
Rcosy DES.6392
Reconfigurable Compiler System - Rcosy

Towards a Quantitative Model for Hardware/Software
Partitioning.

Roeland J. Meeuws Yana Yankova Koen Bertels

Computer Engineering Laboratory
Faculty of Electrical Engineering, Mathematics, and Computer Science

Delft University of Technology
Mekelweg 4, 2628 CD Delft, The Netherlands

E-mail: {rmeeuws,yyankova,koen}@ce.et.tudelft.nl

Abstract

In the field of Reconfigurable computing the problem of partitioning a sys-
tem in hardware and software parts has been tackled in many different
ways. Our idea is to devise a quantitative model based on software met-
rics that are representative for different hardware characteristics. In this
paper we research the different estimation and partitioning strategies cur-
rently employed in the field as a preparation for developing such a model.
We determine that much research has been done on area and speed metrics,
while power, memory, and communication aspects have not received much
attention. Furthermore, we find that many different partitioning strategies
have been developed. Many of which aim to be hill-climbing algorithms,
i.e. algorithms that try to find a non-local optimum. Based on the litera-
ture we review, we conclude that estimation in a future quantitative model
must have a clear notion of error and precision. Furthermore, the use of
software metrics as a basis for hardware software partitioning has not been
sufficiently explored. On the subject of partitioning strategies, we conclude
the need for incorporating the dynamic aspect of reconfigurable computing.
Furthermore, partitioning and estimation should be on the same level of
granularity.

Keywords: Hardware/Software Partitioning, Hardware Estimation, Soft-
ware Metrics, Reconfigurable Computing

Contents

1 Introduction 1
1.1 A case study: Software Radio 2
1.2 Reconfigurable Computing Requirements 3
1.3 MOLEN and Delft Workbench 4

2 High Level Estimation, Metrics, and Profiling 8
2.1 Area, Speed, and Power . 8

2.1.1 Area . 8
2.1.2 Speed . 14
2.1.3 Power . 18

2.2 Other metrics . 21
2.2.1 Communication . 21
2.2.2 Memory Usage . 21

2.3 Software metrics and comparability 22
2.4 Classifying metrics . 23

2.4.1 Dynamic vs. Static . 23
2.4.2 Level of design . 24
2.4.3 Data structures . 25
2.4.4 Strategies . 26
2.4.5 Application Domains 28
2.4.6 Use of libraries and component models 29
2.4.7 Granularity of Estimation 30
2.4.8 Error in estimation . 31

2.5 Characterizing hardware synthesis and optimization 31

3 Hardware/Software Partitioning 33
3.1 Partitioning Algorithms . 33

3.1.1 Greedy . 33
3.1.2 Simulated Annealing 35
3.1.3 Kernighan-Lin/Fiduccia-Mattheyses 36
3.1.4 Evolutionary or Genetic Algorithms 36
3.1.5 Global Criticality/Local Phase Driven Algorithms . . 38
3.1.6 Dynamic Programming 40

i

3.1.7 Binary Constraint Search 41
3.1.8 Clustering Algorithms 42

3.2 Partitioning and Estimation 43
3.3 Dynamic versus Static Solutions 43
3.4 Synthesizability and Partitioning 45

4 Conclusions 46

References 48

ii

Chapter 1

Introduction

For many years, computers have been based on the Von Neumann Machine
(or Stored-program machine), which is a machine divided into a process-
ing unit, a combined data and program memory for data, and a sequential
flow of data and control elements between the memory and the processing
unit [1]. The idea of a program of instructions that are executed sequen-
tially made the implementation of algorithms much simpler, hence the rapid
advancement of software development in the following decennia became pos-
sible.

However, as Backus [2] pointed out, the concept showed an inherent
bottleneck, which he called the “Von Neumann-bottleneck”. Because the
processing unit and the memory in a Von Neumann-machine are separate,
instructions and data have to be moved continually. Furthermore, the se-
quential nature of this process limits the speed one can achieve by exploiting
more parallelism. Still, the Von Neumann-computer has been successful due
in no small part to the many tools supporting the paradigm at each level.
Moreover, the miniaturization of electronics have provided regular speed im-
provements (Moore’s Law), diminishing the need for a non-Von Neumann
architecture.

Despite the dominance of Von Neumann machines, other architectures
have been used in specific areas. These application specific systems (ASICs)
are able to use the parallelism inherent to the problem at hand and combine
processing and storage into their data-path. In contrast to more general
applications, application specific systems did not need the programmability
and flexibility of the Stored-Program machine. Special languages, tools, and
design methodologies have been developed to make the implementation of
ASICs possible.

In recent years, the continuing applicability of Moore’s Law has come
into question. For one, wire delays become an increasing problem at higher
speeds, and second, the manufacture of transistors smaller than a few atoms
seems unlikely. Furthermore, a growing demand for mobile technology and

1

other systems with limited power supplies have made the use of fast Von-
Neumann processors in such systems difficult if not impossible. To cope
with this problem, designers increasingly use ASICs to speed up expen-
sive algorithms like media encoding and signal processing. Such systems,
where both programmable and application specific systems are combined,
are called heterogeneous systems.

The problem that remains, however, is the inflexibility of such custom
hardware, i.e. every different task needs a different circuit. This results in a
combinatorial explosion of ASICs, driving up the cost considerably. In order
to remedy this problem the research community introduced Reconfigurable
Computing (RC). Reconfigurable Computing combines programmable soft-
ware components with programmable hardware components [3], like FPGAs.
Hence, Reconfigurable Computing advances the idea of heterogeneous sys-
tems by introducing programmability to the hardware components. These
programmable hardware components make it possible to dynamically load
different ASIC designs or configurations, making flexible non-Von Neumann
machines a possibility. To clarify the concept of Reconfigurable Computing,
let us look at [4], where three levels of programmability are identified for
both control-flow models (software) and data-flow models (hardware) (Ta-
ble 1.1). The programmability in Reconfigurable Computing comprises all
those instances of programmability.

Control-flow Data-flow
Different programs can be executed Different circuits can be executed
Executing programs can be modi-
fied

Executing circuits can be modified

Dynamic behavior through choice
in control flows

Dynamic behavior through choice
in data flows

Table 1.1: Three different levels of programmability in control-flow and
data-flow systems, as presented in [4]

1.1 A case study: Software Radio

As an illustration of how Reconfigurable Computing can help alleviate pro-
cessing requirements, while remaining flexible, we will now look into the
Software Radio[5, 6, 7, 8, 9]. In mobile communications many different fre-
quency bands are used for different applications, like GSM for voice, GPRS
for Internet, and UMTS for video. To make things more complicated the
exact frequencies differ per region, for example GSM at 1800MHz in Europe
and Asia and GSM at 1900MHz in North America. Because of the differ-
ent networks, frequencies, and bandwidths, a programmable radio that can
service different networks on demand would be beneficial.

2

However, the computing power required for a software radio on a con-
ventional processor are quite high. As an illustration, look at the example
in [6], that mentions that processing a 500MHz carrier frequency using a 1
GHz sampling rate (as dictated by the Nyquist theorem) on a 32-bit 4-issue
4GHz system, leaves 32 operations per sample, which is not enough to fil-
ter and (de)modulate the signal, apply error correction, and so forth. [6],
argues for the use of a heterogeneous multiprocessor architecture, i.e. an
architecture that comprises different ASIC and General Purpose processors,
to tackle this problem. Nevertheless, such an approach may be expensive.
[7, 8] suggests Reconfigurable Computing (especially FPGA technology) as
a means to make radio signal processing possible, while remaining flexible
enough to service different networks at different times. In [8] we even find
an example design: the Layered Radio Architecture.

1.2 Reconfigurable Computing Requirements

Although the advantages of Reconfigurable Computing are clear, it has not
pervaded industry as traditional computing has. In an attempt to explain
this, [3] argues that while the Von Neumann Machine is supported by an
extensive and mature base of tools, apis, and design methodologies, no such
extensive support is available for the Reconfigurable Computing paradigm.
In other words, for Reconfigurable Computing to be commercially applica-
ble, it should have a comparable support base. In recent years some tools
have been developed to attack this problem.

The problem doesn’t end there, however. Because Reconfigurable Com-
puting moves away from the von Neumann model, the extensive base of
support should be adapted accordingly. In [10], for example, current hy-
brid programming models are pointed out to be immature, because FPGAs
and CPUs are treated completely separate. In order to make the design
of Reconfigurable Computing systems feasible the paper proposes a more
transparent model, i.e. the multi-threading model. This model provides a
way to describe concurrency without specifying where the thread will be
implemented. A separate partitioner can then partition the threads over
the hybrid processing elements. In [11] this model is elaborated in more de-
tail. The paper describes how to implement software and hardware threads
by using a common abstraction layer in the operating system, providing a
common interface between hardware and software threads. Another possible
programming model for reconfigurable computing is presented in [12], where
a functional programming model, called V, is introduced. That model uses
implicit parallelism and aims to be similar to both traditional embedded
(compositional) functional models, as well as more component based mod-
els used in hardware design. Computational models need to be redefined
with respect to Reconfigurable Computing as well. In [13] a redefinition of

3

the term algorithm, as used in computability theory, is presented tailored
to Reconfigurable Computing.

1.3 MOLEN and Delft Workbench

Our research group has been working on reconfigurable computing for some
time and we have developed a reconfigurable programming paradigm, with
an accompanying platform, called the MOLEN programming paradigm [14]
and the MOLEN polymorphic processor [15] respectively. The MOLEN
programming paradigm features parallel hardware and concurrent hardware
processes, but is intended to be sequentially consistent, i.e. the result must
be the same as when the program would have been executed sequentially,
and is targeted at single-program execution. As these papers mention, this
paradigm has been developed to cope with 4 problems commonly associated
with reconfigurable computing:

• Opcode space explosion
If new instructions are defined for every (every) configuration on a
reconfigurable platform, a potentially unlimited amount of opcodes
are needed to be able to implement a broad number of applications,
however, a typical architecture has only a limited amount of unused
opcodes available.

• Limitation of the number of parameters
Several reconfigurable computing approaches offer only a limited amount
of input and output parameters. The maximum amount of parallelism
that can be attained, therefore, is limited too.

• Lack of parallel execution support
Many architectures don’t facilitate executing sequential data-independent
operations or configurations in parallel.

• Lack of modularity
The configurations used in reconfigurable systems are often specific to
a certain platform or technology. This makes it quite laborious and
thus expensive to port configurations to another platform.

In order to provide solutions for these problems the MOLEN program-
ming paradigm suggests a limited instruction set extension. This extension
provides instructions to load and execute configurations, a large register set
for parameter passing, and the possibility to execute different configurations
on the reconfigurable unit in parallel.

Loading configurations is implemented using configuration microcode,
which is code that performs the actual configuration. This way different
types of reconfigurable units can be configured without the need for changing

4

the MOLEN architecture providing a much needed degree of modularity. A
so-called SET operation is defined that loads the configuration microcode
and initiates the configuration procedure.

When a configuration is completed the added functionality can be ex-
ecuted using an EXECUTE instruction. The EXECUTE instruction uses
one opcode in the base opcode space and provides 2(n − o) (where n =
no. bits per instruction, o = no. of bits per opcode) additional config-
ured operations, addressing the problem of the opcode space explosion. The
EXECUTE instruction loads an execution microcode program into the re-
configurable unit. This program is then executed using the configuration
previously loaded by the SET operation. Multiple available configurations
may be executed in parallel. Explicit synchronization among the core pro-
cessor and the different configurations can be performed using the a special
instruction (BREAK).

Before the EXECUTE instruction can commence, however, the neces-
sary data should be provided to the register set in the MOLEN architec-
ture responsible for parameter passing (XREGS). Therefore, instructions
(MOVTX, MOVFX) for moving data between the core processor and mem-
ory on one hand and the core processor and the XREGS on the other have
been added as well.

Figure 1.1: A basic overview of the general MOLEN platform.

The basic structure of the MOLEN platform is depicted in Figure 1.1.
First instructions are fetched from memory and partially translated by the
arbiter in order to decide whether they are redirected to the core processor
or the reconfigurable unit. The reconfigurable unit comprises of a reconfig-
urable microcode unit or ρµ-code unit and a custom computing unit (CCU).
The ρµ-code unit interprets and executes the configuration- and execution
microcode, and the CCU is the actual configurable hardware part, e.g. a

5

FPGA.

We have already established the need for extensive tool support when
considering the acceptance of reconfigurable computing in industry. Tool
support and integration for reconfigurable computing is the main focus of
the Delft Workbench project. Its research covers the entire design process
from code profiling to compilation. The project has four main objectives
[16]:

• Program Analysis and Performance Prediction
The Delft Workbench aims to identify functions in a program that
might benefit the most from hardware implementation. These func-
tions are then characterized by performance and area metrics, in order
to find a set of functions with optimal increases in performance given
the constrained area of the target platform. The result is a (semi-
)automatic selection of a set of functions for migration to hardware.

• C-to-VHDL mapping
In order to implement software functions in hardware, a designer would
traditionally translate them to VHDL manually. Within the Delft
Workbench, effort is being made to automate this process. One ex-
ample of such automation is the C–to–VHDL compiler, that is being
developed. It can translate C programs or candidate functions to
VHDL. A problem with such a compiler, however, is the lack of inter-
active design space exploration it allows. For this purpose Delft Work-
bench envisions a library of FPGA configurations with an accompa-
nying performance model, which helps the designer evaluate different
design alternatives.

• Retargetable Compiler
When a set of candidate functions is determined, the Delft Workbench
provides a retargetable compiler that can compile these functions to a
MOLEN architecture. Functions are translated to code for configur-
ing the FPGA, moving the needed parameters, starting the execution,
and retrieving the output. The compiler must deal with all compila-
tion issues for the GPP as well as the added difficulties introduced by
adding a reconfigurable unit.

• Integration and Validation
The output of the retargetable compiler can now run on a real MOLEN
implementation, allowing actual performance statistics, like FPGA re-
configuration time, to be obtained. These statistics are used as feed-
back for the Delft Workbench tool-flow. A refined set of candidate
functions and a refined schedule are determined using the feedback
information. This process iterates until the designer is satisfied with

6

the results. The iterative nature of the process implies a tight coupling
among the different tools in the tool-flow.

Figure 1.2: A basic overview of the general Delft Workbench tool-flow.

The Delft Workbench project focuses mainly on the MOLEN program-
ming paradigm as its target platform. The tools and tool-flow envisioned by
Delft Workbench are depicted in Figure 1.2. At the moment partitioning of
a program for the MOLEN platform is still manual. The Delft Workbench
project proposes a code profiler and partitioner that automate this task. The
goal of this profiler/partitioner is to increase the speed of the application,
while staying within the bounds on the limited area of the reconfigurable
unit. In order to decide where parts of a program should reside, the Delft
Workbench specifies the need for a decision model based on metrics collected
during profiling.

Currently, no such model exists. Therefore, in order to develop such a
model this paper investigates different metrics, estimation strategies, par-
titioning models, and partitioning strategies. The paper is organized as
follows. In Section 2 I will discuss metrics that indicate hardware aspects of
a (part of a) program and estimation techniques to determine them. Then,
in Section 3 I will review hardware/software partitioning models and strate-
gies. Finally, in Section 4 I will briefly discuss the results presented in this
paper and indicate possible elements for the decision model to be used in
the code profiler/partitioner in Delft Workbench.

7

Chapter 2

High Level Estimation,
Metrics, and Profiling

Estimation of different cost parameters has always been an important activ-
ity in high level system design. Estimates of e.g. speed, area, or power in-
form a designer about whether a design will meet requirements, stay within
budget, and so forth, thus driving further design choices. Not only cost
parameters can be important measures to a designer, others, like loop fre-
quency or data reference locality, might help direct the design process as
well. Many tools and algorithms have been developed over the years that
help determine metrics and thus make the job of the designer easier. If we
go one step further and model the process of selecting candidates for hard-
ware implementation, we need to look at the measures and their meaning.
In this section we will discuss different metrics and techniques to estimate
them. First I will briefly present the different papers I reviewed. Then, I
will review different aspects of the estimation schemes by finding ways to
classify these metrics. Furthermore, we will briefly go into synthesis and
optimization and how we may measure its effects.

2.1 Area, Speed, and Power

Most work in estimation has focused on area, speed-up, and power, probably
because they directly correspond with the cost and obvious requirements of
designs. We will discuss them here first, before we go on to less obvious
areas of estimation.

2.1.1 Area

Area estimation has been tackled in various ways by different groups. In [24]
a lower bound on area is estimated under certain performance constraints.
Specifically, they estimated the number of modules of each type and the area

8

Paper Dynamic/
static

Level of
design

Application
Domain

Data
structure

Node
model

Granularity Strategy Complexity Error

[17] Static Behavioral Multimedia CDFG multiple
(non-
)linear
models

Entire
Graph

Hierarchical linear 2.5%-10%

[18] Static Behavioral Communication Custom n/a Functions Incremental O(1) per iteration about 7%
[19] Static Behavioral Multimedia CDFG Bit-width

based
Entire
Graph

Neural nonlinear 10% large
error with
badly
trained
networks

[20] Static System/
Behavioral

Multimedia,
Mathemati-
cal

VHDL Ab-
stract Syn-
tax Tree

Bit-width
based

Entire Ap-
plication

Scheduling nonlinear 16%

[21] Static Behavioral Multimedia,
General
Purpose

PACT
HDL Ab-
stract
Syntax
Tree

Simple Entire Ap-
plication

scheduling,
allocation

nonlinear average 25%
(maximum
of 241%)

[22] Static RTL and
lower

n/a Boolean
expres-
sions

n/a n/a Complexity linear within
56%

[23] Static Behavioral Multimedia,
Compression,
Mathemati-
cal, General
Purpose,
Cryptogra-
phy

CDFG unknown Entire
Graph

Hierarchical linear 60–100%

[24] Static Behavioral Multimedia DFG Simple Entire
Graph

Scheduling O(nc2) n/a

[25] Static Behavioral n/a (annotated)
CDFG

Simple Entire
Graph

scheduling O(speedest.) +

O(n2)

n/a

[26] Static Behavioral Cryptography n/a Simple n/a Hierarchical n/a n/a
[27] Static System/

Behavioral
Multimedia H-CDFG Simple Entire

Graph
Hierarchical O(n log n) n/a

[28] Static Behavioral Multimedia,
General
Purpose

(C)DFG Simple Node clus-
ters

Hierarchical linear n/a

[29] Dynamic System Communication (annotated)
DFG

Bit-width
based

Entire
Graph

Scheduling O(simulation)+

O(n2)

n/a

Table 2.1: Different classifications of area estimation found in several papers
and indications of estimation error in those papers. For an explanation of
the classifications, please refer to Section 2.4.

needed for interconnect. The paper explains how lower bound estimates
can be determined by scheduling a DFG and accounting for the minimum
number of modules and busses required.

Because area estimation tries to predict the results of synthesis tools,
[21] tries to find estimates by mimicking high level synthesis. Techniques
like force directed scheduling, resource allocation, operation assignment, and
interconnection binding, all come from high level synthesis. The algorithm
uses a simplified model of an FPGA only taking into account standard LUTs
and multiplexers as interconnection structures. Furthermore, optimizations
during synthesis are not taken into account. Although these simplifications
make the estimation process considerably faster, they also reduce the accu-
racy of the result.

Where some area estimation techniques aim to be deterministic and are
based on knowledge about synthesis, the neural estimator (NESTIMATOR)

9

Figure 2.1: The NESTIMATOR neural estimator from [19] working together
with a synthesis tool. The results of synthesis are compared with estimates
and the neural network is adapted accordingly.

10

in [19] takes a more non-deterministic approach. The estimator in this
paper is first “teached” to correlate characteristics of a behavioral design to
synthesis results by providing it with hundreds of examples. The setup is
depicted in Figure 2.1. The feed-forward neural network used in this paper
consists of 4 layers of neurons. The hidden layers use non-linear sigmoid
neurons and the output layer uses linear neurons. The input to the neural
network are several metrics characterizing CDFGs:

• Number of allowed time steps

• Maximum allowed clock period

• Average delay and area and variances of each FU type

• Number of nodes using each FU type

• Number of nodes

• Average bit-width of nodes and variance (indicates node and intercon-
nect area)

• Average path length and variance (indicates interconnect area)

• Average number of inputs/outputs and variance (indicates intercon-
nect and controller area)

• Average minimal and maximal lifetime of outputs and variances (in-
dicates storage cost)

• Complexity of the CDFG (indicates parallelism)

An approach targeted specifically at partitioning algorithms is intro-
duced in [18]. This paper describes how a preprocessed information data
structure holding basic design information can be maintained between suc-
cesive iterations making it possible to get an updated estimate of the area
during every new iteration of the partitioning algorithm in constant time.
[30] demonstrates the usefulness of incremental estimation by integrating
the technique into the COSYN algorithm.

Another approach concerning estimation during the partitioning process
is defined in [25]. Here the optimal cost of a given partitioning for the
minimal execution time is calculated. The optimal cost is determined by
adding the costs of single nodes while accounting for the sharing of resources.
Resource sharing is represented by the sharing factor which is based on the
similarity between nodes. Similarity may be defined in multiple ways, but
must indicate to what level nodes can share hardware.

In [23] the estimation is executed before the partitioning process and
therefore tries to be independent of specific synthesis tools. Because of this,

11

the approach taken in this paper only takes into account the data paths.
The estimates are used in a cost function in a partitioning algorithm and
only need to be indicators of the actual area. This means that, although
disregarding the control paths does result in a significant error, the metric
can still be applied in partitioning.

As part of the fine-grained and coarse-grained partitioning strategies tar-
geted specifically at FPGAs in [28] the authors present an area estimation
approach. The partitioning strategy utilizes an area estimation algorithm
that is based on summation. However, this summation handles computa-
tion area and storage area separately. This way the different logic used for
storage (flip-flops) and computation(LUTs) is more accurately represented
in the estimate.

Pattern Node
type(s)

Formula

Constant INPUT, OUTPUT y = C

Linear Unsigned ADD and
SUBTRACT

y = p0 + p1n

Quadratic (Un)signed integer
MULTIPLICATION

y = p0 + p1(n− p2)2

Bi-product (Un)signed multi-
input ADD and
SUBTRACT

y = (m−p0)(n−p1)+
p2

Multi-linear2 multi-input AND or
OR

y = p0 + (p1 ∗
x/2)(z/2− 1)

Table 2.2: Bit-based area models of the main operators in LUTs, as men-
tioned in [17].(y=area(LUTs), n=bit-width, m=inputs, pi= experimentally deter-
mined constants)

In an effort to guide optimizations in an SA-C compiler [17] introduced
an area estimation technique that captures the impact of compiler optimiza-
tions to the area of a design. The estimator executes between the optimiza-
tion and synthesis phases. Because the estimator is targeted at a specific
compiler, the estimator can use detailed characterizations of the nodes in
the DFG, depicted in Table 2.2. The estimate is further refined by looking
for common patterns of synthesis optimization, and adjusting the estimate
accordingly.

Instead of estimating the resource utilization of an entire design, some
papers try to estimate the impact of specific aspects of a design. In [31], for
example, we encounter a way to estimate the effect of loop unrolling on the
area. The approach models pipelining and full- and partial unrolling of loops
and this way accounts for an increase of the number operators and coarser

12

grain array indexing. The paper mentions that unrolling of outer loops,
loop strip-mining, loop merging, and optimizing loop-unrolling side-effects
should be investigated to make the estimation more accurate.

A narrower approach focussing only on boolean functions is presented
in [22]. It demonstrates the use of a complexity measure in estimating the
area of high level descriptions. This complexity measure is based on the
sizes and probabilities of prime implicants in the on-set of boolean functions
and shows an exponential relation with the area needed to implement the
functions. This relationship is the basis for the area estimation in this paper.

Estimating area specifically from software oriented languages like C or
Matlab has been covered in several papers. The researchers in [26] tried to
base the area estimation on extracting relevant operations from the source
code, matching modules from a library to the operations, and use timing
information to find out where resources can be shared. The accuracy of this
approach was somewhat disappointing, because

• the authors of [26] did not use the impact of the control logic in the
area estimation

• the approach did not account for optimizations

• the algorithm needs the C description to have a hierarchy close to the
hierarchy of the final design.

Using Matlab specifications as a starting point [29] uses simulation to
obtain execution traces that drive the estimation process. The traces are
used to build a DFG of the program. Together with an FPGA performance
model that determines the characteristics of specific operations based on
bit-width and clock speed, the DFG is used to estimate the area required
by the Matlab code. The authors have chosen to use an area/latency grid
to schedule the DFG before estimation. Using this approach they try to
account for resource sharing and area constraints at the same time.

As a part of the research around the MATCH Compiler [32] the authors
of [20] present an area estimator to provide the compiler with information for
automatic design space exploration. The estimation comprises counting all
operations and registers and uses a simple heuristic formula (Equation (2.1))
to calculate the number of CLBs that is needed for a design.

NCLBs = 1.15 ∗max(Nf/2, Nr) (2.1)

Nf : # of function generators
Nr: # of registers

13

The algorithm uses a library to count the number of function generators
used by the operations. To get more accurate estimates. the paper describes
a type refinement pass, which determines the bit–widths needed for each
variable and operation before estimation.

The authors of [27] introduced an estimation technique where an en-
tire trade-off curve is calculated. Their algorithm uses H-CDFGs, which
are CDFGs with other CDFGs as nodes. From the bottom levels of the
H-CDFG up, the CDFGs are scheduled and resources are allocated using
different time constraint values. Calculation of the total number of required
resources of multiple CDFGs is based on several heuristic and deterministic
summation rules that account for resource sharing.

2.1.2 Speed

In order to get an approximation of the performance of a design, the research
community has proposed many ways of estimating latency and speed–up.
Performance measures like these can indicate if a design is within perfor-
mance constraints and can drive hardware/software partitioning.

An example of latency estimation can be found in [24] for example.
Apart from estimating area, this paper also presents a way to calculate
a lower bound on latency given certain resource constraints. The lower
bound is based on the critical path latency and depending on the resource
constraints is increased by the extra delay of every module on the critical
path due to module constraints.

In [25] the latency of a hybrid hardware/software system is estimated
by determining the critical path of a Co-design graph as defined in the
same paper. The Co-design graph is a task graph with annotated nodes
and edges. For latency estimation the nodes are annotated with latency
information and for edges the graph records whether they are software or
hardware edges and whether they indicate a control or a data dependency.
The critical path is then determined by finding the longest path in the task
graph.

As with area [27] tries to estimate entire trade-off curves for the latency
of a design using different timing constraints. Again the H-CDFGs are
traversed in a bottom-up fashion and the latency is calculated at every level
by accounting for the allocated resources due to the timing constraints.

The COSYN [30] and CRUSADE [36] co-synthesis algorithms estimate
finish times of tasks with the longest path algorithm. Described in [30] the
algorithm finds the longest path in a DAG taking in to respect both the
execution and communication times of tasks and links respectively.

The partitioning algorithms in [28] discussed earlier, also estimate la-
tency by first determining the longest path. This preliminary value is then

14

Paper Dynamic/
static

Level of
Design

Application
Domain

Data
structure

Node
model

Granularity Strategy Complexity Error

[33] Static Instruction-
level

n/a Intermediate
code

n/a Application Complexity n/a 8%

[29] Dynamic System Communication (annotated)
DFG

Bit-width
based

Entire
graph

Scheduling O(simulation)+
nonlinear

10%

[20] Static System/
Behavioral

Multimedia,
Mathemati-
cal

VHDL Ab-
stract Syn-
tax Tree

Bit-width
based

Entire
Graph

Scheduling linear 13%

[24] Static Behavioral Multimedia DFG Simple entire graph Scheduling O(nc2)
(c: time
steps)

n/a

[34] Dynamic Behavioral Multimedia,
Cryptogra-
phy, Com-
pression,
General
Purpose

n/a n/a Loops Simulation O(simulation)+
O(1)

n/a

[25] Static Behavioral
(during par-
titioning)

n/a (annotated)
DFG

Simple entire graph Scheduling O(n2 log n) n/a

[35] Static Behavioral Communication n/a Bit-width
based

Functions
(=Occam
processes)

Complexity n/a n/a

[30] Static Behavioral
(during par-
titioning)

n/a Task graph Simple Entire
graph

Incremental linear n/a

[36] Static Behavioral
(during par-
titioning)

Communication Task graph Simple Entire
graph

Scheduling linear n/a

[27] Static System/
Behavioral

Multimedia H-CDFG Simple Entire
Graph

Hierarchical,
Allocation
(bipartite
matching)

O(n log n) n/a

[28] Static Behavioral
(during par-
titioning)

Multimedia,
General
Purpose

(C) DFG Simple Node clus-
ters

Scheduling n/a n/a

[37] Dynamic Behavioral Multimedia,
Cryptog-
raphy,
General
Purpose

Hierarchical
Loop
Graphs

n/a Loops Simulation O(simulation)+
O(1)

n/a

[21] Static Behavioral Multimedia,
General
Purpose

PACT HDL
Abstract
Syntax Tree

Simple Entire
Graph

Scheduling nonlinear n/a

Table 2.3: Different classifications of speed estimation found in several pa-
pers and indications of estimation error in those papers. For an explanation
of the classifications, please refer to Section 2.4.

refined by adding the latency of moving input and output values from and
to memory, the latency of transferring data over partition boundaries, and
the latency due to synchronization between tasks.

Area estimation from Matlab code as presented in [29, 20] was already
discussed in the previous section. These two papers also describe delay
estimation techniques. In [29] the critical path is used as latency estimate.
If area constraints introduce extra delays on the critical path, the latency
estimate is changed accordingly.

The authors of [20] take a more elaborate approach. They split the delay
estimation between estimating the critical path delay and the interconnec-
tion delay. The delay of single tasks on the critical path are not retrieved
from a normal library, but are calculated using generic delay formulas de-
scribing functional units and using fan–in and bit width as inputs. Libraries
can become more compact this way. In general the paper models the delay

15

of an operation with Equation (2.2).

δ = a + bnfan−in +
i=nfan−in∑

i=0

cimi (2.2)

mi: bit-width of input i
nfan−in: number of inputs
a, b, ci: experimentally determined constants

Using estimates for average interconnection length and physical FPGA
wire lengths, the algorithm determines the average number of physical wires
and programmable interconnect points and therefore the average intercon-
nection delay.

Instead of determining a value for the latency of a design, papers [34, 37]
use a temporal profile of a software program to determine the maximum
speed-up that can be obtained by moving certain parts of the program to
hardware. The more a function, for example, contributes to the total execu-
tion time of a program, the larger the potential speed-up when it is moved to
hardware. However, [34] mentions that based on the examined programs a)
almost 100% of the candidates for hardware implementation contribute 1%
or less to the total execution time and b) memory access time and memory
access rate have a significant impact on the performance gain that can be
achieved. [37], on the other hand, puts the former comment in perspective
by pointing at the 90-10 rule, which states that 90% of the execution time is
spent in 10% of the code. It goes on to examine the validity of this rule and
concludes that many application do indeed exhibit this behavior. Finally
the paper presents a simple formula to calculate the expected speed up of
partial hardware implementation based on loop frequency.

In an attempt to define a performance measure that makes it possible
to compare hardware and software performance during Co-simulation, [35]
describes using the CPI of OCCAM-II to indicate performance. The pa-
per describes how to calculate the CPI for software-bound processes and
how hardware-bound processes can be characterized by a so-called equiva-
lent CPI. Both measures use a parameter that depends on the architecture,
compiler, synthesis tool, and scheduling policy. These measures have to be
determined for every new architecture that needs to be simulated. The hard-
ware measure utilizes bit-based operator models to estimate timing charac-
teristics. The models of the main operators is depicted in Table 2.4.

The algorithm in [21] measures the speed-up of a design by counting the
number of control steps that are present in the control nodes in a CDFG and
the number of times they are executed. Then it applies different formulas for
hardware and software to obtain the execution times of both implementation
alternatives. Simply dividing these yields the speed-up factor.

16

Operation Architecture f(δ, n)
+ Ripple carry 2nδ

+ CCLA(n/p2)
p = BCLA dimension

if(n = 1)11δ
else
11δ(10 + log p(1 +
n(n/4− 1))(n/4 + 1)

* Baugh Wooley if (n = 1)2δ else 4nδ

* Bisection if (n = 1)2δ else 4nδ

/ Restoring (Dean) (3n2 + 1)δ
/ Non-Restoring (Guild) 3(n + 1)2δ
/ Non-Restoring with

2-level CLA and
Carry-save (Cappa-
Hamacher)

(11n + 12)δ

/ Non-Restoring with
1-level CLA and
Carry-save (Cappa-
Hamacher)

(9n + 10)δ

Table 2.4: Bit-based timing models of the main operators as mentioned in
[35].

The µ–profiler as described in [33] uses the number of cycles gained by
hardware implementation to drive the discovery and selection of custom
instructions for ASIP designs. Both the decrease in computation cycles by
moving a pattern in the intermediate code of an application to hardware and
the frequency of that pattern contribute to the measure. The author admits
this measure is crude, but argues it is useful for early discrimination between
potential candidates for hardware implementation and patterns with insuffi-
cient prospect for speed gains. In the future this measure may be improved
by accounting for ILP, pipelining, and other software optimizations.

One such optimization, i.e. loop unrolling, is specifically studied in [31].
We already discussed how the authors of this paper estimate area in the
previous section and speed–up is handled in the same way. Results, how-
ever, show a larger discrepancy between estimates and measurements for
speed–up, than for area. The authors explain how this might be caused by
e.g. unbalanced pipeline stages due to resource constraints or other loop
optimization side-effects and mentions that the underlying model of the al-
gorithm should facilitate more complex algorithms that do account for these
effects.

17

2.1.3 Power

Paper Dynamic/
static

Level of
Design

Application
Domain

Data
structure

Node
model

Granularity Strategy Complexity Error

[38] Static
(dynamically
determined
input prob-
abilities)

Behavioral Communication,
General
Purpose

CDFG,
state
transition
graph

Activity-
based
model

Entire
Graph

Hierarchical O(simulation)+
nonlinear

11.8%

[39] n/a System n/a n/a n/a n/a Complexity n/a n/a
[30] Static Behavioral n/a Task graph Simple Entire

Graph
Hierarchical linear n/a

[27] Static System/BehavioralMultimedia H-CDFG Simple Entire
Graph

Hierarchical,
Allocation
(bipartite
matching)

O(n log n) n/a

Table 2.5: Different classifications of power estimation found in several pa-
pers and indications of estimation error in those papers. For an explanation
of the classifications, please refer to Section 2.4.

In order to increase battery lifetime in mobile and embedded systems,
reduce heat dissipation in high performance designs, etc. many researchers
have sought to estimate the power usage during system design. In [40], for
example, we find a taxonomy of several power estimation techniques at dif-
ferent levels. At the highest level the authors discern several design levels at
which power can be estimated. For each level the authors further classified
the estimation strategies as depicted in Table 2.6. The different levels in
the taxonomy also correspond to the design process. At the early stages
power intensive parts can be identified with system-level estimation. Later
on when a behavioral description is available, instruction- and behavioral
level estimation can help guide the partitioning process and optimization of
software and hardware parts. Finally, before actual synthesis is performed,
architectural estimation can help choose from different architectures.

The system-level partitioning algorithm in the TOSCA co-design envi-
ronment [41] uses several power evaluation metrics to drive system level
partitioning. In order to choose the best design alternative several metrics
indicative of good power performance for different types of operating modes
are proposed in [39]. The different system characterizations are:

• Fixed Throughput Mode
These systems are characterized for power by the Power to Through-
put Ratio, which is the same as energy per operation. This metric is
applicable to e.g. DSP applications.

• Maximum Throughput Mode
In these systems power is characterized by the Energy to Throughput
Ratio. Energy and throughput, in this case, mean maximum energy
per operation and maximum throughput respectively. Microprocessor-
based systems are an example of these systems.

18

Table 2.6: Taxonomy of power estimation techniques as presented in [40].

• Burst Throughput Mode
Systems that only perform in bursts can be characterized by a modified
Energy to Throughput Ratio. Energy in this case the energy during
computation and the energy during idling per total number of oper-
ations. Systems with user-interaction are often in burst throughput
mode.

• Area-Constrained Systems
Two metrics are proposed that can characterize Area-Constrained sys-
tems: The Power by Area Product, which allows to optimize for power,
and the Energy by Area Product, which allows for optimization of area
and power together. Many designs will have some degree of limitation
for area.

Apart from presenting these metrics the paper also argues that commu-
nication between hardware and software parts contributes significantly to
the power consumption of the design. When off-chip busses are involved
this contribution can be even higher. In order to estimate the power used
by communication from the hardware, TOSCA calculates the bus switching
activity using the bus width, required bandwidth, and the encoding scheme
for data and addresses.

An example of static power estimation at the behavioral level, as dis-
cussed in [40], is presented in [27], along with area and speed estimation
techniques, discussed earlier. The paper estimates trade-off curves for power

19

Switched Capacitance Matrix
The m-input n-bit module depicted on the
left has a corresponding m × n matrix of
switching activities for each bit. The mod-
ule capacitance can then be estimated with
Equation (2.3).

Cmod =
m∑

i=1

n∑

j=1

aij × cij (2.3)

aij and cij are respectively the activity and
a module-dependent constant for bit j of in-
put i. The constant is determined by switch-
level simulation of the module and the ac-
tivity represents the probability that the bit
will change between successive states.

Figure 2.2: Module power model used in [38].

consumption against varying timing constraints. The power estimation dif-
fers from the area and time estimation by taking into account the execution
frequencies of functional units and the clock frequency.

The authors of [22] use the area prediction method discussed in the pre-
vious section together with estimates of the average node switching activity
and gate capacitance. Problems with their approach are the need for addi-
tional estimators for switching activity and the restriction to single-output
boolean functions.

The contribution of control-flow circuits to the power consumption of a
system is often assumed to be negligible. This may be a fair assumption for
data-flow systems, but for control-flow intensive designs this aspect must be
considered during power estimation. One such approach can be found in
[38]. This particular approach utilizes both STGs annotated with branch
probabilities and CDFGs. Using a generic model for modules all edge capac-
itances are calculated using the probability of each state and each transition.
Special probabilities are calculated in the presence of loops. Furthermore,
the paper describes how the capacitance of the controller itself is estimated
with a simple formula based on the number of states in the controller.

In the COSYN-LP algorithm [30] energy levels of tasks in a task graph
are estimated by using execution and communication time as starting points.
The energy level of a task is then estimated by adding the energy for all fan-

20

out edges and all preceding nodes to the tasks own energy level. This process
starts from the bottom at the sink nodes and progresses upwards via the
fan-in edges. If after partitioning multiple allocations have the same power
level, an alternate estimation strategy is used, where different heuristics are
used for processors, FPGAs and links.

2.2 Other metrics

In Section 2.1 we discussed various methods of estimating the more obvi-
ous aspects of hardware design. In the last decade, however, other aspects
like memory usage, communication, and design complexity have also been
researched as possible driving forces for system design. We will now briefly
review some of these metrics and their uses.

2.2.1 Communication

Estimating the amount of communication is also present in some area, speed,
and time estimation techniques (e.g. [24, 21, 20, 30, 39, 28]), and not with-
out reason: communication requires interconnect circuitry, requires a fair
amount of power, and introduces communication delays into the design.
Therefore, accurate communication estimation can be a valuable asset to
any system designer.

A more focused effort to estimate the communication latency can be
found in [23]. This paper specifically estimates the communication between
hardware and software segments in a hybrid system. They assume a shared
memory model is used for communication between hardware and software
and also that communication with hardware only occurs with adjacent hard-
ware modules. The latter is a fair assumption in case of data-intensive
designs.

Another paper on communication is [42]. In this paper we see how the
amount of communication can be represented by the sum of all edge weights,
or Total Edge Weight(TEW). As edge weights the paper uses the amount
of data transfered along the edges (in bits).

2.2.2 Memory Usage

Few hardware-oriented memory usage estimation strategies have been pro-
posed, but in e.g. [34], we can see that memory usage can have significant
impact on the speed of a design. Furthermore, communication with the
memory system and refreshing of volatile memory can impact power usage.
And finally, memory modules, extra interconnect, and memory management

21

circuits require area. As with communication it seems clear that memory
estimation can be very useful to a designer.

While many software profilers measure or characterize memory usage
[39, 43, 44, 45] and some hardware/software partitioning algorithms [28,
36] take into account memory aspects of a design, to the best knowledge
of the author there has been little research into memory usage in hybrid
architectures.

One example of memory size estimation for hybrid architectures can be
found in [46], where the size of individual data dependencies is estimated.
The described algorithm focuses mainly on dependencies between loop it-
erations and requires single-assignment code, but it does give valuable in-
formation on memory size even in the early stages of design, when only a
partially fixed execution ordering is present.

The authors of [47] point out the difficulty of hardware synthesis of pro-
grams with pointers. Traditional context-insensitive pointer analysis does
not suffice. To answer this problem the paper describes a context-sensitive
method of analyzing pointers in a program based on symbolic transfer func-
tions. These functions capture how a function influences the program state.
The program state and the symbolic transfer functions are represented as
boolean expressions. The pointer analysis scheme presented utilizes binary
decision diagrams to speed up the analysis, making context-sensitive pointer
analysis feasible.

In [45] we find a study on reference locality in software programs result-
ing in some metrics that characterize data reference locality in a program.
These metrics are based on hot data streams derived by bursty tracing [44].
Originally targeted at cache optimization on modern processors, this infor-
mation may also help optimize local memory utilization in hybrid architec-
tures or help decide whether a function can be efficiently implemented in
hardware, because a function with an intensive and erratic memory access
pattern might not benefit from hardware implementation at all.

2.3 Software metrics and comparability

In defining a candidate selection model for hybrid architectures not only
hardware metrics are important, but also software metrics. In previous sec-
tions we have already discussed software measures that may also describe
hardware aspects ([45]) or may indicate code most susceptible to optimiza-
tions ([37]), but software measures also make comparisons of hardware and
software implementations possible. In [48], for example, we find software
energy models that enable the authors to compare different hardware / soft-
ware partitions. There are some problems with such comparisons, though:

• Differences in precision
The precision of a software/hardware measure might be less accurate

22

than its hardware/software equivalent. This means comparisons are
only as good as the least accurate measure.

• Differences in algorithms
Different measures are often determined using different algorithms,
which makes it unclear if they are comparable in a straightforward
way. Look, for example, at cyclometric complexity; it’s not at all
clear if software (C) and hardware (VHDL) cyclometric complexity
are equivalent or comparable.

2.4 Classifying metrics

Having discussed different estimation strategies and metrics for several as-
pects of a design we now move on to classification. In the following few
sections I will discuss different aspects of the presented metrics and estima-
tion strategies, and explore possible classifications.

2.4.1 Dynamic vs. Static

One aspect of estimation strategies is whether they try to analyze a design
statically, at compile-time, or dynamically, at run-time or during simulation.
In the following we will refer to these as static estimation and dynamic
estimation respectively.

From the papers discussed so far it seems static estimation has been dom-
inant in the field of hardware/software partitioning and hardware synthesis.
We can explain this if we take into account the many iterations partitioning
algorithms may go through. If every iteration performs a potentially expen-
sive simulation, partitioning can take a long time. This suggests that static
estimation techniques aim to be fast more than they aim to be accurate.

Static estimation is also the dominant strategy in area estimation. Be-
cause area is almost always assumed to be fixed during run-time, this is only
logical. When we look at hybrid architectures, however, the assumption that
area is fixed during run-time does not have to apply. Future area estimation
could take advantage of simulation to get dynamic area profiles.

Power estimation is often based on area estimates or area estimation
techniques and thus power estimation, too, is mostly based on static es-
timation. In [40], however, we do find some cases of dynamic techniques
like dynamic behavioral activity-based estimation (Table 2.6). Power con-
sumption, especially that of control-intensive designs, depends on the input
of an algorithm as well as the implementation itself. Therefore dynamic
estimation can be useful for reasoning about power in designs.

The few dynamic estimation strategies discussed so far [34, 37, 29, 45, 40]
all concentrate on speed and memory usage. These characteristics are often

23

dependent on the input and change during run-time. Still, hardware esti-
mation mainly focusses on static estimation. If we look at software profiling
and estimation, however, we find more dynamic techniques. It seems dy-
namic estimation techniques are more suitable for control-intensive designs,
while static estimation is more suitable for data-intensive designs.

2.4.2 Level of design

Different estimation techniques require different levels of detail in a design
and have various levels of accuracy. Therefore, it is useful to categorize
estimation according to the design step it is targeted at. We have already
seen a similar taxonomy for power estimation techniques in [40].

It is not the aim of this paper to present an exhaustive study of system
design steps, therefore we will use a simplified model of system design as
a tool for discussing estimation. We discriminate three levels of design:
System level, Behavioral level, and RTL/Instruction level. As can be seen
from the Figures 2.1, 2.3, and 2.5, the behavioral level is the predominant
level in the reviewed papers. This is mainly because the papers were selected
based on their relevance to high level synthesis.

1. System level
In the early stages of design a lot of high level decisions have to be
made in a relatively short time. In order to give the designer infor-
mation on different design alternatives, fast system level estimation is
necessary. While, in this phase accuracy is not very important yet,
estimates should be indicative of actual values. On the system level
components are not yet (fully) specified using behavioral descriptions,
or are modeled by a mathematical model. Papers on the MATCH
compiler for Matlab models, for example, are considered to be on the
system level in this view.

2. Behavioral level
Later on in the design process system components will be refined with
specific functional descriptions. This is the phase where many hard-
ware/software partitioning algorithms are applied. The added detail
potentially provides more accuracy in the estimates. This makes it
possible to check various constraints on the design with greater cer-
tainty.

3. RTL/Instruction level
After partitioning and hardware specification accurate estimation is
possible for the hardware parts of the system. On the software side
final estimates can be made using instruction level estimation. Esti-
mation on these levels is often slow, because of the large amount of
detail.

24

2.4.3 Data structures

The speed and precision of estimation often depend on the data structures
and the strategies that are used. Different data structures might capture
different aspects of a system, or have different levels of efficiency. Tradi-
tionally, hardware synthesis has utilized data flow graphs as data structures
and conversely many estimation techniques focus on these graphs. Software
estimation techniques, however, are more control oriented and so use other
representations like control data flow graphs and call graphs. Most litera-
ture on hardware/software estimation uses one or more of the following data
structures:

• DFG
A Data Flow Graph (DFG) is a DAG where every node represents
an operation and every edge represents a data dependency. Because
there is no control information present in the DFG, the execution flow
of the DFG is straight-forward and analysis is relatively easy. Many
algorithms in hardware synthesis are based on these structures. The
dependencies give information on which tasks can run in parallel. The
absence of control information makes DFGs less suitable for represen-
tation of higher level functional specifications, like a C-program. A
different term for DFG is Task Graph. These terms are often used
interchangeably. Nevertheless, a DFG is often assumed to have finer
grain nodes, like operations, while Task Graphs have coarser nodes,
e.g. another DFG.

• CFG
In the traditional von-Neumann computing paradigm, an often used
representation of programs during e.g.compilation or analysis is the
Control Flow Graph (CFG). In this directed but cyclic graph, edges
denote the transference of control from one node to the other, where
nodes represent basic blocks, i.e. blocks without branches or jumps.
While this graph can accurately represent the control constructs in
higher level languages, its disadvantage is the single thread of control
inherent to the control dependencies. This makes discovering paral-
lelism using CFGs difficult.

• (H)CDFG
To account for both data and control dependencies in high level de-
signs, the research community came up with the Control- and Data
Flow Graph (CDFG). This graph is a data flow graph extended with
control edges denoting control dependencies between nodes. Some pa-
pers utilize other representations of the control dependencies, e.g. in
[49, 27] a Hierarchical CDFG or Hierarchical Sequence Graph is used,
which captures control constructs as nodes in a DFG. A loop then be-
comes a node in a DFG, while the loop body is represented as a DFG

25

on a lower level. Because of the presence of loops and branches, the
run-time flow through a CDFG is not known in advance and estimation
becomes more difficult. High level synthesis tools often use these rep-
resentations because VHDL, C, and other imperative languages make
use of these control constructs.

• STG Control Intensive designs often result in a non-trivial controller
circuit. The impact of such a circuit on performance characteristics,
like area and power, cannot be neglected anymore. Furthermore, the
power consumption and speed of the data-path can vary significantly
depending on the state of the controller. In [38] a State Transition
Graph (STG) is used for modeling the controller in order to estimate
the power consumption of the controller and the impact of the con-
troller on data-path power consumption. Exact metrics are hard to
determine, because of the significant data-dependencies inherent to
control intensive designs. Therefore state transition probabilities are
determined beforehand. This way the average characteristics can be
determined.

• Others
Apart from the (C)DFG representations, some other data-structures
exist that are less common in hardware estimation. In software esti-
mation, for example, we find Call Graphs and Abstract Syntax Trees
among others (AST), among others. However, these models, like
CFGs, do not always directly represent data dependencies, which makes
determining parallelism inaccurate.

2.4.4 Strategies

Different strategies have been proposed for different data structures and
models, but some approaches are more alike then others. It can be useful to
group similar estimation algorithms into categories and characterize them.
This section proposes several such categories, but does not aim to be an
exhaustive list, nor are the categories mutually exclusive.

• Scheduling
Mainly applied in speed estimation, scheduling in estimation mostly
provides the timing for nodes in e.g. a DFG. After scheduling an
indication of the latency of a circuit can be obtained by finding the
longest path. Scheduling in estimation is borrowed from actual synthe-
sis in order to obtain more accurate speed estimates. There are many
types of scheduling algorithms, like list scheduling and force-directed
scheduling. While scheduling often produces good estimates of the
latency of a design, it can be time consuming (optimal scheduling is
NP-complete). Note that scheduling is also used in several papers to

26

acquire area estimates. Indeed, when scheduling without any bounds
on resources, the maximum number of used resources for each resource
type define the minimum required area.

• Allocation
Another technique borrowed from synthesis is allocation. By actually
allocating variables and operators to registers and functional units re-
spectively, an indication of the number of resources is obtained. One
such allocation strategy often found in estimation and synthesis is
weighted-bipartite graph matching [50]. Matching algorithms are used
in estimation to mimic resource allocation of data paths during syn-
thesis. The idea behind this approach is to find a matching, i.e. a set
of edges without common vertices, on a bipartite graph with one set of
vertices representing variables (or operations), the other set of vertices
representing registers (or functional units), and the edges representing
possible mappings. An advantage of using synthesis-like allocation in
estimation is that separate estimates for registers, functional units, and
possibly interconnect can be obtained with most allocation schemes.

• Weighted Sum/Hierarchical
One powerful template used in many algorithms is the Hierarchical
approach. In estimation this is used especially in hierarchical models.
By estimating metrics on subgraphs of a CDFG, for example, the next
level in the CDFG hierarchy can be estimated more quickly. A com-
monly used Hierarchical approach is the weighted sum approach. In
this approach the system is first divided in atomic parts, i.e. compo-
nents in a library. Then the weighted sum of the parts indicates the
estimate of the system. Weights can represent many aspects of the
component like I/O bit-width, slack, and criticality. This approach is
mostly used in area and power estimation.

• Neural
When it is not obvious how the value of a proposed metric can be
obtained, like hardware implementability, a neural network can be ap-
plied. Neural networks can be trained to recognize certain aspects of
complex systems and is similar to linear regression. While this makes
it possible to quantify hidden or complex aspects of a system, there are
some drawbacks. First, defining a correct neural network, gathering a
large enough training set, and training the network is time-consuming.
Second, the trained network is not transparent, which makes it diffi-
cult at least to prove that results are correct. Furthermore, trained
networks are specific to the data set used. For example, if a neural
area predictor is trained on designs synthesized with tool A, then it
may not be applicable to tool B.

27

• Correlation and Complexity
Another way of estimating metric values is by correlating metrics like
area, speed, etc. with other metrics that are easy to determine. For
example, [22], correlates the area of boolean functions with the sizes
of the minterms in the on-set of a boolean function represented by a
complexity measure. Correlating different metrics does require exten-
sive datasets, however. One class of measures that may be correlated
to various metrics is the set of (software) complexity metrics. It seems
plausible that (software) complexity is in some way related to area,
speed, etc.

• Simulation
An obvious estimation strategy used in some partitioning strategies is
simulation. Instead of synthesizing a design, which is slow and can
use up resources, only simulation of a functional model is performed.
This strategy can result in fairly accurate measurements, because the
system is evaluated at run-time, but is much slower than other ap-
proaches. In a Hierarchical approach, simulation might be applied on
small parts at lower levels of the system, to balance speed and accu-
racy.

• Incremental
Iterative hardware/software partitioning approaches often need to reeval-
uate different aspects of a system for each iteration. Some partitioning
algorithms, therefore utilize an incremental estimation scheme. These
algorithms assume that temporary partitionings only change very lit-
tle between successive iterations and therefore adjusting the previous
estimation instead of reestimating the measures can be beneficial.

2.4.5 Application Domains

Many estimation strategies discussed here have been targeted at specific
application domains or have only been validated using a limited set of ap-
plications. In the Tables 2.1, 2.3, and 2.5 these application domains are
specified. In my study of estimation I made the following inventory of ap-
plication domains.

• Multimedia
The multimedia application domain comprises audio, video, images,
3d, etc. Common examples are MPEG2 encoding, image filtering, etc.
In the field of Reconfigurable Computing much attention is given to
this domain. One reason for this is the high performance requirements
set by these applications. Because these applications often how a high
degree of parallelism, these performance requirements can be efficiently

28

be met when using ASICs or FPGAs. Another reason is the continuing
high demand for multimedia in mobile devices.

• Mathematical
Another domain that might potentially exhibit a high level of par-
allelism is the domain of mathematical problems. Examples of such
problems are matrix multiplication, logical closure algorithm, finite
element method, fractals, etc.

• Cryptography, Compression, and Error correction
With an increasing amount of private or classified information in dig-
ital form, security has become very important. Furthermore, the vast
amounts of data transported over the Internet and stored on backup
devices, require some form of compression and error correction. All
three of these kinds of applications work on streams of data in more
or less a serial manner. Many algorithms have been developed to
tackle these problems, many of which do show a certain degree of par-
allelism. Examples are DES, Reijndael, MD5, Reed-Solomon, gzip,
huffman, etc.

• Communication
Some papers validate their findings using descriptions of communica-
tion circuits. Examples of such circuits are an Ethernet controller, a
digital receiver, or the ILC16 HDLC link controller. Papers that tar-
get such systems, however, are not proven to be applicable to c-level
descriptions.

• General Purpose
Other application domains exist, but for this paper we group them
in the domain of general purpose applications. This class therefore
has many different levels of potential parallelism. Some applications
in this class are an SQL server, bubble sort, binary search, specint,
etc. Estimation that does not target a specific domain, makes them
more usable in more general tool chains required for the acceptance of
reconfigurable computing.

2.4.6 Use of libraries and component models

Many estimation algorithms make use of component libraries containing in-
formation on the estimated properties for single components. The use of
such libraries can make estimation both faster and more portable. Speed is
gained by working on a coarser grained model and portability is increased
because the estimation algorithm can target, for example, other architec-
tures by changing the library.

Depending on the estimation technique, coarser and finer grained li-
braries are used. Several aspects are influenced by the grain of the library.

29

Coarser grained libraries hide more details of a design, making estimation
faster. However, estimation using coarser grain libraries is less flexible and
therefore less accurate. Furthermore, coarser grain libraries tend to be larger
than finer grain libraries, because of the increased number of possible con-
figurations for components.

Components in libraries can have precalculated estimates for e.g. area,
but some papers introduce component models based on bit-width, num-
ber of inputs, type of module, etc. One advantage of such models is the
added flexibility in designing a system, e.g. one is not limited to a fixed
bit-width. Another advantage is the reduction of the size of the library, e.g.
two-operand, three-operand, etc. addition can be modeled by one equation.
The drawbacks of using component models are the added computation re-
quired to calculate the final estimates and the need to define the required
models. The latter, however, has to be performed only once during the cre-
ation of the library.

2.4.7 Granularity of Estimation

When estimating the value of metrics for certain parts of the design the
question arises what those parts are, i.e. what are the elements estimates
are determined for. This is relevant for choosing an appropriate estimation
technique for a partitioning model. To illustrate this, compare a model par-
titioning loops when only function-level estimates are available. And in fact
estimation granularity almost always corresponds to partitioning granular-
ity. In the papers I have reviewed in this section several levels of granularity
of estimation occur which I classify in the following groups.

• Loop or basic block level
Because loop parallelization is well understood, loops are often chosen
as candidates for hardware implementation. In an effort to guide this
selection process several estimation techniques have been developed
that estimate metrics for loops. Sequential parts of code, or basic
blocks, and functions can be identified as special kinds of loops in order
to make the estimation process more general. In the papers reviewed
here, this kind of estimation is mostly found in speed estimation.

• Function or process level
An obvious level of partitioning is the function level, because during
design of a program or system different functionalities are already
partitioned into functions. It would be logical to estimate on this
level as well. Oddly, only two papers [18, 35] in this review acted on
the function level.

• Cluster level

30

Instead of using parts of an application defined in the program de-
scription, like functions and loops, clusters of nodes grouped together
for other reasons can be the object of estimation. A cluster could be,
for example, a segment in a multi-segmented partitioning. This level
only appears in one paper reviewed here [28].

• Application or graph level
For the most part the discussed papers estimate metrics for an entire
application or system graph. Such estimates are not directly useful
for the partitioning process, however, before estimation is applied the
system graph could be divided into smaller parts.

2.4.8 Error in estimation

In order to utilize an estimation algorithm during design an idea of its preci-
sion is needed. However, some measures are not intended to be exact figures,
but aim at being comparable. In [38] this comparability is denoted by the
tracking index. Regrettably, other papers give no quantification of compa-
rability. In fact most papers discussed here do not mention any quantitative
error characteristics.

Nonetheless, there are basically three measures characterizing error be-
havior that are important for use in a partitioning model: average error,
worst-case error, and tracking index. An ideal estimate has a low average
error, i.e. is very precise, has a worst-case error that is not significantly
larger than the average error, i.e. is generally applicable, and has a good
tracking index, i.e. is comparable. When defining a new partitioning model,
these aspects should be considered.

2.5 Characterizing hardware synthesis and opti-
mization

Some estimation approaches we discussed specifically accounted for synthe-
sis optimizations. This can be useful, because optimizations can have large
influence on the eventual values of e.g. area, speed, etc. Other papers implic-
itly account for optimization, e.g. a neural estimator, because the estimator
is correlated to the synthesis results. A reason to explicitly calculate for the
impact of optimization could be that application of optimizations can be
unbalanced, i.e. only applied to specific parts of the design [31].

The optimization-aware estimation techniques discussed in this paper
have mainly focused on loop optimizations, like loop strip-mining, loop un-
rolling, loop pipelining, etc. [17, 31, 38]. However, high level synthesis tools
and compilers also use other optimizations, which are not yet accounted for
in estimation techniques discussed in this paper. Among those are pointer

31

live analysis [51], procedure exlining [52], partial evaluation [53], etc. Accu-
rate estimation tools should somehow account for such optimizations, how-
ever, not many such tools have been proposed in literature.

32

Chapter 3

Hardware/Software
Partitioning

In the previous section we have discussed several hardware estimation mea-
sures that can help discover and select candidates for hardware implemen-
tation. While estimation is an important part of Hardware/Software par-
titioning, the actual process of partitioning is at least as important. In
the past partitioning was often performed by hand, but in more recently
automatic partitioners have begun to appear. Many algorithms have been
proposed over the years focusing on different aspects of a design. All par-
titioning algorithms try to optimize some measure under certain resource
constraints, e.g. minimizing power consumption under speed and area con-
straints. A model for candidate selection for hardware implementation is in
fact a partitioning model and therefore further investigation into partition-
ing algorithms can be useful in determining such a model. In this section
we will discuss several partitioning strategies and how they connect with
estimation and profiling.

3.1 Partitioning Algorithms

The Hardware/Software partitioning problem shows many similarities with
graph partitioning. And indeed there are papers on hardware/software par-
titioning that apply algorithms from graph theory. Other algorithms come
from evolutionary programming or statistical analysis. In the following we
will discuss some of these algorithms.

3.1.1 Greedy

An early approach to the partitioning problem, presented in [55], used a
greedy algorithm. Greedy algorithms use locally optimal decisions to ap-
proximate the globally optimal partitioning. In case of [55], the algorithm

33

starts with an all hardware partitioning and moves nodes that yield the
largest decrease in communication first, until the constraints can no longer
be satisfied. While this approach is relatively fast and may give acceptable
solutions, it leaves quite some room for further improvement. This scheme
of sorting all nodes according to some measure and then moving the topmost
portion that still fulfils the constraints to hardware is used in many other

Paper Dynamic/ Static Strategy Criteria Model/ Data
Structure

Granularity of
Partitioning

Time
Complexity

[54] Static Simulated An-
nealing

n/a n/a n/a n/a

[55] Static Greedy Minimal area,
data-rate
constraints

System Graph
Model (like H-
CDFG)

operations linear

[49] Static Greedy (see
[55])

Minimal area,
data-rate
constraints

Hierarchical Se-
quence Graph

operations n/a

[56] Static Simulated An-
nealing

Minimal com-
munication
cost

Petri-nets, (an-
notated) CDFG

operations O(tn)
t=temperature
steps

[57] Static Simulated An-
nealing

Hardware
suitability
(compare local
phase [58])

(extended) Cx

syntax graph
basic blocks n/a

[58] Static GCLP GC objective
function (e.g.
Area combined
with speed)

n/a Tasks (instruc-
tion level sub-
graphs)

O(ne),
e=edges

[59] Static Binary Con-
straint Search

Constraints of
encapsulated
partitioning
algorithm

n/a n/a O(part(S))
part(S) =
encaps. part.
alg.

[34] Static Dynamic Pro-
gramming

Temporal size
of loops / leaf
functions

n/a loops, leaf func-
tions

n/a

[60] Static GCLP (MIBS) See [58] CDFG Tasks O(n3 +

n2B),
B=bins

[61] Static Evolutionary
(Genetic)

Minimal area,
timing and
concurrency
constraints

CDFG functional ele-
ments

O(gp),
g=generations,
p=population

[30] Static Clustering Minimal cost,
minimal power,
timing and
power con-
straints

Task Graph task clusters n/a

[36] Dynamic Greedy, Clus-
tering

Minimize
area, timing
constraints

Task Graph task clusters n/a

[62] Dynamic Clustering Area con-
straints

CDFG loop clusters linear

[28] Static Evolutionary
(Genetic)

maximize
fitness (mini-
mize area and
interconnect)

DFG fine:operations
coarse:DFGs

n/a

[63] Dynamic Evolutionary Maximum rank
(Pareto ranking
in power and
price)

Task Graph Tasks n/a

[37] Static Greedy Temporal size
of loops / leaf
functions

n/a loops n/a

[64] Static Dynamic Pro-
gramming

Minimum la-
tency, resource
constraints

DFG Tasks polynomial

[65] Static Simulated
Annealing,
Kernighan-Lin

Minimize la-
tency, area
constraints

Call graph functions n/a

Table 3.1: Inventarization of several papers on hardware software partition-
ing with corresponding partitioning schemes, criteria, and data structures

34

function GreedyPart (system : graph) : graph

// Initialize partition and cost

partition := InitPartition (system) ;
cost := Cost (partition) ;

// partition each node

for each node in system do

partition’ := partition ;
// move node in partition’ from/to HW

swap (node , partition’) ;
if feasible (partition’) then

if Cost (partition’) < cost then

partition = partition’ ;
cost = Cost (partition’) ;

end if

end if

end for

return partition ;
end function

Algorithm 3.1: Pseudo code of an example greedy algorithm for solving the
partitioning problem.

partitioning schemes in literature. In [37], for example, the most frequently
executed loops are migrated to hardware. The CRUSADE algorithm [36]
allocates task clusters with the highest priority in hardware first.

3.1.2 Simulated Annealing

function SAPart (system : graph) : graph

Temp := StartTemperature ;
Conf := InitConfiguration (system) ;
while (cost changes) OR

(Temp > FinalTemp)
do

for a number of times do

generate a new configuration Conf’ ;
if accept (Cost (Conf’) , Cost (Conf) ,

Temp)
then Conf := Conf’ ;

end for

Temp := Temp ∗ ReductionFactor ;
end while

end function

function accept (NewCost , OldCost , Temp)
CostChange := NewCost − OldCost ;
if CostChange < 0
then // accept based on cost improvement

accept := TRUE ;
else // else accept randomly

Y := exp(−CostChange/Temp) ;
R := random (0 , 1) ;
accept := (R < Y)

end function

Algorithm 3.2: Pseudo code of a generic simulated annealing algorithm for
solving the partitioning problem as found in [56].

In order to remedy the flaw of greedy algorithms to stick in local optima,
several hill-climbing algorithms have been proposed for graph partitioning.
These algorithms can temporarily accept less optimal solutions, in order to
find a (more) global optimum. One such hill-climbing scheme, Simulated

35

Annealing [54], that is often used in hardware software partitioning [57, 56],
is based on techniques in statistical mechanics. The idea is to introduce
a ”temperature” to the optimization process, which determines how often
counter-productive moves from one part of the graph to another are allowed.
This ”temperature” is lowered during the partitioning process, until the
temperature is zero at which point a local optimum can be found. This
partition is not only locally optimal, but also the optimal partition of several
locally optimal partitions and is therefore closer to the global optimum.
While simulated annealing generally finds better solutions than a simple
greedy approach, it is also slower because the temperature has to drop to
zero first.

3.1.3 Kernighan-Lin/Fiduccia-Mattheyses

function FMPart (system : graph) : graph

partition = InitPartition (system) ;
repeat

for each node in partition

unlock (node) ;
gain = 0;
while unlocked nodes remain

node = MaxGainUnlockedNode (partition) ;
swap (node , partition) ;
gain = node . gain ;
lock (node) ;
for each node in partition

update node . gain ;
end while

until gain <= 0;
return partition ;

end function

Algorithm 3.3: Pseudo code of a Fiduccia-Mattheyses algorithm for solving
the partitioning problem.

Classical graph bipartitioning algorithms like Kernighan-Lin and Fiduccia-
Mattheyses are also used in Hardware/Software partitioning. They consist
of a sequence of passes which yield trial partitions, which are used as input
to subsequent passes. A trial partition is obtained by repetitively moving
nodes between partitions and locking them during the remainder of the pass.
Each move is performed according to some cost metric. No paper discussed
here presents hardware/software partitioning or synthesis using one of these
algorithms. However, [65] shows that Simulated Annealing can deliver bet-
ter quality partitions in less time.

3.1.4 Evolutionary or Genetic Algorithms

Another approach to hardware/software partitioning is based on principles
from evolutionary biology. Evolutionary programming can be traced back to
the fifties [66] and since then several different types of evolutionary strategies
have been developed, each with their own niche. For combinatoric problems

36

(* The chromosomes in the following algorithms are a concatenation of so-called partial-codes

(xi), which denote the implementation(uil, 0 ≤ l ≤ mi) of a function (i). The chromosome

represents a solution and it ’s genes partial -codes. Partial -codes relate to partial -codes as

follows: l = xi mod mi*)

const threshold = minimal acceptable gain ;
function GeneticPart (system : graph) : graph

var population : chromosome [1 . . size] ;
fill population with random chromosomes ;
generation = 0;
previous = best = MAXINT ;
repeat

for each chromosome in population

calculate its fitness

newpopulation = [] ;
previous = best ;
while newpopulation . size < size do

parents = chooseParents (population) ;
child = crossOver (parents) ;
child = mutate (child) ;
newpopulation . add (child) ;
if child . fitness > best . fitness
then

best = child . fitness
bestchild = child

end if

end while

population = newpopulation ;
generation = generation − 1 ;

until (generation = maxgens) OR

(ABS (best−previous) < threshold)
return bestchild ;

end function

function chooseParents (population)
(*This function is based on the roulette -wheel method , i.e. the fitness of each chromosome

defines the chance it ’s chosen.*)

end function

const n ;
const crossChance ;
function crossOver (parents)

if flipCoin (crossChance)
then

choose n crossover sites randomly ;
for each crossover site s

temp := parent1 . partialcode [s] ;
parent1 . partialcode [s] :=

parent2 . partialcode [s] ;
parent2 . partialcode [s] :=

temp ;
end for

end function

const mutateChance = 0 . 008 ;
function mutate (chromosome)

for each bit in chromosome

if (flipCoin (mutateChance)) then

invert (bit) ;
end for

end function

Algorithm 3.4: Pseudo code of the Genetic Algorithm for solving the
partitioning problem as found in [61].

37

like graph partitioning, the so-called genetic algorithm is most suitable. In
hardware/software partitioning genetic algorithms have been used in [61,
28, 63] among others.

In a genetic algorithm possible solutions to a problem are treated as
genomes that compete in an evolutionary setting. Intermediate solutions in
one iteration (generation) of the algorithm compete and the best solutions
go to the next generation. When a new generation starts changes (muta-
tions) are introduced in the solutions and solutions can exchange parts of
their ”genome” (crossover). In [61], for example, partitioning is modeled
as a constraint satisfaction problem, which in turn is mapped to a genetic
algorithm. The fitness of solutions is determined by the value of the con-
strained measures. This way fitter solutions are expected to better fulfil the
constraints. While genetic algorithms can give good solutions to problems
with many constraints and multi-dimensional cost functions, the strategy
provides no test for optimality, requires carefully chosen parameters like
mutation rate, crossover rate, etc., and can be very time consuming, i.e.
many generations may be needed before a stable state is achieved.

3.1.5 Global Criticality/Local Phase Driven Algorithms

An extension to simple serial greedy partitioning is the global criticality/lo-
cal phase driven algorithm [58]. Serial greedy algorithms can only optimize
for one cost metric when deciding where to partition a node, GCLP on the
other hand facilitates using multiple cost metrics. Which cost metric to use
is determined by comparing global criticality, a measure of temporal criti-
cality for each node, to a threshold value. This threshold is augmented by
a local phase delta. Local phase is a classification measure that indicates
the heterogeneity of a node. There are 3 local phase classes: Extremities,
Repellers, and normal nodes. Extremities for an implementation are nodes
that are inefficient for that implementation. Repellers of a certain implemen-
tation are nodes that are more efficiently implemented in another partition
than other nodes with the same costs for the current partition. Normal
nodes are nodes that are neither extremities nor repellers. The main advan-
tage of GCLP is the improved accuracy over simple greedy algorithms while
maintaining the speed of the partitioning process.

In [60] a more elaborate scheme based on GCLP is presented. This
paper combines GCLP and implementation-bin selection into an iterative
algorithm called MIBS (Mapping and Implementation-Bin Selection). At
the beginning of a MIBS iteration some nodes have been mapped (fixed
nodes) and some nodes have not (free nodes). GCLP is applied to the free
nodes accounting for the fixed nodes as well. From these temporarily parti-
tioned free nodes one node (tagged node) is selected for implementation bin
selection. When the implementation is determined the tagged node becomes
a fixed node, signaling a new iteration. The implementation-bin selection

38

var U : unscheduled nodes ;
var S : scheduled nodes ;
(* ready nodes are nodes whose

predecessors have all been

scheduled *)

var R : ready nodes ;
function GCLPPart (system : graph) : graph

computeExtremities (system) ;
computeRepellers (system) ;
while not empty (U)

ComputeGlobalCriticality (system) ;
Determine R ;
Compute effective exec . time texec(i)

(* if i ∈ U: texec(i) = GC.t(HW,i) + (1−GC)t(SW,i)
else if i ∈ S: texec(i) = t(part,i)*)

for each node in R

compute LongestPath (root , node) ;
pick node from R with Max (longestPath) ;
if isExtremity (node) then

delta = node.biasHW orSW ;
else if isRepeller (node) then

delta = node . repelValue ;
else

delta = 0
end if

if node . gc >= .5 + delta

objective=speedobjective

else

objective=resourceobjective

end if

partition node so Min (objective)
U = U − node ;
S = S + node ;

end while

return system ;
end function

Algorithm 3.5: Pseudo code of a GCLP algorithm for solving the partitioning
problem, as found in [58]. Some functions have not been listed here for space
reasons.

39

traverses all implementations for the tagged node from the fastest(L-bin) to
the slowest (H-bin) and for each implementation-bin determines the frac-
tion of free nodes that need to move to their L-bin in order to meet timing
constraints. When the difference in the number of free nodes in their L-bin
between two successive bins is maximal the second-last visited implementa-
tion is selected. The MIBS algorithm presents better results than GCLP,
but is also a lot slower. On the other hand the paper claims that the qual-
ity of the results come close to integer linear programming (ILP) solutions,
while being much faster.

3.1.6 Dynamic Programming

function DPPart (system : graph) : graph

if hasMultipleOutputs (system)
then

add dummy output node ;
connect each ouput to dummy ;

end if

nodes = reverseTopologicalSort (system) ;
while not empty (nodes)

node = pop (nodes) ;
merge (node , system) ;

end while

node = output node ;
bestSolution = minimum latency solution for node ;
for each node in bestSolution

put node in node . partition ;
end function

function merge (node , DAG)
predecessors = fan−in nodes of node

for part in [HW , SW] do

node . partition = part ;
for each pred in predecessors do

out : for each solution in pred . solutions do

Delay = solution . delay + delaypred−>node ;
for each other predecessor do

(* choose solution that has smaller

delay than Delay and minimum

area.*)

if no solution found then

continue out ;
other [i] = chosen solution ;

end for

if sum (other [∗] . area) > maxarea then

continue out ;
node . solutions . add (combine (other [∗] , node)) ;

end for

end for

end for

end function

Algorithm 3.6: Pseudo code of a Dynamic Programming algorithm for solv-
ing the partitioning problem, as found in [64].

When a problem has recursive characteristics and overlapping subprob-
lems, dynamic programming can help find a solution. Several papers use
dynamic programming in their partitioning [34, 64] strategies. For example,
[64] describes how possible mappings of a node in a DAG are determined in a
bottom-up fashion. Starting at the root node of the DAG every node builds
a solution list with delay and resource information using its fan-in nodes.

40

Infeasible solutions are pruned from the list and if all fanout nodes of a node
are processed the list can be pruned entirely. When multiple solutions exist
in fan-in nodes, only the one with the minimal resources is selected. When
all nodes have their possible solutions assigned, every node is assigned to
hardware or software according to the fastest solution listed.

When dynamic programming is applied correctly the algorithm will find
exact solutions. Dynamic programming can be time-consuming for arbitrary
graphs (NP-hard), but if DAGs are used the paper shows that this specific
application of dynamic programming has a time complexity of O(n). Dy-
namic Programming does have a larger space complexity than a brute force
approach.

3.1.7 Binary Constraint Search

function BCSPart (system : graph ,
cons : constraints ,
PartAlg : function)

: graph

begin

low = 0;
high = AllHardwareSize ;
while low < high do

mid = (low + high +1)/2;
(H’ , S’)=PartAlg (H , S , Cons , mid , Cost ()) ;
if Cost (H’ , S’ , Cons , mid)=0 then

high = mid − 1 ;
(Hzero , Szero) =(H’ , S’) ;

else

low = mid ;
end if

end while

return (Hzero , Szero) ;
end function

function PartAlg (HW : set , SW : set ,
Cons : constraints ,
mid : area constraint ,
Cost : function)

begin

(* This function can have different

implementations , like GCLP , Greedy ,

etc. *)

end function

Algorithm 3.7: Pseudo code of a Binary Constraint Search algorithm for
solving the partitioning problem, as found in [59].

One problem in hardware/software partitioning are the often conflicting
goals of minimizing one cost measure while satisfying others. For exam-
ple, when minimizing area, performance constraints may be violated. The
authors of [59] sought to solve this problem by splitting the problem in sat-
isfying constraints and minimizing some cost measure by encapsulating a
partitioning algorithm in a binary constraint search algorithm. In [59] the
encapsulated algorithm optimizes for performance under a hardware size
constraint that is determined by the encapsulating algorithm. The BCS al-
gorithm then uses a cost metric defined as the total number of constraint

41

violations to search for the solution with zero cost that has the lowest hard-
ware size constraint. This encapsulation approach can have various results
depending on the encapsulated partitioning algorithm, but the complexity
of the resulting partitioning algorithm is O(Cpart log n), where Cpart is the
complexity of the encapsulated algorithm.

3.1.8 Clustering Algorithms

const maxsize ;
var loophierarchy : graph ;
function Cluster (root : node) : clusters

clusters = empty ;
if hasChildren (root) then

for each child in children (root) do

cluster = subtree (child) ;
if cluster . size <= maxsize

clusters . add (cluster) ;
else

clusters . add (Cluster (child)) ;
end for

else

return {root} ;
end if

return clusters ;
end function

Algorithm 3.8: Pseudo code of a Clustering algorithm for solving part of the
partitioning problem, as can be found in [62].

When dealing with large problem sizes partitioning algorithms can be-
come slow and partitioners may require to switch to less efficient partitioning
strategies. Another solution is to reduce the problem size in some way. The
COSYN system presented in [30] accomplishes this by clustering nodes (in
this case tasks) together. This particular clustering approach is also used by
the CRUSADE algorithm [36]. In order to decrease the schedule length [30]
uses a clustering algorithm based on decreasing the longest path in a task
graph. By clustering tasks on the longest path together, communication
between those tasks becomes negligible. Now another path may be critical
and clustering starts again until no improvement of the critical path can
be made. The acquired clustered task graph can now be partitioned more
easily. Of course the obvious speed improvements this scheme has over nor-
mal partitioning comes with reduced accuracy. Furthermore, because the
granularity has coarsened the final partitioning might contain some unused
area where a single task might have been partitioned.

A different clustering method, called hierarchical loop clustering, is em-
ployed by [62], where loops are clustered together. Clustering in this method
is based on the loop-procedure hierarchy graph, which contains all procedure
calls and loops as nodes, while edges indicate a caller-callee or nesting rela-
tion between nodes. This graph is then traversed from the root down and
all nodes that have a common predecessor on the current level are clustered
together. When a cluster is within the cluster size limit it becomes fixed,

42

when clusters are too large the next level is inspected. This process contin-
ues until all clusters are fixed. The advantage of this clustering approach is
the clusters are disjunct in time, which makes it possible to find a dynamic
schedule for e.g. an FPGA.

3.2 Partitioning and Estimation

Generally partitioning algorithms are targeted at optimizing certain crite-
ria, while satisfying constraints on others. Different papers have focused
on different optimization criteria like area, speed, and power, but also com-
munication, memory, and loop frequency. It is evident that the estimation
strategies discussed in Section 2 are essential to hardware software partition-
ing. Some papers on estimation even presented schemes tailored for parti-
tioning schemes [28, 30, 25, 23, 18]. However, when combining estimation-
and partitioning schemes, one must consider the different levels of speed
and precision. For example, when a very precise partitioning scheme like
dynamic programming is applied, it makes less sense to incorporate esti-
mators with large error margins, because it is useless to exactly partition a
system using only partially accurate criteria. On the other hand a greedy
algorithm might benefit from more exact estimates by letting it find a better
local optimum.

In fact, when considering a certain granularity of partitioning it is good
to use estimates of a corresponding granularity. Indeed, if we look at the
granularity of partitioning in Table 3.1, it corresponds to the granularity
levels mentioned in Section 2.4.7 with the addition of operations, for which
estimation is trivial. The table does not show a particular trend in the
granularity of partitioning.

3.3 Dynamic versus Static Solutions

Most papers on hardware/software partitioning have focused on finding
static partitions between hardware and software. With the advent of re-
configurable computing, however, the need for dynamic solutions to parti-
tioning arose. Dynamic partitioning solutions define which part of a system
is executed in which partition and at which time. This allows a system to
exploit the dynamic reconfigurability of e.g. an FPGA, possibly reducing
power, area, or other requirements.

Examples of these dynamic partitioning techniques can be found in [62,
36, 67, 63] among others. In [62] a clustering algorithm is used where each
cluster is guaranteed not to overlap other clusters in time. This results in
a dynamic partitioning where each cluster can reside on the same FPGA at
different intervals in the program’s run-time. However, the paper does not

43

mention the problem of configuration time required to load clusters onto the
FPGA.

The CRUSADE system [36] also produces dynamic solutions. It does this
by finding all pairs of non-overlapping task graphs. After allocation every
pair of non-overlapping task graphs is merged when the resulting schedule
still meets constraints. In order to account for boot time, i.e. reconfiguration
time, a reconfiguration option array is introduced that contains various op-
tions for programming the reconfigurable logic and the corresponding boot
time and cost. The cheapest option that satisfies the timing constraints is
then chosen.

The Symphany Tool [67] utilizes a lazy scheduling algorithm to create
dynamic schedules for implementation on reconfigurable logic. In order to
do this, dummy dependency edges are added to the H-CDFG between ver-
tices contending for the FPGA. Vertices are then scheduled to be loaded to
the FPGA as soon as it is available, as long as the ALAP schedule of their
successor is not violated. When multiple vertices contend, the ALAP time
of their successors are used as priority.

A more elaborate approach is presented in [63], where a dynamic schedul-
ing scheme is used to dynamically partition tasks over FPGAs. The scheme
starts with assigning priorities to all tasks based on their ALAP sched-
ule, execution time, and reconfiguration delay. When the FPGA is already
(partially) configured with the same configuration as the current task, the
reconfiguration delay will be lower or zero. The task with the highest pri-
ority is then selected and allocated on the FPGA at a certain location and
a certain time. The authors of [63] describe the factors that influence the
allocation policy:

1. Reconfiguration Prefetching
Large FPGA configurations can have large reconfiguration delays. In
order to hide the impact of these delays configurations of such tasks
can be loaded in advance.

2. Configuration Pattern Reutilization
Different tasks may share parts of their configuration patterns and
when they are loaded onto the FPGA, those parts will be reused,
speeding up reconfiguration.

3. Candidate Eviction
When a task does not fit on an FPGA, other tasks need to be removed
from the FPGA. When tasks are removed they might be reloaded in the
future, yielding extra reconfiguration delay. In order to minimize this
an eviction cost measure is defined based on the total of all recurrent
frequencies of all evicted tasks. When this measure is minimal, the
configured task will be able to remain on the FPGA longest.

44

4. Fitting policy
When assigning locations on the FPGA to tasks the allocation policy
tries to avoid fragmentation.

5. Slack time utilization
When parts of a configuration already exist on the FPGA, assignment
to those locations might lower eviction cost, possibly delaying the start
time of the task. The slack available can be used to determine whether
this delay is tolerable. The maximum slack allowed for the current
task is the total slack divided by the number of levels of tasks in the
sub-graph rooted at the current task.

When the selected task is allocated, the priorities of the remaining tasks
are updated and the allocation repeats, until all tasks are allocated. The
worst-case complexity of this algorithm is O(n2 log n) but on average it be-
haves like an O(n log n) algorithm.

3.4 Synthesizability and Partitioning

Many papers in hardware/software partitioning either preselect the tasks
that are partitioned or assume the problem is implementable on an FPGA.
In any case it is important to factor out any system part that is not synthe-
sizable. For example, in [68], the PRISM-I system, aimed at automatically
translating C-code to a hardware and a software image, prohibits a total in-
put or output bit-width of more than 32 bits, global variables, floating point
values, etc. A partitioner is often coupled to or integrated in a synthesis tool
and therefore should take into account language restrictions for synthesis.

45

Chapter 4

Conclusions

In this paper, I have reviewed high level estimation techniques and hardware
software partitioning strategies, that might help create a model for hardware
candidate selection in the Delft Workbench project. From literature, I found
most high level estimation research has focused on area and speed metrics.
Because the Delft Workbench tool-flow aims to optimize for speed under area
constraints, these metrics may be usable in this project. After classifying
the metrics in literature, several conclusions can be made:

• Dynamic versus Static
When looking at high level estimation of hardware characteristics in
literature, static estimation proved to be most common. Dynamic
estimation is almost only used in speed estimation. When looking at
software metrics, however, dynamic estimation is very common.

• Granularity of estimation
Estimation dominantly uses entire graphs as the objects of estimation.
However, for dynamic speed estimation functions and loops are also
used.

• Datastructures
From the papers discussed in this paper, it is clear that the most
commonly used datastructure is the CDFG.

• Lack of error characterization
Almost all metrics reported in this paper, have no quantitative notion
of error.

• Memory impact
Almost no paper I found dealed with the impact of memory behavior
on hardware performance of candidate functions.

• Software metrics
Papers on hardware estimation mainly focus on directly estimating

46

speed-up, area, or power. Almost no paper investigates different soft-
ware metrics, like cyclometric complexity or maintainability.

Apart from estimation this paper has investigated hardware/software
partitioning strategies. Concerning partitioning I found that many different
aproaches exist (see Figure 3.1). The following conclusions can be made:

• Dynamic versus Static
From the reviewed papers it is clear not much research has been per-
formed in dynamic partitioning, i.e. partitioning different candidate
regions on the same area at different intervals.

• Strategies
Three main strategies seem to be used often in the research area: sim-
ple greedy approaches, Simulated Annealing, and evolutionary algo-
rithms. The simple approaches mostly aim at generating results fast.
The other two approaches try to prevent finding a local optimum by
introducing randomness in a controlled fashion.

• Granularity of partitioning
In contrast with estimation, the granularity of the different partition-
ing strategies is more diverse. In order to partition a program in a
software and a hardware part, estimation strategies should work on
the same level of granularity.

While this paper is based on a broad number of papers on the subjects
of estimation and partitioning, it does have some deficiencies. First, the
most recent works in this area have not been included. Because there are
several initiatives currently working on similar projects, the knowledge is
constantly changing and therefore this paper has limited itself to the research
before 2005. In following research, more recent works could be considered
as well. Second, because this paper was written within the Delft Workbench
project, the focus was on speed and area. However, power, communication,
and memory costs, become ever more important and further investigations
could be made into these areas.

47

Bibliography

[1] John von Neumann. First draft of a report on the EDVAC, volume 12 of
Charles Babbage Institute Reprint Series for the History of Computing. MIT
Press, 1987.

[2] John Backus. Can programming be liberated from the von neumann style?: a
functional style and its algebra of programs. Commun. ACM, 21(8):613–641,
1978.

[3] William H. Mangione-Smith, Brad Hutchings, David Andrews, André DeHon,
Carl Ebeling, Reiner Hartenstein, Oskar Mencer, John Morris, Krishna Palem,
Viktor K. Prasanna, and Henk A. E. Spaanenburg. Seeking solutions in con-
figurable computing. Computer, 30(12):38–43, 1997.

[4] Aravind Dasu and Sethuraman Panchanathan. Reconfigurable media process-
ing. Parallel Comput., 28(7-8):1111–1139, 2002.

[5] Enrico Buracchini. The software radio concept. IEEE Communications Mag-
azine, 38(9):138–143, September 2000.

[6] Wayne Wolf. Building the software radio. Computer, 38(3):87–89, 2005.

[7] M. Cummings and S. Haruyama. Fpga in the software radio. IEEE Commu-
nications Magazine, 37(2):108–112, February 1999.

[8] S. Srikanteswara, M. Hosemann, J. H. Reed, and P.M. Athenas. Design and
implementation of a completely reconfigurable soft radio. In RAWCON ’00:
Proceedings of IEEE Radio and Wireless Conference, pages 7–11, Mobile &
Portable Radio Res. Group, Virginia Polytech. Inst. & State Univ., Blacksburg,
VA, USA, September 2000. IEEE.

[9] S. Srikanteswara, R. C. Palat, J. H. Reed, and P. Athanas. An overview of
configurable computing machines for software radio handsets. IEEE Commu-
nications Magazine, 41(7):134–141, 2003.

[10] David Andrews, Douglas Niehaus, and Peter Ashenden. Programming models
for hybrid cpu/fpga chips. Computer, 37(1):118–120, 2004.

[11] Miljan Vuletic, Laura Pozzi, and Paolo Ienne. Programming transparency and
portable hardware interfacing: Towards general-purpose reconfigurable com-
puting. In ASAP ’04: Proceedings of the 15th IEEE International Conference
on Application-Specific Systems, Architectures, and Processors, pages 339–351.
IEEE Computer Society, September 2004.

48

[12] Al Strelzoff. Functional programming for reconfigurable computing. In IPDPS
’04: Proceedings of the 18th International Parallel and Distributed Processing
Symposium, San Jose, CA, USA, April 2004. IEEE Computer Society.

[13] M. Cherkaskyy. Theoretical fundamentals software/hardware algorithms. In
TCSET ’04: Proceedings of the International Conference on Modern Problems
of Radio Engineering, Telecommunications and Computer Science, pages 9–13,
Lviv, Ukraine, February 2004.

[14] Stamatis Vassiliadis, Georgi N. Gaydadjiev, Koen Bertels, and Elena Moscu
Panainte. The molen programming paradigm. In Proceedings of the Third
International Workshop on Systems, Architectures, Modeling, and Simulation,
pages 1–10, Delft, Netherlands, July 2003.

[15] Elena Moscu Panainte. The molen polymorphic processor. IEEE Trans.
Comput., 53(11):1363–1375, 2004. Fellow-Stamatis Vassiliadis and Member-
Stephan Wong and Member-Georgi Gaydadjiev and Member-Koen Bertels and
Student Member-Georgi Kuzmanov.

[16] Delft workbench.

[17] Dhananjay Kulkarni, Walid A. Najjar, Robert Rinker, and Fadi J. Kurdahi.
Fast area estimation to support compiler optimizations in fpga-based reconfig-
urable systems. In FCCM ’02: Proceedings of the 10th Annual IEEE Sympo-
sium on Field-Programmable Custom Computing Machines, page 239, Wash-
ington, DC, USA, 2002. IEEE Computer Society.

[18] Frank Vahid and Daniel D. Gajski. Incremental hardware estimation during
hardware/software functional partitioning. In Readings in hardware/software
co-design, pages 516–521. Kluwer Academic Publishers, Norwell, MA, USA,
2002.

[19] P. Ellervee, A. Jantsch, J. Öberg, A. Hemani, and H. Tenhunen. Exploring
asic design space at system level with a neural networkestimator. In ASIC ’94:
Proceedings of the Seventh Annual IEEE International ASIC Conference and
Exhibit, pages 67–70, Campus IT University, Kista, Sweden, September 1994.
IEEE.

[20] A. Nayak, M. Haldar, A. Choudhary, and P. Banerjee. Accurate area and delay
estimators for fpgas. In DATE ’02: Proceedings of the conference on Design,
automation and test in Europe, page 862, Washington, DC, USA, 2002. IEEE
Computer Society.

[21] Yang Qu and J.-P. Soininen. Estimating the utilization of embedded fpga
co-processor. In DSD ’03: Proceedings of the Euromicro Symposium on Digi-
tal System Design, pages 214–221, VTT Electron., Oulu, Finland, September
2003. IEEE Computer Society.

[22] Mahadevamurty Nemani and Farid N. Najm. High-level area and power esti-
mation for vlsi circuits. In ICCAD ’97: Proceedings of the 1997 IEEE/ACM
international conference on Computer-aided design, pages 114–119, Washing-
ton, DC, USA, 1997. IEEE Computer Society.

[23] Rolf L. Ernst Jörg Henkel. High-level estimation techniques for usage in hard-
ware/software co-design. In ASPDAC ’98: Proceedings of the ASP-DAC’98.

49

Asia and South Pacific Design Automation Conference, pages 353–360, Prince-
ton, NJ, USA, February 1998. IEEE.

[24] Alok Sharma and Rajiv Jain. Estimating architectural resources and per-
formance for high-level synthesis applications. In DAC ’93: Proceedings of
the 30th international conference on Design automation, pages 355–360, New
York, NY, USA, 1993. ACM Press.

[25] J. A. Maestro, D. Mozos, and H. Mecha. A macroscopic time and cost esti-
mation model allowing task parallelism and hardware sharing for the codesign
partitioning process. In DATE ’98: Proceedings of the Design, Automation
and Test in Europe Conference, pages 218–225, Madrid, Spain, February 1998.
IEEE.

[26] Tae-Woo Kim and Hyunchul Shin. Hardware cost estimation techniques for c-
level description. In ICVC ’99: Proceedings of the 6th International Conference
on VLSI and CAD, pages 85–88, Ansan-City, Kyunggi-Do, South Korea, 1999.
IEEE.

[27] S. Bilavarn, G. Gogniat, and J. Philippe. Area time power estimation for fpga
based designs at a behavioral level. In ICECS’2K, Kaslik, Lebanon, December
2000.

[28] V. Srinivasan, S. Govindarajan, and R. Vemuri. Fine-grained and coarse-
grained behavioral partitioning witheffective utilization of memory and design
space exploration formulti-fpga architectures. IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, 9(1):140–158, February 2001.

[29] Per Bjuréus, Mikael Millberg, and Axel Jantsch. Fpga resource and timing
estimation from matlab execution traces. In CODES ’02: Proceedings of the
tenth international symposium on Hardware/software codesign, pages 31–36,
New York, NY, USA, 2002. ACM Press.

[30] Bharat P. Dave, Ganesh Lakshminarayana, and Niraj K. Jha. Cosyn:
hardware-software co-synthesis of heterogeneous distributed embedded sys-
tems. IEEE Trans. Very Large Scale Integr. Syst., 7(1):92–104, 1999.

[31] Jo ao M. P. Cardoso and Pedro C. Diniz. Modeling Loop Unrolling: Approaches
and Open Issues, volume 3133/2004 of Lecture Notes in Computer Science,
page 224. Springer, July 2004.

[32] P. Banerjee, N. Shenoy, A. Choudhary, S. Hauck, C. Bachmann, M. Haldar,
P. Joisha, A. Jones, A. Kanhare, A. Nayak, S. Periyacheri, M. Walkden, and
D. Zaretsky. A matlab compiler for distributed, heterogeneous, reconfigurable
computing systems. In FCCM ’00: Proceedings of the 2000 IEEE Symposium
on Field-Programmable Custom Computing Machines, page 39, Washington,
DC, USA, 2000. IEEE Computer Society.

[33] M.A. Al Faruque, K. Karuri, S. Kowalewski, and R. Leupers. Fine grained
application profiling for guiding application specific instruction set proces-
sors(asips) design. Master’s thesis, Reinisch-Westfälische Hochshule, Aachen,
Germany, 2004.

[34] Axel Jantsch, Peeter Ellervee, Johny Öberg, and Ahmed Hemani. A case study
on hardware/software partitioning. In FCCM’94, Proceedings of the Workshop

50

on FPGAs for Custom Computing Machines, pages 111–118, Royal Institute
of Technology, Stockholm, Sweden, 1994. IEEE Computer Society Press.

[35] Carlo Brandolese. System-level performance estimation strategy for sw and
hw. In ICCD ’98: Proceedings of the International Conference on Computer
Design, page 48, Washington, DC, USA, 1998. IEEE Computer Society.

[36] Bharat P. Dave. Crusade: hardware/software co-synthesis of dynamically re-
configurable heterogeneous real-time distributed embedded systems. In DATE
’99: Proceedings of the conference on Design, automation and test in Europe,
page 22, New York, NY, USA, 1999. ACM Press.

[37] Dinesh C. Suresh, Walid A. Najjar, Frank Vahid, Jason R. Villarreal, and
Greg Stitt. Profiling tools for hardware/software partitioning of embedded
applications. SIGPLAN Not., 38(7):189–198, 2003.

[38] Srivaths Ravi, Ganesh Lakshminarayana, and Niraj K. Jha. Removal of mem-
ory access bottlenecks for scheduling control-flow intensive behavioral descrip-
tions. In ICCAD ’98: Proceedings of the 1998 IEEE/ACM international con-
ference on Computer-aided design, pages 577–584, New York, NY, USA, 1998.
ACM Press.

[39] W. fornaciari, P. Gubian, D. Sciuto, and C. Silvano. System-level power eval-
uation metrics. In ICISS ’97: Proceedings of the Second Annual IEEE Inter-
national Conference on Innovative Systems in Silicon, pages 323–330, Milano,
Italy, October 1997. IEEE.

[40] Paul Landman. High-level power estimation. In ISLPED ’96: Proceedings of
the 1996 international symposium on Low power electronics and design, pages
29–35, Piscataway, NJ, USA, 1996. IEEE Press.

[41] A. Balboni, W. Fornaciari, and D. Sciuto. Partitioning and exploration strate-
gies in the tosca co-design flow. In CODES ’96: Proceedings of the 4th Inter-
national Workshop on Hardware/Software Co-Design, page 62, Washington,
DC, USA, 1996. IEEE Computer Society.

[42] Adam Kaplan, Philip Brisk, and Ryan Kastner. Data communication estima-
tion and reduction for reconfigurable systems. In DAC ’03: Proceedings of the
40th conference on Design automation, pages 616–621, New York, NY, USA,
2003. ACM Press.

[43] R. Ernst and W. Ye. Embedded program timing analysis based on path clus-
tering and architecture classification. In ICCAD ’97: Proceedings of the 1997
IEEE/ACM international conference on Computer-aided design, pages 598–
604, Washington, DC, USA, 1997. IEEE Computer Society.

[44] M. Hirzel and T. Chilimbi. Bursty tracing: A framework for low-overhead
temporal profiling. In 4th ACM Workshop on Feedback-Directed and Dynamic
Optimization (FDDO-4), December 2001.

[45] Trishul M. Chilimbi. Efficient representations and abstractions for quantifying
and exploiting data reference locality. In PLDI ’01: Proceedings of the ACM
SIGPLAN 2001 conference on Programming language design and implemen-
tation, pages 191–202, New York, NY, USA, 2001. ACM Press.

51

[46] P. G. Kjeldsberg, F. Catthoor, and E. J. Aas. Data dependency size estima-
tion for use in memory optimization. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 22(7):908–921, 2003.

[47] Jianwen Zhu and S. Calman. Context sensitive symbolic pointer analysis. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems,
24(4):516–531, April 2005.

[48] Jörg Henkel and Yanbing Li. Energy-conscious hw/sw-partitioning of embed-
ded systems: a case study on an mpeg-2 encoder. In CODES/CASHE ’98:
Proceedings of the 6th international workshop on Hardware/software codesign,
pages 23–27, Washington, DC, USA, 1998. IEEE Computer Society.

[49] Rajesh K. Gupta and Giovanni De Micheli. Hardware-software cosynthesis for
digital systems. pages 5–17, 2002.

[50] Chu-Yi Huang, Yen-Shen Chen, Youn-Long Lin, and Yu-Chin Hsu. Data path
allocation based on bipartite weighted matching. In DAC ’90: Proceedings of
the 27th ACM/IEEE conference on Design automation, pages 499–504, New
York, NY, USA, 1990. ACM Press.

[51] Luc Séméria and Giovanni De Micheli. Spc: synthesis of pointers in c: appli-
cation of pointer analysis to the behavioral synthesis from c. In ICCAD ’98:
Proceedings of the 1998 IEEE/ACM international conference on Computer-
aided design, pages 340–346, New York, NY, USA, 1998. ACM Press.

[52] Frank Vahid. Procedure exlining: a transformation for improved system and
behavioral synthesis. In ISSS ’95: Proceedings of the 8th international sym-
posium on System synthesis, pages 84–89, New York, NY, USA, 1995. ACM
Press.

[53] A. P. Bohm, B. Draper, W. Najjar, J. Hammes, R. rinker, M. Chawathe,
and C. Ross. One-step compilation of image processing applications to fp-
gas. In FCCM ’01: Proceedings of the 9th Annual IEEE Symposium on field-
Programmable Custom Computing Machines, pages 209–218, Colorado State
University, CO, USA, May 2001. IEEE Computer Society.

[54] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated
annealing. Science, Number 4598, 13 May 1983, 220, 4598:671–680, 1983.

[55] R.K. Gupta and Giovanni De Micheli. System-level synthesis using re-
programmable components. In EDAC ’92: Proceedings of the Third European
Conference on Design Automation, pages 2–7, Center for Integrated Systems,
Stanford University, CA, USA, March 1992.

[56] Zebu Peng and Krzysztof Kuchcinski. An algorithm for partitioning of appli-
cation specific systems. Technical Report R-94-01, Department of Computer
and Information Science, Linköping University, Linköping, Sweden, 1994. Pub-
lished in Proceedings of the European Conference on Design Automation
EDAC’93, Paris, France, February 22-25, 1993.

[57] Rolf Ernst, Jörg Henkel, and Thomas Benner. Hardware-software cosynthesis
for microcontrollers. In Readings in hardware/software co-design, pages 18–29.
Kluwer Academic Publishers, Norwell, MA, USA, 2002.

52

[58] Asawaree Kalavade and Edward A. Lee. A global criticality/local phase driven
algorithm for the constrained hardware/software partitioning problem. In
CODES ’94: Proceedings of the 3rd international workshop on Hardware/soft-
ware co-design, pages 42–48, Los Alamitos, CA, USA, 1994. IEEE Computer
Society Press.

[59] Frank Vahid, Daniel D. Gajski, and Jie Gong. A binary-constraint search al-
gorithm for minimizing hardware during hardware/software partitioning. In
EURO-DAC ’94: Proceedings of the conference on European design automa-
tion, pages 214–219, Los Alamitos, CA, USA, 1994. IEEE Computer Society
Press.

[60] A. Kalavade and E. A. Lee. The extended partitioning problem: hardware/-
software mapping and implementation-bin selection. In RSP ’95: Proceed-
ings of the Sixth IEEE International Workshop on Rapid System Prototyping
(RSP’95), page 12, Washington, DC, USA, 1995. IEEE Computer Society.

[61] D. Saha, A. Basu, and R. S. Mitra. Hardware software partitioning using
genetic algorithm. In VLSID ’97: Proceedings of the Tenth International Con-
ference on VLSI Design: VLSI in Multimedia Applications, page 155, Wash-
ington, DC, USA, 1997. IEEE Computer Society.

[62] Yanbing Li, Tim Callahan, Ervan Darnell, Randolph Harr, Uday Kurkure,
and Jon Stockwood. Hardware-software co-design of embedded reconfigurable
architectures. In DAC ’00: Proceedings of the 37th conference on Design au-
tomation, pages 507–512, New York, NY, USA, 2000. ACM Press.

[63] Li Shang and Niraj K. Jha. Hardware-software co-synthesis of low power
real-time distributed embedded systems with dynamically reconfigurable fpgas.
In ASP-DAC ’02: Proceedings of the 2002 conference on Asia South Pacific
design automation/VLSI Design, page 345, Washington, DC, USA, 2002. IEEE
Computer Society.

[64] Karthikeyan Bhasyam and Kia Bazargan. Hw/sw codesign incorporating edge
delays using dynamic programming. In DSD ’03: Proceedings of the Euromicro
Symposium on Digital Systems Design, page 264, Washington, DC, USA, 2003.
IEEE Computer Society.

[65] Sudarshan Banerjee and Nikil Dutt. Very fast simulated annealing for hw-sw
partitioning. Technical Report UCI–CECS–04–18, University of California,
Irvine, Irvine, CA, USA, June 2004.

[66] T. Bäck, U. Hammel, and H.-P. Schwefel. Evolutionary computation: com-
ments on the history and current state. IEEE Transactions on Evolutionary
Computation, 1(1):3–17, April 1997.

[67] U. Nagaraj Shenoy, Alok Choudhary, and Prithviraj Banerjee. Symphany: A
tool for automatic synthesis of parallel heterogeneous adaptive systems. Tech-
nical Report CPDC-TR-9903-002, Center for Parallel and Distributed Com-
puting, Northwestern University, Evanston, IL, USA, March 1999.

[68] Peter M. Athanas and Harvey F. Silverman. Processor reconfiguration through
instruction-set metamorphosis. IEEE Computer, 26(3):11–18, 1993.

53

