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Abstract— Using the existing reconfigurable network infras-
tructure of FPGAs, we present the reconfigurable FLUX inter-
connection networks. That is, networks where the processing
elements, forming a parallel system, have interconnects that
are explicitly formed by request using reconfigurable fabric,
rather than being fixed. We perform several experiments to
show the viability of our approach using the existing FPGA
infrastructure (Virtex2Pro). We compare the FLUX networks
against rigid/fixed networks using synthetic benchmarks. Our
experimental results show that reconfiguring the network to suit
a given traffic pattern can be up to 2.6 and 5.5× faster than a
rigid mesh and binary tree network, respectively. In addition,
the reconfiguration overhead can become negligible, given a
traffic load that runs for sufficient time. This clearly shows that,
based on the traffic pattern, different network configurations
might be suitable. The implication of the above is that changing
interconnects on demand could be beneficial.

I. INTRODUCTION

Given that uniprocessor microarchitectures may experience
some difficulties to exploit technological advances [1], it can
be envisioned that multiprocessors could be the answer to the
performance quest. Improvement has been achieved with the
technological advances in terms of area (which presumably
increases exponentially), delay and chip I/O count (which we
postulate increases at best linearly). In the very near future, it
is almost certain that the VLSI technology will allow single
chip multicore general processors to become feasible (possibly
exceeding the order of 10x, where x ≥ 2). Multiprocessor
multichip parallel systems are not new (e.g. see ILIAC IV [2])
and it will appear that using past multiprocessor experiences
and applying them in single chip VLSI implementations will
provide a solution to general purpose uniprocessor perfor-
mance scalability. We note however, that the VLSI design
of single chip massive multiprocessors is only one of the
challenges and by no means the only one. Being able to fit nu-
merous processors in a single chip, does not necessarily imply
that the performance increases substantially. It is well known,
that in the past only a small fraction of peak performance
has been achieved in parallel systems. There are numerous
problems that prohibit top performance achievements. For
example, assuming shared memory paradigms, scalability is
not guaranteed a priori. In addition, software performance is
not “portable”. That is, software development for a system at
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time t may not scale to a system developed at time t+1. One
of the fundamental reasons, but by no means not the only one,
is that software does not “mutate” to take into account new
network topologies, while seldom parallel systems use a single
network topology from one design point to the next.

In multiprocessor parallel systems, developed algorithms
have in mind an interconnection network [3], while, tradition-
ally speaking, interconnection networks are rigid and often
(actually usually) the interconnection network changes from
one design point to the next. A consequence of the above is
that algorithms and software, when ported to a new family
of multiprocessor parallel systems, will not scale in terms of
performance (at least) and new software development has to
be under way if performance is critical. Currently, algorithms
should be created to suit the multiprocessor system topology in
order to maximize performance. For decades, researchers study
efficient ways to port algorithms of one topology into a dif-
ferent physical interconnect. For example, several researchers
discuss embedding one interconnection network into another
[4]–[7] and/or use some of the nodes as routing nodes to
facilitate such mapping [8]. Alternatively, the interconnection
network can be adapted (dynamically) to fit an algorithm’s
communication needs. In order to allow for on demand in-
terconnection networks, connections have to be “adapted”.
This is possible because reconfigurable technologies have an
underlying network that can be (dynamically) “modified”.
Consequently, it may be of benefit for multiprocessors using
reconfigurable fabric, to not commit in advance the underlying
network structure into specific interconnects.

In [9], as means to resolve (alleviate) scalability and
portability we introduced the FLUX Networks, where the
network configuration is adapted on demand to fit the network
to the needs of an application. In [10], we proposed the
use of reconfigurable fabric as an excellent implementation
platform for the FLUX networks. In this paper, we investigate
the efficiency of the reconfigurable FLUX networks when
dynamically adapting the network on demand to facilitate the
communication needs of the running application/program. In
our proposal there exists no logical interconnection of the pro-
cessors. Interconnections instead are established (dynamically)
on demand by loading the entire network or individual physical
connections. We describe some potential implementation and
a programming paradigm (extension of [9], [11]) that may
allow the interconnects to be fused with traditional and re-
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Fig. 1. Reconfigurable FLUX Networks on Demand, with fixed PE
placement.

configurable programming models. We provide experimental
evidence suggesting that our proposal is promising.

The paper is organized as follows: In Section II we
present different solutions for reconfigurable interconnection
networks to change dynamically on demand processing and
interconnecting of processors allowing them to adapt to the
interconnect demands of software. In Section III we provide
experimental data and evaluate the efficiency of dynamically
adapting the FLUX networks to suit the current traffic pattern.
Finally, in Section IV we present our conclusions.

II. RECONFIGURABLE FLUX NETWORKS ON DEMAND

To improve some of the network-related bottlenecks for
parallel processing in reconfigurable fabric, we investigate and
propose to use the existing reconfigurable fabric on demand
rather than statically setting up a logical network in a physical
as performed by the existing systems and then attempt to map
algorithm’s network necessities on the preexisting network.
That is, before (or during) program execution the most suit-
able network is installed, and consequently is replaced by a
different network if it is no longer needed. This is achieved, in
difference to existing proposals, explicitly by the program. We
describe two different types of reconfigurable interconnects for
multiprocessor systems. We first discuss the potential of recon-
figurable network topologies, having either static or dynamic
processing elements (PE) placement. In the second case, we
introduce direct “point-to-point” connections on demand to
interconnect processors. That is, the scenario we assume that
there is no interconnection network whatsoever and that the
connections from one node to another are established directly
on demand. Finally, we explain the way the above approaches
can be used for multichip multiprocessor systems.

Reconfigurable Interconnects with static/dynamic PE
placement: Figure 1 depicts a multiprocessor system that
consists of several PEs and a reconfigurable part that can in-
terconnect them in different networks/topologies. For instance,
in the case of an algorithm implemented for binary-trees (BT),
this scheme can connect the PEs in a BT topology. Similarly,
for an algorithm that is suitable for a mesh interconnect, the
interconnection can be a mesh. Clearly the topologies will
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Fig. 2. Reconfigurable FLUX Networks on Demand, without fixed PE
placement.

follow different physical links to match the logical structure
of each algorithm (phase). Obviously, this flexibility is limited
by the resources available for the interconnection. This means
that the number of the PEs that can be connected in a specific
topology depends on the routing resources available (wires and
switch boxes). The reconfigurable FLUX networks can change
during the execution of a single program. More precisely, if
different phases of a program “prefer” different topologies,
then the interconnection network could change at run-time.
Consequently, at time t the interconnection topology is a BT
and at time t+1 changes to a 2-D mesh. However, this run-time
reconfiguration of the network introduces overheads. When
run-time reconfiguration is decided, it should be clear that the
performance gain, which results from the network switching, is
greater than the reconfiguration overhead, otherwise adapting
the interconnects will be proven inefficient.

Each PE consists of two parts, the first part is fixed and
executes part of the algorithm, while the second part involves
the PE interface to the interconnection network. Since the
network is reconfigurable, the interface between the PE and the
interconnection network should also be reconfigurable in order
to support different networks, network topologies, switching
techniques, routing algorithms, etc.. Thus, this latter part of
the PE should include a reconfigurable routing module and
interface between the variable number of network links and
the processor core.

The above approach implies that the processing engines are
fixed (statically placed). Static PE placement may restrict the
network routing. To overcome this restriction, an alternative
solution is that PEs are softcores (Figure 2). In this case, the
interconnection topology and the PE placement can change
over time (in different phases of an application). Consequently,
when a network topology is decided, the PEs will be placed
together with the network. However, this approach introduces
other overheads. Assuming a hybrid technology, where the
PEs would be implemented in ASIC and between PEs recon-
figurable hardware would be available for the interconnect,
the PEs could operate faster than if they were implemented
in reconfigurable hardware. Even if both approaches were
implemented in reconfigurable hardware, then in the first case
the network reconfiguration process could be substantially
faster. That is because in the first case the reconfigured area
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Fig. 3. Direct “point-to-point” connections besides the network topology.

(only the network) is smaller and can be chosen to be partially
reconfigured. Furthermore, the PEs can continue running their
part of the algorithm without any interruption, while this is
not true for the second case.

Direct “point-to-point” & Chaotic Interconnects: The
FPGA routing architectures provide an underlying “unused”
reconfigurable network. That means that a network structure
per se may not be needed and processors could be connected
on demand at point to point networks if there are available
connections (unused routing resources). Figure 3 depicts the
way in reconfigurable hardware unused wires can be used to
connect two PEs additionally to the interconnection network.
In this example, a direct connection between PEs #1 and #5
can be established besides the existing Ring topology. This
connection should be set when needed and released when
the data exchange is finished. That is, if on a specific time
“PE 1” needs to communicate with “PE 5” without going via
the existing (Ring) network, because of a critical/unpredicted
event, then a direct connection is established (and afterwards
released) on demand.

The PE interconnections can be build on dynamically
established connections (chaotic network) if some specific
conditions are satisfied. This approach discards any fixed
network topology to directly interconnect PEs based on the
communication requests of the application and the available
connections. Apart from the complex routing algorithms that
this solution requires, a second problem is timing. Not
knowing in advance the wire length of each connection implies
that proper mechanisms are required to guarantee correct
communication between the PEs (i.e. GALS). Furthermore, a
priori analysis of the routing resources is required to determine
the maximum communication load that the interconnection
network can handle. For each connection request, a specific
methodology should be followed: a routing path should be
established; then the data should be sent and last, the connec-
tion should be released. Having said the above, in case the
underlying structure is partially reconfigurable dynamically in
acceptable speeds, the point-to-point and the chaotic networks
could be of interest.

Multi-Chip Interconnects: We can consider a similar
approach to connect several multiprocessor chips in order
to construct a larger system. Figure 4 illustrates a multichip
multiprocessor system that changes in different time phases.
In this case we can apply the same ideas described in the
previous subsection. In addition, we should consider that off-

Mapping 1

time: t

Physical

Mapping 2

time: t+1

Fig. 4. Off-chip FLUX interconnection network. The left part of the figure
depicts the physical structure of the system while the right part illustrates
different configurations of the system at different time instances.

chip interconnection has different characteristics and therefore
we need to deal with some additional design and performance
issues such as limited off-chip communication bandwidth,
since chips have limited fixed location I/O pins that cannot
operate as fast as the on-chip busses. Consequently, off-
chip interconnection should be carefully designed applying
techniques such as Time Division Multiplexing (TDM) to
create an efficient multichip multiprocessor parallel system.

Technology Considerations: An interesting question re-
garding what has been presented is which of the proposed
mechanisms can be implemented by currently available tech-
nologies and which are the directions for making the re-
maining mechanism a reality. Current technology allows for
reconfiguration to be done before program execution. Thus
loading an interconnection network before program execution
is readily available. Regarding dynamic reconfiguration, we
first note that a network is used for substantially long time
(e.g. scientific applications) in parallel systems that perform
massive data operations with the same network requirements.
Consequently, it can be suggested that interconnects can be
dynamically changed with current technology. Direct point-to-
point and chaotic interconnects could be difficult to implement
in current technologies because they require small area and fast
reconfigurability and current technologies such as Xilinx allow
partial reconfiguration of areas which may span the entire
height of a device and a fraction of one column and require
few msecs [12]. This restriction can provide substantial diffi-
culties for point-to-point and chaotic interconnects. Numerous
approaches can be envisioned, however, outside of the scope of
the paper, to change current commercial chips to incorporate
smaller dynamic reconfigurability slides to achieve point-to-
point and chaotic interconnects in the near future.

Programming Paradigm for Reconfigurable FLUX Net-
works: FLUX networks allow physical network hardware
descriptions to coexist with common programming constructs.
Arbitrary interconnection networks can be applied (or mapped)
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Fig. 5. A FLUX parallel system scheme with reconfigurable FLUX networks.

before program execution or at runtime. They could be pre-
determined “off-line” at hardware/software co-design stage or
detected “on-the-fly”. A network can be called on demand in
reconfigurable technology via explicit calls. To achieve explicit
calls we extend the Molen paradigm [11] to support Network
reconfigurations on demand. In the following, we discuss dif-
ferent ways of reconfiguring an interconnection network using
the existing ISA extensions of the Molen processor. Generally
speaking, the reconfigurable FLUX network mechanism may
not require additional ISA support to enforce the intended
interconnection network (in case is needed, in the order of 1 or
2 instructions). A control processor is required to (re)configure
the interconnection network and download the bitstream of the
system. However, it may have an additional role. Assuming a
master-slave parallel processing model, the control processor
can be the master processor keeping sequential consistency
of the program, controlling and synchronizing the PEs, and
distributing the workload.

As described in the MOLEN programming paradigm [11],
when it is needed to configure the entire network, then a SET
< address > instruction is necessary. The SET instruction
utilizes an address to a memory location where the first ele-
ment of the configuration bitstream is to be loaded from. This
way, numerous different network configurations are allowed to
be available in the configuration memory. The bitstream may
include the configuration of the entire interconnection network
or part of it (the partial set P SET < address > Molen
instruction). Furthermore, the PEs configuration (including
routing information) and possibly the initial data of each local
PE memory (instructions and data etc.) may also be part of the
bitstream. Figure 5 illustrates a possible reconfigurable FLUX
network organization using a control processor. The control
processor manages the reconfiguration of the reconfigurable
multiprocessor system. An arbiter detects the SET instructions
and subsequently activates the reconfiguration process utilizing
the microcode unit. The bitstream is downloaded from the
memory to the reconfigurable unit through the data load/store
unit and the data memory multiplexer. When the reconfig-
uration is accomplished the microcode unit sends a signal
to the arbiter and the following instructions are sent to the

control processor in order to continue the execution of the
remaining program. Finally, the synchronization of the PEs
can be accomplished through the exchange registers bank and
the MOVTX and MOVFX Molen instructions.

PROGRAM

SET Network #1

PROGRAM 

SET Network #2

SET Network #N

PROGRAM

Fig. 6. SET Net-
work before or during
program execution.

Figure 6 depicts an example of how
the “SET” instruction (either partial or
complete) can be executed with program
routines in a sequentially consistent pro-
gramming model. The “SET” instruc-
tion configures the network or the entire
system before the execution of the next
phase of a program. The SET instruction
can point to an address in memory where
the configuration bitstream of the new
network is stored.

Current synthesis and place & route
tools might require significant amount of
time to generate a bitstream for a design.
Therefore, the bitstream of the interconnection network can
be generated only during the compile time of an application,
statically. However, a interconnection network could be au-
tomatically generated on the fly, and in case the tools allow
a fast bitstream generation, then the “SET” instruction could
perform a reconfiguration of a non-predefined interconnection.
Consequently, the “SET” instruction would include as param-
eters the characteristics of the desired network. Apart from
the PEs configuration (data and subprograms, if necessary),
these parameters could include (without excluding others) the
following:

• Switching techniques.
• PE routing algorithm (including routing policies, proto-

cols etc.)
• PE addresses (PE numbering) and how they are connected

with each-other (topology). Preferably this assignment is
performed in a regular and extendable fashion, in order
to be scalable for different number of nodes.

• Link width (word width).
• Number of PEs, etc.

What is new in the reconfigurable FLUX Networks: Our
proposal differentiates from previous approaches such as [7],
[8] in at least one of the following items:

• Our proposal allows the network configuration to coexist
with common programming constructs via explicit calls
of the physical network. Furthermore, the programmer
and the designer have complimentary roles. The first
chooses the desired topology while the second is respon-
sible for the way this is going to be implemented on a
physical reconfigurable infrastructure.

• Contrary to others [8], reconfigurable FLUX Networks
can reconfigure the PE routers, changing switching tech-
niques, routing algorithms, number and width of the links,
etc. on demand instead of being prefixed.

• Reconfigurable hardware has a unique characteristic.
Physical connections can match the logical connections of
an application and support additional direct point-to point
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TABLE I

IMPLEMENTATION RESULTS: 63 AND 127-NODES BT & 64-NODES MESH.

link Routing Area Freq. Diameter Bisection
#nodes #links

average
width (bits) (logic cells) (MHz) (delay ns) Width links×2/node

127-node BT 32 38,712 200 12 (240 ns) 1 127 126 1.98
63-node BT 32 19,006 200 10 (200 ns) 1 63 62 1.97

64-node mesh 32 47,147 200 14 (280 ns) 8 64 112 3.5

connections not foreseen by the algorithm developer.
• Our approach can dynamically adapt to arbitrary topolo-

gies, while other solutions can only support several
topologies and regular predefined structures [8].

• Other solutions require a second network to configure the
switches, besides the one that interconnects the PEs [8],
while our approach does not.

• In reconfigurable hardware, we set raw connections and
the configuration time can be relatively small if a fine
grain configuration can be supported by the technology.
Furthermore, there is no local memory under each switch,
to store the possible configurations for every supported
topology. Other solutions employ routing elements to
“reprogramme” the local memory introducing delay [8].
In essence, such networks are programmable rather than
reconfigurable, adding extra interconnection overhead
and delays.

• Router-based approaches are constructed by a network
and actually “routers” [8], while the reconfigurable FLUX
network is a network plus switching elements. Given
that the “routers” are slower than the FPGA one “pass-
transistor” crossbar delay, our approach can be more
efficient and faster.

III. EXPERIMENTAL RESULTS

In this section, we provide evidence suggesting the viability
of our proposal. We experiment using Xilinx Virtex2Pro-50,
several synthetic benchmarks and interconnection networks.
More precisely, we implemented a 2-D mesh and a binary
tree network, and inject traffic patterns composed by several
different phases more suitable for one of the above networks.
Subsequently, we investigate whether reconfiguring the net-
work to suit the traffic load is more beneficial than using rigid
interconnects. We first present the design and implementation
of our networks, and then describe the generated benchmarks.
Finally, we present the performance results of the mesh,
binary-tree and FLUX networks, and compare it with the
theoretical best case of always using the best network without
any configuration overhead.

Networks Design and Implementation: As indicated
earlier, we designed and implemented a binary tree and a 2-D
mesh network. The size of the networks is the maximum that
can fit in a Virtex2Pro-50 FPGA device. We implemented a
64-node mesh which occupies 99% of the device and a 127-
node BT which requires about 80% of the available resources
even though has almost double number of nodes. Figure 7
depicts the datapath of a mesh node (BT nodes are similar
having four instead of 5 ports). The left input and right output
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Fig. 7. Datapath structure of a mesh node. The left input and right output are
illustrated in detail. There are 5 input/ouput ports (left, right, up, down and
PE port). The connections between the inputs and the outputs are depicted on
the bottom-left part of the figure.

are illustrated in detail. Additionally, the connections between
the inputs and the outputs are depicted on the bottom left part
of the figure. Both networks have 32-bit links and single flit
(32 bits) input and output buffers. Packets are routed using
wormhole routing [13]. The routing algorithms are minimal,
that is, always a minimal path is followed, and deterministic
in order to avoid deadlocks in the case of the 2D mesh [13].
The handshake between an output and an input is achieved
using request-acknowledgment protocol in order to stall the
flow of packet flits in case of contention. Consequently, each
flit requires two cycles to be transferred to the next input or
output buffer (one cycle REQ and one for ACK). The header
of each packet requires one cycle to be decoded in the input
and find its destination output, while a second cycle (at least) is
needed to check whether the output is busy and transfer the flit
to the output buffer. Finally, each output serves input requests
in a round-robin fashion. Table II depicts the implementation
results of the 64-node mesh the 127-node BT and also a 64-
node BT. All networks can operate at 200 MHz. A 64-node
mesh requires about 2.5× more resources than the 64-BT and
25% more than the 127-node BT. Finally, a 2D mesh node
occupies about 750 logic cells, while a BT (not leaf or root)
node requires about 550 logic cells.

Mapping a Binary-Tree into 2D Mesh and vice versa.
As mentioned in Section I, rigid interconnection networks
require mapping algorithms to map the logical network1 into

1Logical is the network which the application designer has in mind. Physical
network is the network available by the designed chip.
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the physical one, when they do not match. Therefore, in order
to fairly compare rigid and FLUX networks, the former ones
need to employ mapping algorithms to port a traffic pattern
that does not match the network. We map the BT traffic into
the mesh network utilizing the Lee & Choi algorithm [14].
However, the BT network has almost double number of nodes
than the mesh. In order to resolve this problem, we map
two BT nodes (based on the algorithm) into each one of the
63 mesh nodes, while the BT root node is mapped into the
64th mesh node. We assume that each mesh node can handle
the processing of two BT nodes and sequentially send their
communication requests. This is the best case scenario for
the rigid mesh network. Mapping a mesh into a BT is a NP-
complete problem [7]. We invert the BT-to-Mesh mapping in
order to map the mesh network into the BT. We assume that
the mesh tasks cannot be parallelized in more than 64 nodes
and consequently, only half of the 127-node BT is utilized.

Synthetic Benchmark. We generate different traffic pat-
terns suitable for the 127-node BT and the 64-node mesh.
Our synthetic benchmarks are composed by multiple phases
(10, 100 or 1,000) of these traffic patterns. A new phase of
requests cannot start before all the packets of the previous
phase have reached their destinations.

We describe, next, the way we generate phases of 10,000
requests (packets) per node, suitable for BTs or meshes.
In order to generate a traffic pattern suitable for a given
topology X , a packet should have higher probability to have a
destination where the minimal path is short (distance in terms
of hops), having in mind the topology X . We propose a Zipfian
distribution model for the packet distance, described by the
following equation:

Distance(i) = Zipf(i) =
i−k

D∑

j=1

j−k

where i = 1, 2, . . . , network diameter.

Consequently, the Zipf equation determines the probability
for a packet to have a destination of distance i (number
of hops). When the distance for a packet is decided, then,
a destination of this distance is uniformly-random chosen.

Figure 8 depicts the distance distribution for the 127-node BT
and the 64-mesh (diameter D= 12 and 14 respectively), when
k = 5. In both BT and mesh traffic patterns the probability
of a packet to have a destination node one hop far from the
source is over 95%. We generate benchmarks of either 4 or
16-flit packets (16 and 64 bytes). Each benchmark contains 10,
100, or 1,000 phases (each phase has 10,000 packets) suitable
for meshes and BTs. The ratio of [Mesh:BT] phases varies
between [0 : 10, 1 : 9, . . . x : 10 − x, . . . 10 : 0]. Finally,
note that all benchmarks have all mesh-like phases first and
BT-like phases next.

BT & Mesh Evaluation For Various Traffic Patterns. Be-
fore we evaluate the FLUX Networks performance compared
to the rigid interconnects and analyze their reconfiguration
overhead, it is essential to analyze the behavior of the BT and
mesh networks on the traffic patterns described above. Figure
9 depicts the percentage of the Mesh and BT PEs which are
busy receiving packets over time. The traffic patterns are either
BT or mesh-like of Zipfian distributions of k = 5 and contain
either 4 or 16-flit packets. When the traffic pattern is BT-like,
we consider 127 PEs in both networks. For the BT network
the mapping is one-to-one, while in the case of the mesh-64
the 127 BT PEs are simulated/mapped into the 64 mesh nodes
and therefore the workload of about two BT PEs on average
is handled by a single Mesh PE. Similarly, for the mesh-like
traffic only 64 PEs are considered in both networks.

Clearly, for BT-like traffic, the BT-127 PEs are more than
twice as busy receiving packets compared to the Mesh-64 PEs
(50-55% vs. 24-26% peak utilization for 4 and 16-flit packets).
Therefore, the BT requires less than half the time to complete
the BT-like workload/phase compared to the mesh (1 and 4
msec vs. 2.6-9 msec for 4 and 16-flit packets respectively).
When mesh-like traffic is injected in the two networks the
performance drawback for the BT is substantially higher than
in the previous case for the mesh network. The BT PEs input
ports are clearly under-utilized compared to the mesh network
(about 5-6× lower) and therefore require about 5.5× more
time to complete a single mesh-like phase for both 4 and 16
flit packets. Finally, notice that the peak utilization does not
exceed 56% and 66% for BT and mesh respectively. That is
due to the irregular structure of the networks. For example,
two BT leaf nodes, which have the same parent node receive
only about 2

3
( 1

3
each) of the packets sent by their parent

node. Similarly, the “border” nodes of the mesh receive less
traffic than the internal ones and therefore reduce the overall
throughput of the network.

Performance Evaluation. In our experiments, FLUX net-
work can be configured as a 2-D mesh or a BT to suit the traffic
pattern. We evaluate the performance of the FLUX networks,
the 64-node mesh and the 127-node BT in terms of latency.
The synthetic benchmarks, described above, are injected in the
networks. Packets leave their source node sequentially without
any intermediate delay. Therefore, the traffic load injected in
the networks is maximal, given the packet distribution and
size. Figure 10 depicts the performance results of the three
networks for benchmarks of 10, 102 and 103 phases (of 104
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Fig. 9. Percentage of the Mesh-64 and BT-127 PEs being busy receiving packets over time. The traffic patterns are either BT or mesh-like of Zipfian
distributions of k = 5.
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Fig. 10. Latency of the Binary-tree, 2D-Mesh and FLUX Networks for several Mesh/BT synthetic benchmarks.
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packets per node), and packets of 4 and 16 flits. Additionally,
the theoretical latency of a network that always chooses the
best network setup without any configuration overhead is
depicted. There are benchmarks that contain only BT-like
traffic ([0 : 10]) both mesh and BT-like ([x:10-x], x

10
mesh-like

and 10−x
10

BT-like traffic), and only mesh-like traffic ([10 : 0]).
The FLUX Network is up to 2.6× and 5.5× better than the

mesh and BT, respectively, for traffic loads of 4-flit packets.
When the packets contain 16 flits, it is 2.2 and 5.4× faster
compared to the mesh and BT networks. That is, due to the
fact that each packet requires 4× more cycles (vs. the 4-flit
packets) to arrive from the input of the destination node to the
destination PE. Consequently, even if a packet has arrived to
a destination node input, competing for the same destination
PE is harder and some of the dilation2 overhead is hidden.
Network reconfiguration takes 47.55 msec in Virtex2Pro-50
[15]. Consequently, it is not efficient to reconfigure the FLUX
network for benchmarks of 105 packets/node, since the overall
latency is a few tens of msec (10-40 msec). In these cases,
the FLUX network chooses to operate as a mesh or a BT and
achieves at least 47% and 52% of the theoretical performance
for 4 and 16-flit packets respectively. On the contrary, it is
efficient to reconfigure the network on the fly for benchmarks
of 106 packets/node. Especially, in the case of 16-flit packets,
where the total latency is 400 msec, the FLUX network
reaches at least 86% of the theoretical performance. For 4-
flit packets, reconfiguration is efficient for the [2 : 8] to [6 : 4]
benchmarks, and at least 65% of the theoretical performance
is achieved. The network is also reconfigured, for benchmarks
of 107 packets/node, and the FLUX network performance is
in worst case the 95% and 98% of the theoretical one for 4-
flit and 16-flit packets respectively. Figure 11 depicts a com-
parison between FLUX networks and the theoretical latency
for different traffic loads. As the benchmarks contain more
packets per node the FLUX network latency asymptotically
approaches the theoretical one. Additionally, for larger packets
the latency is closer to the theoretical. The suggestion is that,
the reconfiguration overhead is negligible, when a traffic load
of specific characteristics runs for sufficient time.

IV. CONCLUSIONS

In this paper, we presented the reconfigurable FLUX net-
works and investigated the efficiency of dynamically modi-
fying the network configuration to suit the communication
traffic. We showed that mapping one topology into another
can result in substantial performance drawbacks that can be
overcome only if interconnects are adapted into the desired
topology. Our experiments show that the performance of a
network drops when the topology is other than the appropriate
one (up to 2.6−5.5× higher latency). In addition, the reconfig-
uration overhead of the FLUX networks can be insignificant
given that a specific traffic pattern runs for sufficient time.
Finally, reconfigurable FLUX networks can asymptotically

2When embedding topology A into topology B, edge congestion is the
maximum number of A edges, mapped onto any B edge.
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Fig. 11. Comparison between FLUX Networks and theoretical latency for
different number of packets per node and packet sizes.

approach the theoretical latency of a network that always pro-
vides the most suitable topology without any reconfiguration
overhead. The implication of the above is that by determining
the network in advance and by exploiting network instalments
(statically or dynamically) substantial gain can be expected.
Reconfigurable FLUX networks can provide the most suitable
topology to match the logical structure of an application and
maximize performance.
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