Each
of the components of this multiplier was implemented using
TLGs in SET technology.

The reason this comparison was chosen, is to obtain a
comparison on paradigm level and to avoid technology specific
influences. Both the EC and TLG multiplier were implemented
in SET technology, and both implementations were scaled such
that the voltage representing the logic value ’1’ is the same
in both cases. Though TLGs are somewhat unconventional in
digital circuits, they do belong to the class of binary compo-
nents, and as this is the only binary multiplier implemented
in SET, as far as we know, we chose this one as comparison.

We compared the multipliers for both 16-bit and 64-bit
operands. We chose to use radix 4 for the EC multiplier, re-
sulting in radix 16 EC counters. We calculated that a minimum
area can be achieved when using counters with 14 inputs, thus
we utilized (14,16;2) EC counters. In our design we assumed
that all counters are the same. Further optimizations for area
could be done by selecting smaller counters where less inputs
are required.

The area and delay for all four multipliers are presented in
Table I. Since, for the EC multiplier in step three a simple
ripple carry adder was used, while a carry look-ahead adder
was used in the binary multiplier, a fair comparison of the
two paradigms cannot be made on the total area and delay.
Therefore, in the table the area and delay of step three is
displayed separately while we focus on the area and delay of
steps 1 and 2.

The delay of steps 1 and 2 of the 16-bit and 64-bit EC
multipliers are equal, because for both designs only one stage
of counters was required. We note here that for the EC
multipliers, the delay of the OpAmp buffers is not included,
since no implementation of these was done. Despite this, we
can conclude that the delay of both implementations are in
the same order of magnitude. The area of the high-radix EC
multiplier is respectively 2 and 5 times smaller than the area
of the TLG based multiplier.

V. CONCLUSIONS

This paper investigated the implementation of high-radix
multiplication based on the Electron Counting (EC) paradigm
in Single Electron Tunneling (SET) technology. A multiplica-
tion scheme was proposed based on the full-tree multiplier
strategy often used in binary multiplication. To verify the
proposed scheme an 8-bit radix 4 instance was simulated.
Evaluation of the proposed scheme in terms of area and delay

Area (elements) Delay (ns)
multiplier # bits step1 & 2 step 3 step 1 & 2 step 3
EC radix 4 16 3285 1715 19.6 96.8
SET TLG 16 6766 3083 18.6 16.1
EC radix 4 64 36420 6923 19.6 413.6
SET TLG 64 192101 8406 25.8 17.9

TABLE I

COMPARISON OF EC AND BINARY MULTIPLIERS.

allowed a comparison to a binary multiplication scheme. Both
schemes proved to have similar delay times, but the EC based
scheme requires up to five times less area.
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