PISC: Polymorphic Instruction Set Computers

Stamatis Vassiliadis, Georgi Kuzmanov, Stephan Wong, Elena
Moscu-Panainte, Georgi Gaydadjiev, Koen Bertels, and Dmitry Cheresiz

Computer Engineering, EEMCS,

Delft University of Technology,
Mekelweg 4, 2628 CD Delft, The Netherlands
S.Vassiliadis@ewi.tudelft.nl,
WWW home page: http://ce.et.tudelft.nl/

Abstract. We introduce a new paradigm in the computer architecture
referred to as Polymorphic Instruction Set Computers (PISC). This new
paradigm, in difference to RISC/CISC, introduces hardware extended
functionality on demand without the need of ISA extensions. We mo-
tivate the necessity of PISCs through an example, which arises several
research problems unsolvable by traditional architectures and fixed hard-
ware designs. More specifically, we address a new framework for tools,
supporting reconfigurability; new architectural and microarchitectural
concepts; new programming paradigm allowing hardware and software
to coexist in a program; and new spacial compilation techniques. The
paper illustrates the theoretical performance boundaries and efficiency
of the proposed paradigm utilizing established evaluation metrics such
as potential zero execution (PZE) and the Amdahl’s law. Overall, the
PISC paradigm allows designers to ride the Amdahl’s curve easily by
considering the specific features of the reconfigurable technology and the
general purpose processors in the context of application specific execu-
tion scenarios.

1 Introduction

Overall performance measurements in terms of Millions Instructions Per Cycle
(MIPS) or cycles per instruction (CPI) depend greatly on the CPU implemen-
tation. Potential performance improvements due to the parallel/concurrent ex-
ecution of instructions, independent of technology or implementations, can be
measured by the number of instructions which may be executed in zero time,
denoted by PZE (potential zero-cycle execution) [1]. The rationale behind this
measurement, as described in [1] for compound instruction sets is:

”If one instruction in a compound instruction pair executes in n cycles and
the other instruction executes in m < n cycles, the instruction taking m cycles
to execute appears to execute in zero time. Because factors such as cache size
and branch prediction accuracy vary from one implementation to the next, PZE
measures the potential, not the actual, rate of zero-cycle execution. Additionally,
note that zero-cycle instruction execution does not translate directly to cycles
per instruction (CPI) because all instructions do not require the same number

of cycles for their execution. The PZE measure simply indicates the number
of instructions that potentially have been removed from the instruction stream
during the execution of a program.”

Consequently, PZE is a measurement that indicates maximum speedup at-
tainable when parallelism/concurrency mechanisms are applied. The main ad-
vantage of PZE is that given a base machine design the benefits of proposed
mechanisms can be measured and compared. We can thus evaluate the effi-
ciency of a real design expressed as a percentage of the potentially maximum
attainable speedup indicated by PZE. An example is illustrated in Figure 1.
Four instructions, executing in a pipelined machine are considered. The instruc-

T T T 7 Techniques:
s o — m
T T T T 1 pipeline
| — B _ technology
| I I N | Timewise we execute two
N IS I — instructions
T T T T 3 (50% code elimination)
T 1T 1T 7]
Reduced 8 cycles to 6;
_ § Speedup: 1.33;
— Max speedup: 2.0;
. Efficiency: 65%

Fig. 1. PZE example.

tions from the example are parallelized applying different techniques, such as
instruction level parallelism (ILP), pipelining, technological advances, etc., as
depicted in Figure 1. Timewise, the result is that the execution of 4 instructions
is equivalent to the execution of 2 instructions, which corresponds to a seeming
code reduction by 50%, i.e., 2 out of 4 instructions potentially have been re-
moved from the instruction stream during the program erecution. It means that
the maximum theoretically attainable speedup (i.e., again potentially) in such a
scenario is a factor of 2. In the particular example from Figure 1, the execution
cycles count for 4 instructions is reduced from 8 to 6 cycles, allowing 1.33 times
speedup, which compared to the maximum speedup of 2, suggests efficiency of
65%. The above example suggests that PZE allows to measure the efficiency
of a real machine implementation by comparing to a theoretical base machine,
i.e., PZE gives an indication of how close a practical implementation performs
to the theoretically attainable best performance boundaries. These theoretical
boundaries are described by Amdahl’s law [2].

Amdahl’s law and the new polymorphic paradigm. The maximum theoretically
attainable (i.e., the potentially maximum) speedup, considered for the PZE,
with respect to the parallelizable portion of the program code, is determined by
Amdahl’s law. Amdahl’s curve, graphically illustrated in Figure 2, suggests that

30

n
o

One order of magnitude speedup

Max Speedup

=
o

[0.5 0.8 09 095 1

Fig. 2. The Amdahl’s curve and PISC.

if, say half of an application program is parallelized and that its entire parallel
fraction is assumingly executed in zero time, the speedup would potentially be
2. Moreover, the Amdahl’s curve suggests that to achieve an order of magnitude
speedup, a designer should parallelize over 90% of the application execution. In
such cases, when over 90% of the application workload is considered for paral-
lelization, it is practical to create an ASIC, rather than utilizing programmable
GPP. The design cycle of an ASIC, however, is extremely inflexible and very
expensive. Therefore, ASICs may not appear to be an efficient solution when
we consider smaller portions (i.e., less than 90%) of an algorithm for hardware
acceleration. Obviously, there exist potentials for new hardware proposals that
perform better than GPPs and are more flexible alternative to design and oper-
ate than ASICs.

In this paper, we introduce a new architectural paradigm targeting the exist-
ing gap between GPPs and ASICs in terms of flexibility and performance. This
new paradigm exploits specific features of the reconfigurable hardware technolo-
gies. In consistence with the classical RISC and CISC paradigms [3, 4], we refer
to the new architectural paradigm as to a Polymorphic Instruction Set Com-
puter (PISC). The practically significant scope of PISC covers between 50% and
90% application parallelization illustrated with the Amdahl’s curve in Figure
2. This interval provides a designer with potentials to benefit from the best of
two worlds, i.e., with a synergism between purely programmable solutions on
GPPs and reconfigurable hardware. That is, the infinite flexibility of the pro-
grammable GPPs combined with reconfigurable accelerators results into a PISC
- a programmable system that substantially outperforms GPP. Therefore, we
believe that the gap between GPP and ASIC, illustrated in Figure 2, belongs to
PISC. More specifically, we address the following research areas related to the
PISC paradigm:

— New HW/SW co-design tools

— Processor architecture and microarchitecture

— Programming paradigm
— Compilation for the new programming paradigm

The remainder of this paper is organized as follows. In Section 2, we present
a motivating example and derive key research questions. Section 3 describes the
general approach to solve these research questions. The polymorphic architec-
tural extension is presented in Section 4. Section 5 introduces some compiler
considerations targeting the new architectural paradigm. Finally, the paper is
concluded in Section 6.

2 DMotivating example and research questions.

To illustrate the necessity of the PISC computing paradigm, we present a mo-
tivating example based on the Portable Network Graphics (PNG) standard [5].
PNG is a popular standard for image compression and decompression, it is a
native standard for the graphics implemented in Microsoft Office as well as in a
number of other applications. We consider the piece of C-code presented in Figure
3, which is extracted from an implementation of the PNG standard. This code

void Paeth_predict_row(char *prev_row, char *curr_row, char *predict_row, int length)
{char *bptr, *dptr, *predptr;

char a, b, ¢, d;

short p, pa, pb, pc;

bptr = prev_row+1;
dptr = curr_row-+1;
predptr= predict_row+1;

for(i=1; i<length; i++)

{c = *(bptr-1); b = *bptr;

a = *(dptr-1); d = *dptr;

p = a+ b - ¢; /* this is the initial prediction */
pa = abs(p - a); /* distance of each member */
pb = abs(p-b); /* to the */

pc = abs(p - ¢); /* initial estimate */

if ((pa<pb)&&(pa<pc) *predptr = a;

else if (pb<pc) *predptr = b;

else *predptr = c;

bptr++; dptr++; predptr++; } }

Fig. 3. The Paeth prediction routine according to PNG specification [5].

fragment implements an important stage of the PNG coding process. It com-
putes the Paeth prediction for each pixel d of the current row, starting from the
second pixel. The Paeth prediction scheme, illustrated in Figure 4, selects from

Original Filtered

0]0J010 ‘ ofol|lolo F|It_e_red:
Original -

O3l |3 |/ I—v[o|3 |0 0 Paeth =
0] 3]4]4 oo/ 1]|fo][=4 - 4

] v —
0 ‘ 375 ollolloTo =0

Paeth

0191919 c=3, b=3 b
00|33 a=4, d=4 ald
BERE IR p=4+3 -3=4
olzlats Paeth (d)=a=4

Fig. 4. The Paeth prediction scheme.

the 3 neighboring pixels a, b, and ¢, that surround d, the pixel that differs the
least from the value p = a4+ b — ¢ (which is called the initial prediction). The se-
lected pixel is called the Paeth prediction for d. If the pixel rows contained length
+ 1 elements, length prediction values are produced. This prediction scheme is
used during the image filtering stage of the image coding and decoding. Figure
5 presents an implementation of the code fragment in pseudocode derived from
the AltiVec assembly. In this figure, the general-purpose register GPRi of the
underlying ISA is denoted by ri, vri denotes the i-th vector register of AltiVec.
Analysis of the motivating example presented above suggests the following.
If the Paeth predictor must be computed for a row of 1024 pixels, the complete
AltiVec code presented in Figure 5 will result in a dynamic instruction count of
8(prologue) + 64 - [3(load) + 6(unpack) + 76(compute) + 1(pack) + 1(store) +
2(miscellaneous) + 3(pointerupdate) + 3(loopcontrol)] = 8 + 6464 - 95 = 6088
instructions. This high instruction count, which limits the performance, is caused
by the following features of the short-vector media extensions. First, if the main
operation to be performed is relatively complex, it requires multiple instructions.
Second, the overhead tasks associated with stream sectioning, loading, storing,
packing, unpacking, and data rearrangement require separate instructions.
Considering Figure 5, we can substitute all loop iterations in the Paeth code
with a single instruction and add only a few instructions to interface with the
remainder of the program code. In such a case, we can expect considerable de-
crease of the instructions count and execution time improvements. The Paeth
loop is transformed now in a single instruction [6] that takes 5 cycles to com-
plete! and requires 20 setup instructions. The improvement attained is nearly
two orders of magnitude reduction of the instructions count and two orders of

! One cycle is the duration of a single ALU operation

Altivec code What it does

li 15,0 iAitiali
....totally 6 instructions Inltlallze
loop:
Ivx vr03, rl # load c's
Ivx vro4, r2 # load a's |Oad
vsidoi vr05, vr01, vr03, 1 #load b's
vmrghb vr07, vr03, vr00 # unpack
vmrglb vr08, vr03, vr00 # unpack un pack
...totally 6 instructions
#Compute *
vadduhs vrl5, vr09, vrll # a+b
vadduhs vrle, vrl0, vrl2 #
vsubshs vrl5, vrl5, vi07 #
vsubshs vrl6, vrl6, vio8 # pI’OCGSS
.totally 76 instructions
ack: *
vpkshus vr28,vr28,29 # pack | ack
|stvx vr28, 13, 0 #store | Sto re
#Loop control
addi rl, rl, 16
bneq r7, r0, loop # Loop LOOpIﬂg

Fig. 5. AltiVec code for the Paeth predict kernel .

magnitude reduction of the execution time. Obviously, the scale of these im-
provements depends on the implementability of the Paeth coding into hardware
as a single instruction. An efficient Paeth hardware implementation comprises
24 32-bit adders allowing a throughput of 16 pixels/cycle (i.e., 6 8-bit adders per
pixel).

Research Questions. The Paeth encoding is just one computationally demand-
ing kernel identified in a particular program. To implement an entire application
efficiently, however, it is very likely that a number of such kernels should be
identified within a single program execution context and each of them should be
implemented in hardware. Therefore, traditional approaches, which introduce
a new instruction for each portion of the application considered for hardware
implementation, are restricted by the unused opcode space of the core proces-
sor architecture. Moreover, due to the large number of candidate kernels for
hardware implementation, it may appear that their fixed hardware realization
is impossible within limited silicon resources. The latter problem can be over-
come, if the hardware can change its functionality at the designer’s wish, i.e.,
using reconfigurable hardware. For many traditional reconfigurable approaches,

however, the above problems become even more dramatic if an arbitrary number
of new operations should be considered for hardware implementation [7,8]. In
such scenarios,the traditional design methods can not be employed. The above
observations arise the following research questions:

1. How to identify the code for hardware implementation?

2. How to implement ”arbitrary” code?

3. How to avoid adding new instructions per kernel?

4. How to substitute the hardwired code with SW/HW descriptions say at
source level?

5. How to generate the ”transformed” program automatically?

With respect to the above questions, in this paper we address the following
research topics:

1. New kind of tools.

Microarchitecture design.

Processor architecture (behavior and logical structure).

New programming paradigm allowing HW and SW to coexist in a program.
New compilation techniques.

G

3 General Approach

To solve the research questions stated in the previous section, we propose a
synergism between a general-purpose processor (GPP) and a reconfigurable pro-
cessor (RP) referred to as the Molen pu-coded processor. In the discussion to
follow, we present the general concept of transforming an existing program to
one that can be executed on the reconfigurable computing platform we propose
and hints to the new mechanisms, intended to improve existing approaches.

Program P Program P*
¢ GPP
o —> A —
S MEM
——-—"/
7 g

Fig. 6. Program transformation example.

The conceptual view of how program P (intended to execute only on the
general-purpose processor (GPP) core) is transformed into program P’ (exe-
cuting on both the GPP core and the reconfigurable hardware) is depicted in
Figure 6. The purpose is to obtain a functionally equivalent program P’ from
program P which (using specialized instructions) can initiate both the configura-
tion and execution processes on the reconfigurable hardware. The steps involved
in this transformation are the following:

[P

1. identify code “«” in program P to be mapped in reconfigurable hardware.

2. show that “a” can be implemented in hardware in an existing technology,
e.g., FPGA, and map “«” onto reconfigurable hardware (RH).

3. eliminate the identified code “a” and add “equivalent” code (A) assuming
that A “calls” the hardware with functionality “a”. The code A comprises
the following:

— Repair code inserted to communicate parameters and results to/from
the reconfigurable hardware from/to the general-purpose processor core.

— “HDL”-like hardware code and emulation code inserted to configure the
reconfigurable hardware and to perform the functionality that is initial-
ized by the “execute code”.

4. compile and execute program P’ with original code plus code having func-
tionality A (equivalent to functionality “a”) on the GPP /reconfigurable pro-
Cessor.

The mentioned steps illustrate the need for a new programming paradigm
in which both software and hardware descriptions are present in the same pro-
gram. It should also be noted that the only constraint on “a” is implementability,
which possibly implies complex hardware. Consequently, the microarchitecture
may have to support emulation [9] via microcode. We have termed this reconfig-
urable microcode (ppu-code) as it is different from the traditional microcode. The
difference is that such microcode does not execute on fixed hardware facilities.
It operates on facilities that the pu-code itself “designs” to operate upon. We
refer to such facilities as to configurable computing units (CCU). A processor
supporting pu-code is referred to as a ppu-coded processor and we also call it a
Molen processor. More details on the Molen machine organization are presented
in [11,12].

The methodology of the transformation described previously for the reconfig-
urable computing platform is depicted in Figure 7. First, the code to be executed
on the reconfigurable hardware must be determined. This is achieved by high-
level to high-level instrumentation and benchmarking. This results in several
candidate pieces of code. Second, we must determine which piece of code is
suitable for implementation on the reconfigurable hardware. The suitability is
solely determined by whether the piece of code is implementable (i.e., “fits in
hardware”). Those parts can then be mapped into hardware via a hardware de-
scription language (HDL). In case the HDL corresponds to “critical” hardware
in terms of, for instance, area, performance, memory and power consumption,
the translation will be done manually. Otherwise, the translation can be done
automatically or extracted from a library [13].

4 The Polymorphic ISA

In order to target the pu-code processor, we propose a sequential consistency
programming paradigm [10]. The paradigm allows for parallel and concurrent
hardware execution and requires only a one-time architectural extension of few

Code

int fact(int n)

{

if(n<1) retnm n
else

return (n*fact(@-1))
}

call f() HDL

AUTOMATIC

A

HARDW ARE

GENERATOR

Fig. 7. Program transformation methodology for reconfigurable computing.

instructions to provide a large user reconfigurable operation space. The complete
list of the eight required instructions, denoted as polymorphic (woAvuopdiko)
Instruction Set Architecture (7ISA), is as follows:

— Six instructions are required for controlling the reconfigurable hardware,
namely:

e Two set instructions: these instructions initiate the configurations of the
CCU. Two instructions are added for partial reconfiguration:

x the partial set (p-set <address>) instruction performs those con-
figurations that cover common parts of multiple functions and/or
frequently used functions.

* the complete set (c-set <address>) instruction performs the con-
figurations of the remaining blocks of the CCU (not covered by the
p-set) to complete the CCU functionality.

e execute <address>: controls the execution of the operations imple-
mented on the CCU. These implementations are configured onto the
CCU by the set instructions.

o set prefetch <address>: prefetches the needed microcode responsible
for CCU reconfigurations into a local on-chip storage facility (the pu-
code unit) in order to possibly diminish microcode loading times.

e execute prefetch <address>: the same reasoning as for the set prefetch
instruction holds, but now relating to microcode responsible for CCU ex-
ecutions.

e break: facilitates the parallel execution of both the reconfigurable pro-
cessor and the core processor. It is utilized as a synchronization mecha-

nism to complete the parallel execution.
— Two move instructions for passing values between the register file and ex-
change registers (XREGs):
e movtx XREG, < Rp: (move to XREG) used to move the content of
general-purpose register Ry to XREG,.
e movfx R, «— XREG;: (move from XREG) used to move the content of
exchange register XREGy to general-purpose register R,,.

The <address> field in the instructions introduced above denotes the loca-
tion of the reconfigurable microcode responsible for the configuration and execu-
tion processes. The parameters are passed via the exchange registers (XREGS).
In order to maintain correct program semantics, the code is annotated. It is
not imperative to include all instructions when implementing the Molen or-
ganization. The programmer/implementor can opt for different ISA extensions
depending on the performance that needs to be achieved and the available tech-
nology. There are basically three distinctive mISA possibilities with respect to
the Molen instructions introduced earlier - the minimal, the preferred and the
complete TISA extension:

— The minimal 7ISA: This is essentially the smallest set of Molen instruc-
tions needed to provide a working scenario. The four basic instructions
needed are set (more specifically: c-set), execute, movtx and movfx.

— The preferred 7ISA: In order to address reconfiguration latencies both p-
set and c-set instructions are utilized. The two prefetch instructions (set
prefetch and execute prefetch) provide a way to diminish the microcode
loading times by scheduling them well ahead of the moment that the mi-
crocode is needed.

— The complete 7ISA: This scenario involves all 7ISA instructions includ-
ing the break instruction. The break instruction provides a mechanism to
synchronize the parallel execution of instructions by halting the execution
of instructions following the break instruction.

Parallel execution. Parallel execution, for all 7ISA modifications is initiated by
a set/execute instruction. For both minimal and preferred 7ISA, a parallel ex-
ecution is ended by a general-purpose instruction as described in Figure 8(a).
When a complete 7ISA is implemented and a sequence of instructions is per-
formed in parallel, the end of the parallel execution is marked by the break
instruction. It indicates where the parallel execution stops (see Figure 8 (b)).

Microarchitecture and its implementation. An example of a PISC is the Molen
pu-coded processor introduced in [11]. More details on the Molen microarchitec-
ture have been published in [12]. We have implemented a prototype design of a
Molen processor using the Xilinx Virtex II Pro technology [14], which demon-
strates many advantages of the PISCs and can be utilized for real-life applica-
tion implementations. The core processor of the Molen prototype from [14] is
the PowerPC hardcore embedded in the Xilinx virtex II Pro FPGAs.

EXECUTE opl EXECUTE opl

EXECUTE op2 in parallel GPPingtruction .

EXECUTE op3 EXECUTE op2 in parallel

GPP Instruction = synchronization EXECUTE op3

EXECUTE op4 GPP Instructions

GPP Instructions Break -~ synchronization
8, synctironi %gtr'ggﬂ"(‘j’gg‘ar?géﬁ%ﬁtggd b) synchronization when GPP and FPGA

work in parallel

in parallel and GPP is stalled
(the complete TI1SA)

(the preferred T1SA)

Fig. 8. Parallel execution and models of synchronization.

5 Compiler

The specific PISC compiling techniques will be illustrated with examples from
the Molen compiler [15]. Currently, the Molen compiler relies on the Stanford
SUIF2 [16] (Stanford University Intermediate Format) Compiler Infrastructure
for the front-end and for the back-end on the Harvard Machine SUIF [17] frame-
work. The following essential features for a compiler targeting custom computing
machines (CCM) have currently been implemented:

— Code identification: for the identification of the code mapped on the recon-
figurable hardware, we added a special pass in the SUIF front-end. This
identification is based on code annotation with special pragma directives
(similar to [18]). In this pass, all the calls of the recognized functions are
marked for further modification.

— Instruction set extension: the compiler takes into account the instruction
set extension and inserts the appropriate set/ execute instructions both
at the medium intermediate representation level and at low intermediate
representation (LIR) level.

— Register file extension: the register file set has been extended with the ex-
change registers. The register allocation algorithm allocates the XREGs in
a distinct pass applied before the register allocation; it is introduced in Ma-
chine SUIF, at LIR level. The conventions introduced for the XREGs are
implemented in this pass.

— Code generation: code generation for the reconfigurable hardware (as pre-
viously presented) is performed when translating SUIF to Machine SUIF
intermediate representation, and affects the function calls marked in the
front-end. The code generation schedules the set instructions to hide the
reconfiguration latency and to guarantee that the functions can be mapped
on the available area [19].

An example of the code generated by the extended compiler for the Molen
programming paradigm is presented in Figure 9. On the left, the C code is de-
picted. The function implemented in reconfigurable hardware is annotated with
a pragma directive named call_fpga. It has incorporated the operation name, op1
as specified in the hardware description file. In the middle, the code generated

by the original compiler for the C code is depicted. The pragma annotation is
ignored and a normal function call is included. On the right, the code generated
by the compiler extended for the Molen programming paradigm is depicted; the
function call is replaced with the appropriate instructions for sending parameters
to the reconfigurable hardware in XREGs, hardware reconfiguration, preparing
the fixed XREG for the microcode of the execute instruction, execution of the
operation and the transfer of the result back to the general-purpose register file.
The presented code is at medium intermediate representation level in which the
register allocation pass has not been applied yet.

#pragma call_fpga op1 mai n: nrk 2, 14

int f(int &, int b){ mk 2,13 nov $vr2.s32 < main.z

int c i; | dc $vr0. £32 < nmovtx $vrl.s32(XR) < $vr2.s32
c=0; nmov main.z < $vr0.s32 I dc $vi74.s32 <
for(i=0; i<b; i++) movtx $vr3.s32(XR) < $vr4.s32

c = c>>b; I dc $vr2. 832 < set address_opl SET

cal $vr1.s32 < f(main.z, $vr2.s32)

return c; - Idc $vr6.s32(XR) <0
} MoV main.x < $vri.s32 movtx $vr 7.532(XR) < vr6.532
void main(){ mk 2, 15
int x,z; I de $vr3.832 < exec address opl EXEC
; ret $vr3.s32 nmovfx $vr8.s32 < $vr5.s32(XR)

C=c +a<<i +i; mk 2, 14

z=5
;(=f(2’ 7 .text_end main mov main. x < $vr8.s32
C code Original medium inter mediate Medium inter mediate representation
representation code code extended with instructions for
FPGA

Fig. 9. Medium intermediate representation code.

The compiler extracts from a hardware description file the information about
the target architecture such as the microcode address of the set and execute
instructions for each operation implemented in the reconfigurable hardware, the
number of XREGs, the fixed XREG associated with each operation, etc. The
compiler may also decide not to use a reconfigurable hardware function and to
include a pure software based execution.

6 Conclusions

We presented a new paradigm in computer architecture referred to as Polymor-
phic Instruction Set Computer (PISC). This new computing paradigm allows
general purpose programming code and reconfigurable hardware descriptions to
coexist within the same application program. We showed that a one-time instruc-
tion set extension of minimum 4 and maximum 8 polymorphic instructions is suf-
ficient to implement an arbitrary number of application specific functionalities.
Additional architectural features such as exchange registers and shared mem-
ory allow performance efficient communications, parameter and data exchange.
We also presented the programming paradigm, supporting the polymorphic ar-
chitectural extension and sketched some compiling considerations. Overall, we
conclude that the PISC paradigm allows the designers to ride easily the Am-
dahl’s curve towards the invention of more flexible and performance efficient
computing machines.

References

1. S. Vassiliadis, B. Blaner, and R. J. Eickemeyer, SCISM: A scalable compound in-
struction set machine. IBM J. Res. Develop. Vol. 38, No. 2, Jan 1994, pp. 59-78.

2. G. M. Amdahl, Validity of the single processor approach to achieving large scale
computing capabilities, in Proc. AFIPS 1967 Spring Joint Computer Conference,
1967, pp. 483-485.

3. D. A. Patterson and D. R. Ditzel, The case for the reduced instruction set computer,
SIGARCH Comput. Archit. News, Vol. 8, No. 6, Oct 1980, pp. 25-33.

4. D. Bhandarkar and D. W. Clark. Performance from Architecture: Comparing a
RISC and a CISC with Similar Hardware Organization. Communications of the
ACM, Sep 1991, pp. 310-319.

5. G. Roelofs. PNG: The Definitive Guide. O’Reilly and Associates, 1999.

6. E. A. Hakkennes and S. Vassiliadis, Hardwired Paeth codec for portable network
graphics (PNQG), in Proc. Euromicro 99, Sep 1999, pp. 318-325.

7. S. Hauck, T. Fry, M. Hosler, and J. Kao, The Chimaera Reconfigurable Functional
Unit, in Proc. IEEE Symp. on Field-Programmable Custom Computing Machines,
1997, pp. 87-96.

8. A. L. Rosa, L. Lavagno, and C. Passerone, Hardware/Software Design Space Ex-
ploration for a Reconfigurable Processor, in Proc. Design, Automation and Test in
Europe 2003 (DATE 2003), 2003, pp. 570-575.

9. S. Vassiliadis, S. Wong, and S. Cotofana, Microcode Processing: Positioning and
Directions, IEEE Micro, vol. 23, no. 4, Jul 2003, pp. 21-30.

10. S. Vassiliadis, G. Gaydadjiev, K. Bertels, and E. Moscu Panainte, The Molen
Programming Paradigm, in Proc. Third International Workshop on Systems, Ar-
chitectures, Modeling, and Simulation (SAMOS’03), Jul 2003, pp. 1-7.

11. S. Vassiliadis, S. Wong, and S. Cotofana, The MOLEN pu-Coded Processor, in
Proc. 11th Int. Conf. on Field Programmable Logic and Applications (FPL 2001),
Aug 2001, pp. 275-285.

12. S. Vassiliadis, S. Wong, G. N. Gaydadjiev, K. Bertels, G. Kuzmanov, and E. M.
Panainte, The Molen Polymorphic Processor, IEEE Transactions on Computers,
vol. 53, Nov 2004, pp. 1363-1375.

13. J. M. P. Cardoso and H. C. Neto, Compilation for FPGA-Based Reconfigurable
Hardware, IEEE Design & Test of Computers, vol. 20, no. 2, Apr 2003, pp. 65-75.

14. G. Kuzmanov, G. N. Gaydadjiev, and S. Vassiliadis, The MOLEN Processor Pro-
totype, in Proc. IEEE Symposium on Field-Programmable Custom Computing Ma-
chines (FCCM’04), Apr 2004, pp. 296-299.

15. E. Moscu Panainte, K. Bertels, and S. Vassiliadis, Compiling for the Molen Pro-
gramming Paradigm, in Proc. 13th Int. Conf. on Field Programmable Logic and
Applications (FPL), Sep 2003, pp. 900-910.

16. http://suif.stanford.edu/suif/suif2.

17. http://www.eecs.hardvard.edu/hube/research/machsuif.html.

18. M. Gokhale and J. Stone, Napa C: Compiling for a Hybrid RISC/FPGA Architec-
ture, in Proc. IEEE Symp. on Field-Programmable Custom Computing Machines,
Apr 1998, pp. 126-135.

19. E. Moscu Panainte, K. Bertels, and S. Vassiliadis, Compiler-driven FPGA-area
Allocation for Reconfigurable Computing, in Proc. Design, Automation and Test in
Europe 2006 (DATE 06), Mar 2006, pp. 369-374.

