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Abstract—This paper presents a complete electrical analysis of Address decoder Delay Faults “ADFs” caused by resistive opens in

RAMs. A classification between inter and intragate opens is made. A systematic way is introduced to explore the space of possible

tests to detect these faults; it is based on generating appropriate sensitizing address transitions and the corresponding sensitizing

operation sequences. DFT features are given to facilitate the BIST implementation of the new tests.
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1 INTRODUCTION

MEMORY technology has been used for a long time to push
the state-of-the-art in the semiconductor industry. The

consequence of the continuous scaling and high density is
the high sensitivity to defects. In addition, memories have
signal lines running across the memory area with a very
high fan out. Therefore, they have a high load and
capacitance. Process variations make them very sensitive
to delay type behavior.

In [19], Nigh and Gattiker report that new technology
generations will exhibit an increasing sensitivity to, and
occurrence of, subtle defect types, many of which will cause
additional circuit delays, while the increasing clock speeds
will make designs more sensitive to these circuit delays. The
increasing use of copper wiring will shift the predominant
failure mode from shorts and bridges to opens [13].
Needham et al. [18] report that opens were the most likely
cause of field returns of Intel microprocessors. Klaus and
van de Goor [12] report that tests for opens in DRAM
address decoders reduced the DPM level by as much as 670.
In conclusion, faults caused by opens, resulting in delays,
are becoming a dominant failure mode.

Much has been published on functional fault models and
tests for faults in the memory cell array [1], [2], [4], [9], [15],
[16], [24]. However, faults in the address decoders and
address decoder paths, denoted as Address decoder Faults
(AFs) have only gotten limited attention. Several authors
have shown the importance of this class of faults [7], [8],
[12], [15], [17], [20], [22]. Most authors have solved the
problem of detecting Delay Faults in the Address decoders,
denoted as “ADFs,” by using a test called Moving Inversion
(MOVI) [7], [12], [15]. Nakahara et al. [17] even use the time
consuming GalPat test [24]. Sacheve [22] has solved the
problem by adding a decoder specific set of patterns to an
existing march test. Azimane and Majhi [3] reported that
the traditional march test may cover the ADFs when

varying the duty cycle of the internal clock of the address
decoder, while Dilillo et al. [5], [6] simulated some resistive
defects to validate the delay faults and modified the known
March C- test to target the same faults.

This paper presents an analysis, at the electrical level, of
ADFs caused by resistive opens within the address decoder
decoding paths, together with detection conditions and
tests patterns. The paper is organized as follows: Section 2
discusses the traditional AFs, together with their detection
conditions. Section 3 describes the causes of ADFs, classifies
them, and gives some simulation examples. Section 4
presents the detection conditions for ADFs; Section 5
derives the tests. Section 6 describes some DFT features to
facilitate the implementation of the tests. Last, Section 7
ends with the conclusions.

2 TRADITIONAL ADDRESS DECODER FAULTS (AFS)

For a long time, the traditional AFs were considered the
only class of AFs [24]. They are described below, together
with their detection condition. However, first, the notation
of march tests will be given.

2.1 Notation of March Tests

A march test is a sequence of march elements. A march
element consists of a sequence of operations applied to every
cell (n is the number of cells in the memory), in either one of
two Address Orders (AOs): Increasing ð*Þ AO (e.g., from cell 0
to cell n� 1) or a Decreasing ð+Þ AO (e.g., from cell n� 1 to
cell 0). It should be noted that * AO is often taken to be any
permutation of the available addresses and that + AO is the
exact reverse of the * . When the AO is irrelevant, the
symbol “m ” is used.

Example. fm ðw0Þ;* ðr0; w1Þ;+ ðr1; w0Þg is the MATS+ test
[16]. It consists of three march elements: M0, M1, and
M2. M1 ¼* ðr0; w1Þ means “for i ¼ 0 to n� 1 do {read
A½i� with expected value 0; A½i� :¼ 1}.”

2.2 Traditional AFs and Their Detection Condition

The following types of AFs have traditionally been the
faults considered to occur in address decoders [24]:

. AFna: An address does not access its cell.
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. AFmc: An address uniquely accesses multiple cells,
i.e., this is the only address accessing those cells.

. AFma: A cell is uniquely accessed by multiple
addresses, i.e., these addresses only access that cell.

. AFoc: An address additionally accesses other cells.

Any march test will detect AFna through AFoc iff it
satisfies Condition AF for h � 1 [24] (h from hammer). It
consists of the following two march elements (note: the
suffix “u” denotes up for the * AO, the suffix “d” denotes
down for the + AO; “. . . ” means any number of r (read) or
w (write) operations, x means NOT x, and ½; rx�h ð½; rx�hÞ
means h rx ðrxÞ operations; h � 1):

AFh�u: * ðrx; . . . ; wx½; rx�hÞ;x 2 f0; 1g;
AFh�d: + ðrx; . . . ; wx½; rx�hÞ;x 2 f0; 1g:

3 ADDRESS DECODER DELAY FAULTS (ADFS)

Opens are a major cause of delays in the address decoder
paths, causing Address decoder Delay Faults (ADFs). Fig. 1
shows a sequence of memory accesses, sequentially acces-
sing memory locations with a good Word Line “WLg” (with
an address Ag), a potentially faulty Word Line “WLf” (with
an address Af ). In case of an ADF, the activation and/or the
deactivation of WLf will be delayed, causing an Activation
Delay “ActD” fault and/or a Deactivation Delay “DeactD”
fault [12], [22], [25].

Next, a classification of resistive opens is given, their
consequences are analyzed, and simulation examples
showing the existence of the ADFs are presented.

3.1 Classification of Resistive Opens

Fig. 2 depicts a part of a static CMOS row address decoder.
The decoding of the word lines ðWL0�WL7Þ is done using
3-input CMOS NAND gates and 2-input NOR gates,
together with a buffer circuit. The signal “Timing” is used
with the NOR gates to generate the timing of the word lines.
The address of WLx is Ax; it specifies the values of the
N ¼ 3 address lines “a2, a1, a0”, e.g., WL0 is selected if
a2 a1 a0 ¼ 111, indicating that the selected address is
A0 ¼ a2a1a0 ¼ 000.

In the decoder of Fig. 2, defects can cause opens at the
following locations:

. Between logic gates (intergate opens). Fig. 2 shows
three intergate opens (defects Rdef1, Rdef2, and
Rdef3). Rdef1 is located in the line from a1 to the
NAND gate decoding WL0.

. Inside logic gates (intragate opens). Fig. 3 shows a
NAND gate with an intragate open (defect Rdef4) in
the drain of the pull-up transistor for input a1.

Klaus and van de Goor [12] state that the probability of
intergate opens, caused by spot defects in the long global
wiring, is at least one order of magnitude larger than that of
intragate opens; the latter are caused by local spot defects in
the short wiring within the decoder gates.

It is important to note here that, generally speaking, the
column decoders have a similar structure as the row
decoders. However, some differences may exist in their
implementation such as in the control circuit that deacti-
vates the word lines or column select (see the example in
Section 3.4). These differences can impact the timing
behavior of the decoders. However, the methodology used
in this paper to analyze the row decoders can also be used
to analyze the column decoders.

3.2 Intergate Opens

In this section, Rdef1 in Fig. 2 will be used to highlight the
ActD and the DeactD on WL0. For sufficiently high values of
Rdef1, the corresponding input of the NAND gate will
behave as an open connection. Depending on the initial
voltage of the floating node and the leakage current in the
NAND gate, the input will be pulled low, which means that
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Fig. 1. Activation and deactivation delays.

Fig. 2. Typical CMOS address decoder.

Fig. 3. Example of intragate open.



WL0 will never be selected, causing the AFna of Section 2.
Alternatively, the input will be pulled high, which means
that WL0 will be selected, whenever fa2; a0g ¼ f1; 1g,
independent of a1, causing AFoc of Section 2.

When Rdef1 is intermediate, it will cause an ActD and a
DeactD fault (see Fig. 1) on WL0, as explained below.

Activation delay (WL0 changes from 0! 1). The ActD
is caused by a 0! 1 transition of a1 (see Fig. 2). This can
be represented by the address transition x1y! 000 of
a2a1a0; x; y 2 f0; 1g. This is an address transition from
WL2! WL0, from WL3!WL0, from WL6!WL0, or
from WL7!WL0. Due to the ActD, the memory cycle
involving WL0 may only be performed partially, which
may lead to an incorrect operation, such as an incorrect read
operation or a weakly written voltage.

Deactivation delay (WL0 changes from 1! 0). The
DeactD is caused by a 1! 0 transition of a1 (see Fig. 2). This
occurs upon an address transition 000! 010 of a2a1a0,
which corresponds to the address transition WL0!WL2.
The consequence of DeactD will be that WL0 will still be
active, while the next address, accessing, e.g., WLg ¼WL2,
is activated such that the operation on WL0 may not be
completed properly and/or the operation on WLg may not
be started properly (see Fig. 1). One example of a faulty
behavior as a result of DeactD is the overwriting of the data
in the disconnected cell.

3.3 Intragate Opens

Fig. 3 shows a resistive intragate open in the pull-up path of
a CMOS NAND gate; this defect will be used to illustrate
the DeactD due to the intragate open. The presence of the
defect in the pull down path will cause an ActD, as will be
explained next. It should be noted that the test conse-
quences for the case that Rdef4 is very large (which causes
the well-known CMOS Stuck-Open fault [11]) are a subset
of the case when Rdef4 is intermediate.

Deactivation delay. When Rdef4 is intermediate, it will
cause a delay on the falling edge of WL0 (i.e., DeactD) iff
WL0 changes from 0! 1 due to a1 changing from 1! 0
(see Fig. 3). This will occur with the address transition
000! 010 of a2a1a0.

Activation delay. If Rdef4 is in the pull-down path, a
delay on the rising edge of WL0 (i.e., ActD) will occur iff
WL0 changes from 1! 0 due to any input (a2, a1, or a0)
changing from 0! 1. This will occur with the address
transition xyz! 000 of a2a1a0, where at least x, y, or z has
the value 1.

It should be noted that opens in the pull-up or pull-down
paths of CMOS NOR gates set the same addressing require-
ments on memory tests as those needed for opens in CMOS
NAND gates. Therefore, they are not discussed from here on.

Fig. 4 shows a dynamic address decoder. Before an address
is presented on the inputs of the decoder gate, all decoder
gates are precharged using a “Prech” signal line. In case of a
defect in the path of one of the pull-down transistors, a
DeactD will be present on the output of the decoder. Note
that the ActD cannot occur due to the nature of the decoder.
The sensitization of the DeactD fault only requires the
address of WL0 to be present on the inputs of the decoder.
Hence, the two-address sequence as required for static
address decoders is not required for dynamic address
decoders. Therefore, the detection conditions of dynamic
address decoders are a subset of those of static ones.

3.4 Simulation Examples for ADFs

Simulations have been performed for Infineon 0:18�m
eDRAM technology for Rdef in the very last stage of the
row decoder (i.e., Rdef1 in Fig. 2), impacting the timing of
the word line “WL” and in the very last stage of the column
decoder (i.e., in a similar place as for row decoder),
impacting the timing of the Column Select “CS” signal.

. Opens in the row address decoder. Fig. 5 shows five
WL waveforms with gradually increasing open
defect values: Rdef1 ¼ 0�; 10K�; 30K�; 70K� and
Rdef1 ¼ 100K�. In general, the defect may cause
both ActD and DeactD. Sometimes, as shown in the
figure, only the ActD is caused but no DeactD
because the considered implementation of the row
decoder has a special circuit that deactivates the WL
at a fixed moment.

. Opens in the column address decoder. Fig. 6 shows five
CS waveforms: Rdef1 ¼ 0�; 100K�; 300K�; 700K�
and Rdef1 ¼ 1000K�. The result of the defect is
that both the ActD and DeactD are gradually
delayed and the highest CS voltage reachable
gradually decreases.

. Consequences of Rdef1. For large values of Rdef1, a
read operation produces a fixed value. For intermedi-
ate values of Rdef1 the read operation produces a
value which depends on a combination of the stored
voltage in the cell and the coupling between the
output buffer and other signals. The simulation
results also have shown that write operations are less
sensitive to Rdef1 than read operations.

4 DETECTION CONDITIONS FOR ADFS

In case of an AF (see Section 2), it is assumed that the AF is
detectable using read and write operations, applied using a
particular address order “AO.” However, the sensitization
of ADFs is more complex and has two requirements:

1. sensitizing address transitions and
2. sensitizing operation sequences.

Sensitizing address transition(s) can be caused by an
address pair or an address triplet. A Sensitizing Address
Pair (SAP) consists of a sequence of two addresses fAg;Afg
or fAf;Agg of Fig. 1, which have to be applied in sequence
because ADFs are sensitized by address transitions. (Note: Ag
presents the address of WLg and Af that of WLf .) When
the two SAPs, fAg;Afg and fAf;Agg, are applied in
sequence, the Sensitizing Address Triplet (SAT) fAg;Af;Agg
can be applied instead. This is more efficient because only
three addresses have to be applied, rather than four
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addresses when the two SAPs are applied. SAPs/SATs are
generated using an Addressing Method (AM).

Sensitizing Operation Sequence. To each address of a SAP
or a SAT at least one operation has to be applied, resulting
in a Sensitizing Operation Sequence (SOS) consisting, respec-
tively, of two operations for a SAP and three operations for
a SAT since a least one operation has to be applied to each
address of a SAP (SAT).

4.1 Sensitizing Address Transitions

The addresses of the SAPs/SATs, required for sensitizing
ADFs, are generated using an Addressing Method (AM). An
AM describes the method used for generating the sequence
of addresses. A well-known AM is the Binary AM “Bin”; for
N ¼ 3, it consists of the address sequences *Bin¼
f0; 1; 2; 3; 4; 5; 6; 7g and +Bin¼ f7; 6; 5; 4; 3; 2; 1; 0g.

Before discussing the AMs for ADFs, first the required
address transitions for ADFs due to intergate and intragate
opens will be generalized. The results are summarized in
Table 1 for the three-bit address decoder of Fig. 2 and Fig. 3.
The table lists the required address transitions for sensitiz-
ing the ActD and DeactD faults for intergate and intragate
opens together with AMs that can generate such transitions,
e.g., an ActD in WL0 due to an open in the line (denoted as
“L”). a1 of NAND requires the address transition
x1y! 000, which can be generated either with AC, 2i, or
H1 AM (these AMs are addressed later on in this section). It
is important to note that the AMs required for ActD and
DeacD due to intergate opens are the same as those
required for intragate opens. Therefore, the same AMs can
be used to cover all ADFs.

Intergate Opens. Section 3.2 has shown that, for an
intergate open, the ActD fault due to Rdef1, in the path of a1

of WL0, has to be sensitized with the address transition
x1y! 000 of a2a1a0; this can be represented by the SAP
fx1y; 000g, with x; y 2 f0; 1g. If the defect is in the path of a2

or a0, then sensitization of the ActD in WL0 will require the
address transitions 1xy! 000, respectively, xy1! 000 of
a2a1a0 (see Table 1). Thus, the only requirement the SAPs
have to satisfy for the detection of ActD is that an x! x
transition has to be made for the line containing Rdef ; other
lines also may, or may not, make a transition. Because Rdef
can be present in any input of any gate, the set of SAPs has
to contain x! x transitions for each input of each gate, e.g.,
an ActD in WL7 due to an open in the path of a2, a1, or a0

requires the address transitions 0xy! 111, x0y! 111, or
xy0! 111, respectively, of a2a1a0. The Address Complement
(AC) AM satisfies these requirements; it is discussed in
Section 4.1.1.

Section 3.2 has also shown that, for an intergate open, the
DeactD fault due to Rdef1, in the path of a1 of WL0 has to be
sensitized with the address transition 000! 010 of a2a1a0

(see Table 1); this can be represented by the SAP f000; 010g.
Similarly, if the defect is in the path a2 or a0 of WL0, then SAPs
f000; 100g, respectively, f000; 001g will be required (see
Table 1). In general, for sensitizing any DeactD due to any
open in the path of any NAND-gate of an N-bit address
decoder, all SAPs withH ¼ 1 have to be generated, where H
stands for the Hamming distance between the two addresses
Ax andAy of the SAP fAx;Ayg.H is defined as the number of
bit positions in which the addressesAx andAy of an address-
pair differ. Only AMs which generate SAPs or SATs with
H ¼ 1 (i.e., the AMs 2i and H1, which are described in
Section 4.1.2 and Section 4.1.3) can cover DeactD’s.

It is important to note here that the requirements for
detecting the DeactD fault are more severe than those for

HAMDIOUI ET AL.: OPENS AND DELAY FAULTS IN CMOS RAM ADDRESS DECODERS 1633

Fig. 6. Impact of Rdef on DRAM CS timing.

TABLE 1
Address Transitions for ActD and DeactD Due to

Inter and Intragate Opens

Fig. 5. Impact of Rdef on DRAM WL timing.



the ActD fault and, therefore, the AMs generating SAPs/
SATs for DeactD can also be used for ActD (see Table 1).

Intragate Opens. Section 3.3 has shown that, for an
intragate open in the pull-up path of a1 of the NAND gate of
WL0 (see Fig. 3), the DeactD has to be sensitized with the
SAP f000; 010g of a2a1a0. Similarly, if the open is in the
pull-up path of a2 of a0, then the required SAPs of a2a1a0

will be f000;100g, respectively, f000; 001g (see Table 1).
These are the same requirements as those of DeactD due to
intergate opens (as discussed above) and, therefore, the AMs
2i and H1 can be used (see Sections 4.1.2 and 4.1.3).

On the other hand, an ActD fault in WL0 due to a defect
in the pull-down path of the NAND gate of WL0 (see Fig. 3)
requires the SAP fxyz; 000g of a2a1a0 for its sensitization,
where at least x, y, or z has the value 1. This is a less severe
requirement than H ¼ 1, therefore the ActD will automa-
tically be covered by any test which sensitizes the DeactD.

Note also that, for intragate opens, the requirements for
detecting an ActD fault are less severe than those for
DeactD. Therefore, for generating SAPs/SATs for an ActD
fault, either AC, 2i, or H1 AM can be used.

4.1.1 Address Complement AM

The Address Complement (AC) AM generates all of the
required SAPs: those requiring an x! x transition by using
the * AO (denoted as *AC ) and those requiring an x! x
transition by using the + AO (denoted as +AC ). For N ¼ 3,
the AC AM generates the following address sequences: *AC
¼ f000;111; 001;110; 010;101; 011;100g and the inverse
sequence +AC¼ f100;011; 101;010; 110;001; 111;000g; each
address is followed by its one’s complement (in boldface).
Note that the “+AC ” starts with address “100” because it
has to be the exact reverse of the *AC .

The AC AM satisfies the SAP requirements for ActD faults
due to inter and intragate opens because the “*AC ” AO
generates all required SAPs for WL4 through WL7 and the
“+AC ” AO generates all required SAPs for WL0 through
WL3, e.g., in the “*AC ” AO, the SAP f000;111g generates all
required address transitions for any open in any path (i.e., a2,
a1, or a0) of WL7 (see Table 1). In the “+AC ” AO, the SAP
f100;011g generates all required address transitions for any
open in any path (i.e., a2, a1, or a0) of WL3, and so on.

The number of addresses which have to be written for
the AC AM is: NACðNÞ ¼ 2 � 2N ¼ 2n, where N is the
number of address lines and n is the number of addresses;
the factor of “2” is because the *AC and the +AC AOs are
required. For N ¼ 3, NACð3Þ ¼ 16.

4.1.2 The 2i Addressing Method

The 2i addressing method consists of two AOs (denoted as*i
and +i ), generating all required SAPs for detecting DeactD
faults due to inter- and intragate opens (see Table 2). The SAPs
for the*i AO consist of the address pairs {even-address, odd-
address}, for example, the address pairs {0, 1}, {2, 3}, {4, 5}, and
{6, 7}. For the +i AO, the SAPs consist of the address pairs
{odd-address, even-address}. The addresses are generated
using a binary counting sequence, with increments/decre-
ments of j ¼ 2i, where 0 � i � N � 1. The *i sequence, for
j ¼ 20 ¼ 1 (denoted by the “*0 ” symbol) is shown in the
second column by the address sequence “0; 1; 2; 3; . . . ; 6; 7”;
it represents all 3-bit SAPs with H ¼ 1 due to 0! 1
transitions in bit i ¼ 0. The +0 sequence is represented by
the address sequence “7; 6; 5; . . . ; 2; 1; 0” of the same

column; it represents all SAPs with H ¼ 1 due to 1! 0
transitions in bit i ¼ 0. This means that both the *i and +i
address sequences have to be used.

The SAPs of the 2i AM satisfy the requirements for
detecting DeactD due to inter and intragate opens because,
e.g., the required address transitions for DeactD fault in
WL0 (see Table 1) will be generated with the first two
addresses of *2 (i.e., 000! 100), the first two addresses of
*1 (i.e., 000! 010), and the first first addresses of *0 (i.e.,
000! 001) (see Table 2).

The number of addresses to be generated for the 2i AM
is: N2iðNÞ ¼ 2 �N � 2N , where the factor 2 presents the two
AOs *i and +i , N presents the number of addresses, and
2N presents the number of addresses in an *i or an +i
sequence. For N ¼ 3, this results in N2ið3Þ ¼ 48.

4.1.3 The H1 Addressing Method

This AM generates the minimal set of SATs with H ¼ 1,

where H stands for the Hamming distance between each

address pair fAx;Ayg and fAy;Axg. The H1 AM is based

on the concept of constant weight codes, also referred to as

m-out-of-n codes [21]. They have the property that each n-bit

Code-Word “CW” contains exactly m 1s (i.e., has a weight of

W ¼ m). In this application, the CWs are N-bit addresses;

the maximum number of different CWs is CN
W ¼ N!

W !�ðN�WÞ! .

The idea is to use CWs with an even weight (i.e., W ¼ 0,

W ¼ 2, W ¼ 4, etc.). Then, for a given CW, N different SATs

are generated by complementing and thereafter recomple-

menting successively one bit of the CW; this guarantees that

the three addresses of each SAT have a Hamming distance

of H ¼ 1. These N complementing/recomplementing op-

erations have to be performed for all CWs. For example, for

the 3-bit code-word “000,” the following SATs are gener-

ated: {000, 001, 000}, {000, 010, 000} and {000, 100, 000}. These

three SATs can be combined into the SuperSAT:

{000, 001, 000, 010, 000, 100, 000}, where the third address

of each SAT is also the first address of the next SAT.
Table 3 gives an example of the H1 addressing method for

N ¼ 3, using SATs as well as SuperSATs. For each CW, three
SATs are generated because N ¼ 3. The “—” denotes that
SuperSATs are used. That means that the last address of the
previous SAT is also the first address of the SAT which starts
with “—.” The SATs, or SuperSATs, are generated for all CWs
with even weights (i.e., W ¼ 2i), which is the set of CWs with
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W ¼ 0;W ¼ 2;W ¼ 4; . . . , until W ¼ 2 � bN=2c. The total
number of CWs is NCW ¼

PbN=2c
i¼0 CN

2i ¼ 2N�1. For example,
forN ¼ 3 (see Table 3), two sets of CWs (i.e.,C3

0 andC3
2) will be

generated. The set of CWs forC3
0 consists of one CW, which is

{000}. The set of CWs for C3
2 consists of three CWs: {011, 110,

101}. Therefore, NCW for N ¼ 3 is 4.
The SATs (and SuperSATs) generated with H1 AM

satisfy the requirements for detecting DeactD due to inter
and intragate opens, e.g., the required address transitions
for DeactD fault on WL0 (see Table 1) will be generated
with the first three SATs of Table 3 (i.e., {000, 001, 000},
{000, 010, 000} and {000, 100, 000}). Note that the same
address transitions will be generated with the correspond-
ing SuperSAT.

The number of addresses to be generated for the H1 AM,
for the case where SATs are used, is NH1ðNÞ ¼ 3 �N �NCW

(i.e., for each code word, N different SATs are generated).
Hence, NH1ðNÞ ¼ 3 �N � ð

PbN=2c
i¼0 CN

2i Þ ¼ 3 �N � 2N�1. The
resulting number of addresses to be generated for the H1
AM using SuperSATs for each CW is:

3ðfor the first wordÞ þ 2ðfor additional wordsÞ
¼ 3þ 2 � ðN � 1Þ ¼ 2N þ 1:

The total number of addresses will then be:

NH1S ðNÞ ¼ ð2N þ 1Þ �NCW ¼ ð2N þ 1Þ � 2N�1:

The use of SuperSATs therefore reduces the number of
required addresses by a factor of: 2Nþ1

3N . For N ¼ 3, NCW ¼ 4,
and, therefore, NH1ð3Þ ¼ 36 and NH1S ð3Þ ¼ 28.

It is interesting to compare the number of required
addresses of the optimal SAT-based H1 AMs with
that of the corresponding SAP-based 2i AMs. As has
been shown in Section 4.1.2, the N2iðNÞ ¼ 2 �N � 2N .
Since NH1S ðNÞ ¼ ð2N þ 1Þ � 2N�1, the ratio will be:

NH1ðNÞ
N2iðNÞ

¼ 3 �N � 2N�1

N � 2Nþ1
¼ 3

4
¼ 0:75:

On the other hand, the ratio of the SuperSAT H1 AM over

the 2i AM is:
NH1S

ðNÞ
N2i ðNÞ

¼ ð2Nþ1Þ�2N�1

N�2Nþ1 ¼ 2Nþ1
4N ; this ratio is 0.583

for N ¼ 3 and approaches 0.5 for large values of N .

4.2 Sensitizing Operation Sequence

To each address of a SAP or a SAT at least one operation has
to be applied, resulting in Sensitizing Operation Pairs for a
SAP and Sensitizing Operation Triplets for a SAT. They are
discussed next.

4.2.1 Sensitizing Operation Pairs (SOPs)

The required SOP for the SAP fAg;Afg (fAf;Agg) consists
of two operations “Oxg;Oyf” ðOyf ;OxgÞ, see Fig. 1: one
operation applied to Ag ðAfÞ and the other to Af ðAgÞ.
“Oxg” denotes the operation “O” ðO 2 fr; wgÞ, with written
or expected data x ðx 2 f0; 1gÞ. The subscript g ðfÞ denotes
that the operation is applied to Ag ðAfÞ. Below, a set of
requirements for the two operations of a SOP are given such
that they sensitize the ActD and DeactD faults.

. ActD: Oxg, Oxf ; x 2 f0; 1g, O 2 fr; wg. The operation
on Af has to be performed with the complement of
the data value applied to Ag in order for the fault to
be detectable. Because of the ActD, Oxf may fail (see
Fig. 1).

. DeactD: Oxf , Oxg; x 2 f0; 1g, O 2 fr; wg. Because of
the DeactD Oxf and/or Oxg may fail.

Note: x should take on the value x ¼ 0 as well as the value
x ¼ 1 because of the likely asymmetric sensitivities to the 0
and 1 state; this is an engineering requirement.

Depending on the selected operations O 2 fr; wg, four

Read-Write-Sequences (RWSs) are possible (see the top block in

Table 4). Note that the RWS of a SOP applied to

fAg;Afg ðfAf;AggÞ consists of the following two operations:

the last operation applied to Ag ðAfÞ and the first operation

applied to Af ðAgÞ. For example, “mAM ðrx; . . . ; wx; rxÞ”
performs the Read-after-Read (RaR) RWS of operations using

a certain addressing method AM (i.e., AC, 2i, or H1). The

“wx” operation is required in order to change the state to x

such that the “rx” operation can follow as the last operation

of the March Element (ME).

4.2.2 Sensitizing Operation Triplets (SOTs)

The required SOT for the SAT “fAg;Af;Agg” (see Fig. 1)

consists of three operations: Oxg, Oxf , Oxg; x 2 f0; 1g,
O 2 fr; wg. (Note: x should take on the value x ¼ 0 as well as

the value x ¼ 1 for the same reasons as for SOPs.)
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TABLE 3
H1 Addressing Method for N ¼ 3

TABLE 4
Read-Write-Sequences (SOP/SOT)



Depending on the selected operations in O 2 fr; wg, eight
RWSs for SOTs are possible (see the bottom block in
Table 4): RaRaR, RaRaW, RaWaR, RaWaW, WaRaR,
WaRaW, WaWaR and WaWaW. The RWS WaWaW will
not be considered from here on because at least one “r”
operation has to be present in order to detect the ADF. This
violates the WaWaW requirement and, therefore, the RWS
WaWaW is not included in Table 4. The RWSs for SOTs use
addresses triplets “Ag, Af , Ag” in order to allow for SATs;
the first and the third addresses are identical. The nested
ME “mAMg ðOxg;Oxf ;OxgÞ” is performed for each address
“Af .” The nested ME for the WaRaR RWS has the following
form: “mAMg ðrxg; rxf ; wxgÞ.” First, a “rxg” is applied to “Ag”,
next, an “rxf” is applied, and, last, a “wxg.”.

All RWSs ending with an “R” (i.e., that means that the
nested ME starts with an “rxg” operation and has the form
“XaYaR” with X;Y 2 fR;Wg) require initialization of “Ag”;
this is accomplished by the ME “m ðwxÞ.” Initialization of
“Af” is required for the RWSs of the form “XaRaY.” This
requires two extra operations: one to write the value “x”
and one to write back the original value “x.” This is
performed only once for each “Af” address by the ME
“mf ðwxf;m

AM
g ðOxg; rxf ; OxgÞ; wxfÞ.” The RWSs of the form

“XaWaY” require the extra “wxf” operation to write back
the original value “x” in “Af .”

5 TESTS FOR ADDRESS DECODER DELAYS FAULTS

Based on the AMs of Section 4.1 and the SOPs/SOTs of
Section 4.2, tests for detecting ADFs (due to inter and

intragate opens) can be constructed. The results are given in
Table 5; entries #1 through #4 list the tests based AC AM,
entries #5 through #8, the tests based on 2i AM, and the
entries #9 through #15 list the tests based on H1 AM. The
left column shows the test #, the second column lists the test
property (this is the RWS together with the AM), the
column “Time” lists the test time, in terms of the required
number of operations; the last column gives the test. It is
important to note here that tests based on AC AM detect
ActD faults only, while tests based on 2i and H1 AMs detect
ActD as well as DeactD faults.

Inspecting the AC AM and the 2i AM reveals that SAPs
are generated and, therefore, SOPs are required, while
inspecting the H1 AM reveals that SATs are generated
instead of SAPs. Therefore, SOTs are required. Conse-
quently, tests based on AC and 2i AMs use SAPs and SOPs
and tests based on H1 AM use SATs and SOTs.

Four tests based on the AC AM as well as based on the 2i

AM for ADFs can be distinguished because of the four
possible RWSs (see tests #1 through #8 in Table 5). The
2i AM-based tests use the notation “iN�1

0 ½*i . . . :�.” This
means that the part between the square brackets has to be
repeated for i ¼ 0 through i ¼ N � 1 such that addresses
are incremented/decremented with 2i.

It is important to note here that the well-known MOVI
tests [4], [24] are also based on 2i AM. MOVI tests are
included in Table 5 (i.e., tests #16 and #17). MOVI (test #16)
repeats MEs of the Partial MOVI (test #17) using 2i

addressing. MOVI is a variant of the RaR-2i test; the
initializing ME “m ðw0Þ” is replaced with the ME “+ ðw0Þ”
and is repeated for each value of i. MOVI was designed as a
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TABLE 5
Tests for Address Decoder Delay Faults



low-cost version of GalPat [24] and, because of that, it is
used frequently in the industry.

Seven tests based on the H1 AM can be distinguished
(see tests #9 through #15 in Table 5). They have been
derived from the test structures of the bottom block of
Table 4 by repeating those for the data values x ¼ 0 and
x ¼ 1 and by adapting the initializing operations to the
appropriate AMs. The latter is important because the H1
AM has the property that it does not access all 2N words.
Hence, the initializing operations do not have to be applied
to all words. As an example, consider The RaRaR-H1 (test
#9). The test has to access the sequence of “H1” addresses
(see Table 3). Table 6 will be used to explain the test. Each
row in the first block of the table describes a complete 3-
address SAT for “CW ¼ 000”; with addresses “Ag,” “Af ,”
and “Ag.” The last column lists the operations to be applied
to the SAT, consisting of two initializing operations,
separated by “;” from the three operations for the RWS.
The number of operations required per CW of N SATs
consists of 4N þ 1:

. N þ 1 initializing write operations per CW : two for
the first SAT and one for each of the remaining
N � 1 SATs.

. 3N read operations perCW (i.e., three reads per SAT).

Hence, the total test time is

ð4N þ 1Þ � 2 �NCW ¼ nþ 4Nn:

(Note: A factor 2 is added since the test has two similar MEs
and NCW ¼

PbN=2c
i¼0 CN

2i ¼ 2N�1 ¼ n
2 .)

6 DFT AND BIST FEATURES

As discussed in Section 4, the detection of ActD and DeactD
caused by both intergate and intragate opens requires the 2i

or H1 AM (see also Table 1). In addition, it has been shown
that the total number of addresses of optimal SAT-based H1
AM is 25 percent less than that of 2i addressing. This section
describes an efficient BIST implementation for generating
H1 AM. However, it first gives a minimal AM for detecting
ActD faults, together with its BIST implementation.

It is important to note that, for embedded applications,
the BIST complexity of generating the various addressing
sequences (AC, 2i, or H1) is also important as the overall
number of the required patterns. For example, an AC AM
implementation needs two N-bit counters. An efficient
implementation for generating 2i addressing requires a
binary up/down N-counter, together with a DFT provision,
which allows the least significant address line to be
swapped with any of the other address lines [7].

6.1 Minimal Tests and Their BIST for ActD

The “Minimal AM,” described next, is the most time-efficient
for detecting ActD due to inter and intragate opens; it has a
reduction in length by 25 percent as compared with AC AM.

Each gate of the decoder of Fig. 2 is represented by a
node in Fig. 7a. The value of the node represents the value
of address lines a2a1a0. For each node-pair fAx;Ayg, two
SAPs fAx;Ayg and fAy;Axg have to be generated in order
to guarantee the x! x and the x! x transitions on the line
with Rdef (see Table 1). These two SAPs can be combined
into the Sensitizing Address Triplet (SAT) fAx;Ay;Axg
containing both address transitions. The SATs are denoted
by the solid bidirectional arrows connecting complemen-
tary node-pairs. They constitute a minimal set of SATs
required to generate all address transitions for detecting
ActD faults. Note: The unidirectional dotted arrows are
required to connect the node-pairs.

Fig. 7b shows the address sequence for N ¼ 3. The
column “#” indicates the step in the sequence of addresses,
the columns “a2; a1; a0” (the “a” is placed above the digits
“0,” “1,” and “2”) show the value of the address; the
columns “c1c0b2b1b0” are an implementation detail (ex-
plained next). The number of addresses required for an
N-bit address is after N-bit address is

NMinðNÞ ¼ 3 � ðnumber of address pairsÞ

� 2N

2
ðnumber of SATsÞ ¼ 3 � 2N�1;

thus NMinðNÞ ¼ 3 � n2 .

Fig. 7c shows a BIST circuit for generating the Minimal
address sequence, using a 5-bit counter: c1c0b2b1b0. The
first 2 bits, c1c0, form a modulo-3 counter. The last 3 bits,
b2b1b0, form a binary counter, which will be incremented
upon a {1, 0} to {0, 0} transition of c1c0. The outputs of the
counter b2b1b0 feed XOR-gates, denoted by the blocks with
the “=1” symbol, to generate the address signals a2a1a0. The
resulting counting sequence is shown in Fig. 7b.

The required Sensitizing Operation Triplet (SOT) for the
SAT “fAg;Af;Agg” consists of three operations: Oxg, Oxf ,
Oxg; x 2 f0; 1g, O 2 fr; wg, combining the Minimal AM and
the RWSs results in tests #18 through #24 of Table 5. They
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TABLE 6
RaRaR-H1 Operations

Fig. 7. Minimal addressing for N ¼ 3.



have similar structure as the H1-based tests and, therefore,
the same explanation applies, e.g., the operations of RaRaR-
Min (test #18) consist of two initializing operations,
separated by “;” from the three operations for the RWS.
The test time for RaRaR-Min test is 2(for x ¼ 0 and x ¼ 1)
�5=3(because every SAT which consists of three addresses
requires two additional initializing write operations, “wxg,
wxf”) �3n=2(this is the NMinðNÞ) ¼ 2 � 5

3 � 3n
2 ¼ 5n.

6.2 BIST Implementation of H1 AM

Fig. 8 gives an implementation example of the H1
addressing method for N ¼ 6. The left part of the figure
shows a table with the CWs. The column “#” lists the
sequence number of the CW, the column “W” lists the
weight of the corresponding CW, the column “CW” lists the
CWs. The next three columns are included to explain the
hardware implementation: “P” lists the Phase of the CW
generator, “S” the Subphase, and “Init.val.” lists the value
used to (re)initialize the generator. Because N ¼ 6, CWs
have to be generated for the weights W ¼ 0, W ¼ 2, W ¼ 4,
and for W ¼ 6 (see column “W”). The sets of CWs for the
different weights is

P3
i¼0 C

6
2i ¼ 26�1 ¼ 32 CWs. The total

number of addresses is NH1S ð6Þ ¼ ð2 � 6þ 1Þ � 32 ¼ 416.
A hardware scheme for generating the CWs is shown in

the right-hand part of Fig. 8. The “B” register “b5; . . . ; b0”
contains the generated CWs. For each CW, six SATs with
H ¼ 1 are generated on the final outputs “a5; . . . ; a0,” which
are the outputs of the XOR gates. The XOR gates are fed by
the register “b5; . . . ; b0” and the “Bit-complement decoder
logic.” This logic generates, under the control of the 3-bit
“Bit-complement cntr” “c2; c1; c0,” six outputs. They are all
“0” or exactly one output has the value “1.” The Super SATs
are generated under control of the “Triplet cntr” “t1, t0.”

The register “b5; . . . ; b0” is (re)initialized under control of
the “Phase counter” “p2; p1; p0:” The start of each new

phase requires a new initialization (see the left part of the
figure, column “P,” together with the corresponding
(re)initialization value “Init.val.”). During each phase, the
“Subphase counter” “s2; s1; s0,” column “S” in the table,
determines when the current phase has been completed.
During a phase, register “b5; . . . ; b0” acts as a right-circular
shift register. The “Control logic” takes care of the overall
control.

7 CONCLUSIONS

In this paper, the Address decoder Delay Faults “ADFs”
(divided into activation delay “ActD” and deactivation delay
“DeactD” faults), due to intergate and intragate opens have
been analyzed. Addressing Methods “AMs,” together with
the required Read-Write-Sequences “RWSs,” for detecting
such faults have been established. The AMs and the RWSs are
combined to explore the space of all possible tests.

Tests for ActD faults require the Address Complement
“AC” or the more time-efficient Minimal AM. Several
versions of those tests have been designed in a systematic
way, based on the possible RWSs. On the other hand, tests
for DeactD faults require the 2i or H1 AMs. Tests based on
such AMs also cover the ActD faults. When the address
decoder has the property of deactivating the word line at a
fixed moment, then the DeactD cannot occur and, therefore,
using a test based on AC or Minimal AM is the most
suitable. However, when both ActD and DeactD faults are
possible, a test based on the 2i or H1 AMs should be used.

Finally, the paper presents BIST circuits for efficient
implementation of the Minimal and H1 AMs-based tests.

The question now is: Which ADF test is the best to use
when also considering the memory cell array faults
(MCAFs) and the peripheral circuit faults (PFs)? Let us
assume, for instance, that the address decoder has the
property of deactivating the word line at a fixed moment
and, therefore, only ActD can occur. As mentioned above,
either AC or Minimal AM has to be used (see Table 5).
Inspecting the tests based on such AMs, while consider-
ing tests for MCAFs and PFs, reveals that it is better to
use AC-based tests. For example, the RaW-AC test (see
Table 5) can be easily combined with March C- [14] (i.e.,
fm ðw0Þ;* ðr0; w1Þ;* ðr1; w0Þ;+ ðr0; w1Þ;+ ðr1; w0Þ;m ðr0Þg)
or with March SS [10], i.e.,

fm ðw0Þ;* ðr0; r0; w0; r0; w1Þ;* ðr1; r1; w1; r1; w0Þ;
+ ðr0; r0; w0; r0; w1Þ;+ ðr1; r1; w1; r1; w0Þ;m ðr0Þg;

in order to cover both ADFs and MCAFs. The result will be the
same tests, but then used with AC AM rather than binary AM.
If, in addition to ADFs and MCAFs, one wants to also cover
the PFs [26] (e.g., Slow Sense Amplifier Fault, Slow Precharge
Circuit Fault), then the combined tests should be used with
appropriate data-background (i.e., checkerboard or row
stipe) and address direction (i.e., Fast X).

Based on the above short discussion, one can conclude
that, by understanding the faults models (either related to
ADFs, to MCAFs or to PFs), their detection conditions, and
the freedom the march tests provide, we can combine
different march tests to optimize the test time while
maintaining a complete fault coverage of the target faults.
However, from a practical point of view, an experiment on
a large sets of chips, using many of the proposed and old
tests, have to be performed in order to establish which test
(or set of tests) is the most cost effective. That is the next
step we will work on.
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Fig. 8. H1 addressing for N ¼ 6.
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