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ABSTRACT
In this paper, we propose a new internally buffered cross-
bar (IBC) switching architecture where the input and out-
put distributed schedulers are embedded inside the crossbar
fabric chip. As opposed to previous designs, where these
schedulers are spread across input and output line cards,
our design allows the schedulers to have cheap and fast ac-
cess to the internal buffers, optimizes the flow control mech-
anism and makes the IBC more scalable. We employed the
Xilinx Virtex-4FX platform to show the feasibility of our
proposal and implemented a reconfigurable hardware based
IBC switch with the maximum port count that we could fit
on a single chip. The experiments suggest that a 24 × 24
IBC switch running a 10 Gbps port speed and a clock cycle
time of 6.4 ns can be implemented.

Categories and Subject Descriptors
B.4.3 [Input/Output and Data Communications]: In-
terconnections (Subsystems); B.6.3 [Logic Design]: Design
Aids; C.2.1 [Computer-Communication Networks]: Net-
work Architecture and Design

General Terms
Algorithms, Design, Performance

Keywords
Scheduling, Buffered Crossbar Fabric, Reconfigurable Hard-
ware

1. INTRODUCTION
As input queued (IQ) crossbar switches reach their prac-

tical limitations due to higher port numbers and data rates,
internally buffered crossbar (IBC) switches are gaining a
lot of interest due to their great potential in solving the
complexity and scalability issues faced by their buffer-less
predecessors [3]. As opposed to traditional IQ switching,
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where a centralized and complex scheduler is required [8],
for an N × N IBC switch, there are N input schedulers
and N output schedulers. These schedulers are decoupled
and can work independently in parallel. A scheduling cy-
cle consists of three independent phases: input scheduling,
output scheduling and flow control mechanism. The flow
control informs the input (respectively output) schedulers
about the status (occupancy) of the internal buffers. It is
the only communication means throughout which the sched-
ulers communicate in order to perform their arbitrations and
prevent internal buffers overflow.

A plethora of scheduling algorithms has been proposed
for the IBC switching architecture [9, 11, 10]. The vast
majority of these algorithms have been designed under the
assumption that the input schedulers are located in the in-
put line cards -one per each card- and the output schedulers
are placed at the output side. This implies that, every time
slot, the flow control mechanism has to communicate to ev-
ery input (respectively output) scheduler the occupancy of
its corresponding internal buffers. This can be considered
not only as costly in terms of latency and I/O pins but also
a scalability limiting factor.

In this paper, we propose a novel design for the IBC
switching architecture where the input and output sched-
ulers are all embedded within the crossbar fabric chip. The
idea stems from the fact that the crossbar fabric switch is
bound by pin count and not by the memory amount in-
side the chip. VLSI density increases [14] make it possible
to include enough memory inside the crossbar fabric chip.
The fabric I/O pin count constraint implies that there must
be unused area inside the chip that can be more effectively
used. The benefits of our proposed design are:

• Optimizing the flow control mechanism between the
crossbar fabric chip and the schedulers. This has the
benefit of speeding up the scheduling time while using
a limited number of I/O pins resulting in more scalable
IBC crossbar switches.

• Improving the performance of the scheduling algorithms,
as there are many algorithms that are basing their
decisions on the internal buffers and when embedded
within the crossbar chip would have faster decisions
and cheaper access to resources.

• More effective use of the crossbar chip area and saving
area on the input (respectively output) line cards that
could be used for additional tasks.
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Figure 1: The IBC Switching Architecture.

In particular, we showed the feasibility of such design for
24 × 24 IBC switch with a 10 Gbps port speed. The tar-
get Technology was the Xilinx Virtex-4FX [12]. Our design
can be used to implement broader classes of scheduling al-
gorithms such as LQF-RR [6] at no extra cost.

The remainder of this paper is organized as follows: Sec-
tion 2 presents background knowledge. Section 3 introduces
the IBC architecture along with embedded schedulers. We
present a possible hardware implementation of a scheduling
algorithm. Section 4 contains implementation results and
performance evaluation. Finally, Section 5 gives some con-
cluding remarks.

2. BACKGROUND KNOWLEDGE
Buffered crossbar switches have been studied since almost

two decades and different types of architectures have been
proposed [1, 10]. The most widely used architecture is the
one based on virtual output queuing (VOQ) as depicted in
Figure 1, and was first proposed by [10]. The VOQ tech-
nique is used to overcome the Head-of-Line (HoL) blocking
phenomenon [8]. Numerous researchers have been working
on the design and implementation of IBC switches [7, 14].
For an N × N IBC switch, there are N input line cards,
N output cards and buffered crossbar fabric. Each input
line card consists of N logically separated VOQs (one per
output) and an input scheduler. An output card contains a
memory buffer and an output scheduler. The buffered cross-
bar fabric is simply a crossbar fabric in which there exists
a limited amount of memory per cross point. During the
course of their operations, the input schedulers as well as
the output schedulers critically rely on a flow control mech-
anism. The flow control mechanism is a crucial component
due to its effect on the scheduler’s overall performance and
the cost and implementation feasibility of the crossbar chip.

A broad class of scheduling algorithms has been proposed
for the IBC switching architecture. These algorithms can
be classified into round robin based algorithms [11] and
weighted algorithms [9, 6] or a combination of the two. Most

of the proposed algorithms have been designed with the as-
sumption that the input schedulers are taking place at the
input line cards and the output schedulers are placed on the
output cards. When the input schedulers are implemented
on the input line cards, the flow control mechanism can be
the bottleneck as the number of ports of the switch increases
or the speed per port increases. For an N × N IBC switch,
every time slot the flow control mechanism has to carry N
bits (one per each cross point buffer) to each input sched-
uler in order for the latter to know which internal buffer to
be served next. Clearly, as N increases, the crossbar im-
plementation becomes infeasible due to I/O pin limitation.
The alternative solution to this problem is to sacrifice time
instead of pins by using the same limited number of I/O
control pins for all input schedulers over many time slots,
resulting in longer arbitration times [14].

In our previous work, we were among the first who pro-
posed scheduling algorithms that perform their decisions ex-
clusively on the internal buffers only. We showed the impor-
tance of the internal buffer information in the arbitration
process. Because of its shared nature between the input and
output schedulers, the internal buffers occupancies can serve
as a good arbitration criterion. In particular, our previously
proposed MCBF (Most Critical internal Buffer First) algo-
rithm [9] was shown to outperform all existing algorithms
while basing its scheduling decision exclusively on the inter-
nal buffers occupancies only. In this paper, we further show
that the input and output schedulers can all be embedded
within the crossbar fabric chip. In particular, we show the
implementation feasibility of such design for 24 × 24 IBC
switch running at 10 Gbps per port. To the best of our
knowledge, there has been no other study showing the feasi-
bility of such embedded design. When embedding the sched-
uler within the crossbar fabric, the flow control mechanism
is optimized resulting in the feasibility of implementing scal-
able switches both in terms of port numbers and speed per
port.

3. EMBEDDED SCHEDULING
ARCHITECTURE

In this section, we describe the proposed IBC switching
architecture where the input and output schedulers are em-
bedded within the crossbar fabric. To show the feasibility
of our design, the MCBF algorithm [9] is implemented. For
the sake of clarity, we introduce some notations that will be
used throughout the remainder of this article.

3.1 Notation
We consider the switch model defined in Figure 2. Fixed

size packets, or cells, are considered. Variable length pack-
ets are segmented into cells for internal processing and re-
assembled before they leave the switch. There are N input
cards; each maintaining N logically separated V OQs. When
a packet (cell), destined to output j, 1 ≤ j ≤ N , arrives to
the input card i, 1 ≤ i ≤ N , it is held in V OQi,j . In addition
to the above, we define the followings:

• Eligible VOQ (EV OQ): A V OQi,j , is said to be el-
igible (denoted EV OQi,j) for being scheduled in the
input scheduling process if it is not empty and the in-
ternal buffer XPi,j is empty (or not full).

• The internal fabric consists of N2 buffered crosspoints
(XP ), N input schedulers (IS) and N output scedulers
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Figure 2: The IBC switching Architecture with em-
bedded schedulers.

(OS). A crosspoint XPi,j , holds cells coming from in-
put i and going to output j.

• The line of crosspoint buffers LXPBi is the set of
all the internal cross point buffers (XPi,j) that cor-
respond to the same input, i, and holding cells for all
outputs. NLBi is the number of cells held in LXPBi.
ISi schedules the arrival of cells from input card, i, to
LXPBi.

• The column of the cross point buffers CXPBj is the
set of the internal buffers (XPi,j) that correspond to
the same output, j, and receiving cells from all in-
puts. NCBj represents the number of cells queued in
CXPBj . OSj arbitrates the departure of cells from
CXPBj .

Figure 2 depicts the interaction between the input line
cards and the buffered crossbar fabric. Each input card
uses 6 signals (5 signals for the 24 input queues and 1 sig-
nal for valid data) to notify the switch fabric card that a
new packet has arrived to the VOQs (indexed by the 5 bits
signal). Once the input scheduler has decided which input
VOQ is selected, a 6 bits signal is sent back to the input
line card containing the selected VOQ index. The cell is
then forwarded to the corresponding internal buffer. Cells
can be sent using the SERDES transceivers [13]. The out-
put card is simpler than the input card. Cells are, again,
sent using the SERDES transceivers as soon as the output
scheduler makes a decision. Furthermore, no flow control
is needed since the output scheduler is moved inside the
buffered crossbar fabric chip.

3.2 MCBF Implementation
The MCBF scheduling scheme was proposed in [9]. It has

the following specification:

• Input Scheduling (IS)

– For each input i: Starting from the highest prior-
ity pointer’s location, select the first EV OQ cor-
responding to: minj{NCBj} and send its HoL
cell to the internal cross point buffer (XPi,j).
Move the highest priority pointer to the location
(j + 1)(mod N).
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Figure 3: The Buffers Occupancy Table Controller.

Table 1: Encoding of the number of ’1’s
Not-Empty LUT Output

0000 000
0001 001
0010 001
0011 010
0100 001
... ...

1111 100

• Output scheduling (OS)

– For each output j: Starting from the highest pri-
ority pointer’s location, select the first XPi,j cor-
responding to: maxi{NLBi} and send its HoL
cell to the output. Move the highest priority
pointer to the location (i + 1)(mod N).

To efficiently map the input scheduler into hardware the
following structure has been used. Inside the crossbar fab-
ric, there is one 24 × 24-bit array, named Column Buffer
Occupancy Table (C BOT), and each row represents the
number of occupied internal buffers, XP, for each column
of the crossbar fabric. Each row is initialized with the first
bit asserted “1” and all the others with “0”. The position
of the “1” in the row represents the number of occupied in-
ternal buffers in this column. The controller of the C BOT
is depicted in Figure 3. Each Xilinx Virtex Look-Up-Table
consists of 4 inputs and 1 output. Hence, 4 not-empty sig-
nals are used as inputs to the LUTs to encode the number
of ones, as it is shown in table 1. The number of the occu-
pied buffers for a column are added and then decoded and
forwarded to the C BOT. For example, in figure 4, the first,
the second and the fourth columns have 2 occupied buffers,
while the third and the fifth columns have 3 occupied buffers.

The micro-architecture of the input arbiter is shown in
figure 4. When a new packet arrives to the input card,
a signal is asserted stating the id of the VOQ. The input
arbiter first updates the Input Buffer Table (IBT). The IBT
keeps the number of waiting cells in the input line card. The
number of waiting cells is represented using 15 bits (up to
32 Kilo cells). The input card asserts a “new packet” for a
specific VOQ only when the number of waiting cells in the
corresponding entry in the table is less than 4 (The input
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Figure 4: Input Arbiter Micro-Architecture.

card keeps a record of the number of new cells and selected
cells of a VOQ). Thus, the IBT is used mainly to speedup
the time consuming process of communication between the
input card and the crossbar switch.

The Input Buffer Vector (IBV) is a 24-bit vector that
represents the state of the IBT. If the row is 0 then the bit
is also 0; otherwise it is 1. IBV can be presented as follows:

IBVj =

{
1 if IBTj = 0;
0 otherwise.

The IBV is AND-ed with the Empty Row Buffers (ERB)
vector which represents whether the corresponding internal
crosspoint buffer, XP, is free. The result is a vector that
represents the eligible queues. This vector is used as a mask
for the C BOT and a new table (Masked BOT) is created
that represents the number of occupied buffers of the eli-
gible queues (EVOQs). Each row, j, of the Masked BOT
(M BOTj) can be computed as follows:

M BOTj =

{
C BOTj if IBVj AND ERBj = 1;
0 otherwise.

The elements of each column of this table are OR-ed and are
forwarded to a priority encoder to find the eligible queues
with the minimum number of occupied buffers. Using this
micro-architecture we can easily locate the queue with the
minimum occupied buffers of the eligible queues. Finally,
this vector is forwarded to a programmable priority encoder
to select the queue based on the round-robin based priority.
The programmable priority encoder can be implemented in
several ways as it is shown in [5]. In this implementation we
used the faster one, segmented in 3 clock cycles.

The output arbiter, depicted in figure 5, is similar to,
even simpler than, the input arbiter. A 24 × 24-bit array,
named Row Buffer Occupancy Table (R BOT), is used to
store the occupancy of the internal buffers for each row of
the buffered crossbar fabric. The position of the ‘1’ in the
entry, i, in the array represents the number of queued cells in
the line of crosspoint buffers LXPBi. For example, if the ‘1’
is on the third position it means that LXPBi has 2 queued
cells. The “non-empty column buffers” (NECB) is a 24-bit
vector that represents the occupancy of the corresponding
column of crosspoint buffers, CXPB, (if it is free or not)
and it is used as a mask for the R BOT to create a masked
BOT. Each row, j, of the Masked BOT (M BOTj) can be

computed as follows:

M BOTj =

{
R BOTj if NECBj = 1;
0 otherwise.

Each 24-bit column of the masked BOT is OR-ed and the
first column from the right with a non-zero value is for-
warded to the Priority Encoder (PE). Then, this vector is
forwarded to the Programmable Priority Encoder to decide
which will be the selected crosspoint, XP , based on a round-
robin priority scheme

3.3 Extension to wider range of Algorithms
Our design can be extended to implement a wider range of

scheduling algorithms. For example, we can use our design
and embed the Longest Queue First-Round Robin (LQF-
RR) algorithm [6] or the Oldest Cell First (OCF-OCF) algo-
rithm [10] in a similar manner as MCBF. We expect all these
algorithms to be easily mapped inside the buffered cross-
bar chip because of their similar hardware requirements, as
weighted schemes. In the case of the LQF-RR algorithm, the
input scheduler (LQF) can be embedded within the buffered
crossbar chip by using the IBT table with a slight modifica-
tion. The LQF algorithm gives priority to the input VOQ
with the highest number of packets (cells). As mentioned
in the previous section, the IBT table uses 15 bits to repre-
sent the occupancy (length) of each input VOQ in number
of cells. However, in practice, an input line card should hold
up to 100 ms worth of packets [2]. At 10 Gbps, the buffer re-
quirement per line card would be 125 MB. For a 24×24 IBC
switch and 64 B cells, every VOQ is approximately 5.2 MB
(or 81.25 K cells). This translates to an IBT entry of 17 bits,
which can be easily modified. Besides the IBT modification,
LQF would not require much of difference compared to the
MCBF scheme. The same modification can be applied to
the OCF algorithm in order to represent the arrival time of
cells to the VOQs instead of queue length.

4. IMPLEMENTATION AND SIMULATION
RESULTS

This section presents our hardware implementation results
in terms of timing and area of our design. In addition to the
implementation results, we also conduct a simulation study
to evaluate the performance of our switching architecture
in terms of packets average delay and buffer requirements.
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Table 2: Area Results
Module Slices Instances Total Slices

Input Arbiter 1197 24 28728
Output Arbiter 632 24 15168
Column BOT 28 24 672
Row BOT 28 24 672
FIFOs 19 529 10051

Total Slices 55291
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XP -> output port
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Scheduling

Transfer
XP -> output port
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Scheduling

Transfer
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Transfer
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Figure 6: Packets flow.

While the performance of the IBC switching has been stud-
ied previously, the actual study is carried with respect to
our specific design and target FPGA device.

4.1 Implementation Results
In this section, we present the implementation results in

terms of timing and area. The design is mapped to a Xilinx
Virtex4-FX device and the results are presented after place
and route. The arrival rate of 64-Bytes packets at OC −
192 line rate is one packet every 51.2 ns. The Rocket IO
transceiver can be configured to de-serialize the input into
a 64 − bit wide bus at 156 MHz (64 x 156 x (10)6 ≈
10 x (10)9). The clock cycle time is 6.4 ns, hence each
packet can be transferred in 8 cycles (6.4 x 8 = 51.2 ns).
The input arbiter has been designed to work in the same
clock frequency and has been divided into 8 cycles. Hence,
while a packet is being transferred from the input card to
the crossbar switch, a new queue is selected by the input
arbiter, as depicted in figure 6. The critical path of the
design is the Priority Encoder used to forward the selected
vector to the programmable priority encoder. This module
is made of a 24− to− 1 24 bit multiplexer, checking 24 bits
to decide which vector is selected.

Table 3: Percentage of Resource Allocation
Module Instances Used Available Percentage

BRAMs 529 552 95.83 %
RocketIO 24 24 100 %
Slices 55291 63168 87.3 %
Pins 288 896 32.14 %

The area results of the implementation into a Virtex4-
FX140 are depicted in Table 2. The allocation of the re-
sources is shown in Table 3. Please note that the number
of crossbar buffers is 23 × 23 (529) and not 24 × 24, since
the transmission of cells from the same input and output
indexes does not need to go through the crossbar fabric.

4.2 Simulation Results
This section presents some simulation results of the im-

plemented algorithms for our proposed design. While the
performances of MCBF, LQF-RR and OCF have been stud-
ied previously, in this section we present their performance
with respect to our specific proposed architecture and un-
der more realistic traffic patterns. The 18 Kbit Block RAMs
(BRAMs) of the FPGA device have been used as internal
cross point buffers which meant that every cross point buffer
can hold up to 36 cells (64 Bytes each). We simulated MCBF
with LQF-RR and OCF-OCF using a 24 × 24 IBC switch.
Each point in the resulting figures is obtained for 500, 000
time slots (cell time), and the statistics are gathered from
the (50, 000)th time slot. The performance evaluation is
done through two non uniform traffic patterns: the diag-
onal traffic as defined in [4] and the unbalanced traffic as
defined in [11].

As depicted in Figure 7 and 8, the average delay of the
algorithms used in our design is closely comparable to the
average delay of these algorithms when running on the same
switch but with just one cell as internal buffer size and a
speed up of two1. Please note that MCBF x2 refers to the
IBC switch running the MCBF scheduler, using an internal

1A speed up of two means that the crossbar fabric runs twice
as fast as the input/output ports.
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Figure 7: Average delay comparison between using
a speed up = 2 and internal buffer size per cross
point = 36 cells, under diagonal traffic.

crosspoint buffer size of just 1 cell and running at speed up of
two, while MCBF xp36 refers to the same system but with
an internal cross point buffers of 36 cells and a speed up of
just one. This result suggested that we can trade speed for
internal memory. However, as mentioned before, our FPGA
device contains the BRAMS that can be directly used as
internal buffers. Therefore, we almost achieved a speed up
of two at no extra cost.
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One more interesting result is, that we found out that by
allowing enough buffering for the internal cross points, the
input line card size is no longer required to be as large. The
experiments results (not shown here) suggested that our IBC
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Figure 9: Delay performance of the MCBF sched-
uler with different internal buffer sizes under Diag-
onal traffic.

switch running any of the three algorithms mentioned above
and using 36 cells per cross point do not require a line card
buffer of more than 16 KB.

In traditional schedulers design, where the input and out-
put schedulers are implemented outside the crossbar fabric
chip, it is hard to take full advantage of the internal buffer
information. This is because, as the internal buffers size
increases, extra control pins are required for flow control.
Our design, however, overcomes this constraint by avoid-
ing the requirement of extra pins irrespective of the internal
buffers size. Because the schedulers are embedded within
the buffered crossbar fabric, we do not need to worry about
the internal crosspoint buffer size as the flow control is per-
formed locally (on the same chip). This would not have
been possible have the schedulers been taking place outside
the crossbar fabric chip. To show the benefit of our design
as compared to traditional implementations, Figure 9 shows
how the MCBF delay improves dramatically as the internal
buffer size increases. Please note that MCBF(1) refers to a
cross point buffers size of one, MCBF(4) refers to internal
buffers of size 4 cells and so on.

5. CONCLUSION
This paper proposes a new trend in designing scheduling

algorithms for high-performance buffered crossbar switches.
We showed the feasibility of embedding all the input and
output schedulers within the crossbar chip instead of being
distributed over the input and output line cards. Moving the
schedulers inside the crossbar chip has the benefit of opti-
mizing the flow control mechanism, allowing the scheduling
algorithms to have faster and cheaper access to resources,
with the further benefit of saving area on the input and
output line cards. To show the feasibility of our design, we
implemented the MCBF scheduling scheme and showed that
it can fit within the crossbar chip. Additionally, we argued
that our design can be easily extended to a wider range of
scheduling algorithms.
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