
A Hardware CachememcpyAccelerator
Stephan Wong, Filipa Duarte, and Stamatis Vassiliadis

Computer Engineering, Delft University of Technology
Mekelweg 4, 2628 CD Delft, The Netherlands

{J.S.S.M.Wong, F.Duarte, S.Vassiliadis }@ewi.tudelft.nl

Abstract— In this paper, we present a hardware solution to
perform the commonly usedmemcpyoperation with the goal to
reduce the time to perform the actual memory copies. This is
accomplished by taking advantage of the presence of a cache
that is found next to many current-day (embedded) processors.
Additionally, the currently presented solution assumes that the
to be copied data is already in the cache and is aligned by
the cache-line size. We present the concept and implementation
details of the proposed hardware module and the system used
to experiment both our hardware and an optimized software
implementation of the memcpy function. Experimental results
show that the proposed hardware solution is at least 79% faster
than an optimized hand-coded software solution.

I. I NTRODUCTION

Currently, main memory accesses remain a performance
bottleneck in any computing system. Many solutions to over-
come this bottleneck have been proposed in literature by
simply reducing the amount of main memory accesses (by
introducing small and fast caches, changing data structures,
modifying algorithms, etc.). Such solutions are the result of
many profiling investigations of the targeted applications in
question that determine the number and type of main memory
accesses. Profiling information has been gathered by authors
providing valuable insight into how a program behaves, e.g.,
with regard to the main memory, by identifying the most
compute-intensive or data-intensive parts of the program.

In [1], the authors presented benchmarking and profiling
results of the Linux kernel for 32-bit and 64-bit PowerPCs
(PPCs). The authors conclude that optimizations are necessary
to decrease the overhead of operations related to (1) mainte-
nance of cache consistency with the main memory, (2) main
memory copying, and (3) page table entries. In [2], the authors
present profiling results of the Bluetooth protocol working
under the Linux operating system. In this work, it is concluded
that the main memory copies are the most time-consuming
operations. Both [1] and [2] provide profiling information
identifying an operating system functionmemcpyas having
a major impact on the performance of the system.

Thememcpyfunction is responsible for copying data of size
sizefrom memory addresssrc to memory addressdst. The C
code is presented below:

/**
* Copy one area of memory to another
* @dst: Where to copy to (copy)
* @src: Where to copy from (original data)
* @size: Size of the area to copy

**/

void *memcpy(void *dest,void *src,
size_t size)

{
char *tmp=(char *)dest, *s=(char *)src;

while (size--)
*tmp++ = *s++;

return dest;
}

It is worth noting that there has been extensive research on
how to optimize this function in software. The most utilized
solution is to hand-write this function in assembly and link it
to the operating system instead of compiling the C code. This
will result in more efficient code, however the optimizations
are only valid for the selected system.

In this paper, we present a hardware unit that performs
the memcpyoperation using an additional indexing table in
an existing cache organization. Our proposed solution has the
following advantages:

• it performs amemcpyof one cache-line in 30 clock cy-
cles and performsmemcpy’s of cache-lines sizes varying
from 32 bytes to 256 bytes (which are common values
for cache-lines), 79% to 93% faster than an optimized
software implementation, respectively.

• it avoids duplicating data in caches, because the copy
(of the original data) is simply represented by inserting
an additional pointer to the original data that is already
present in the cache. This pointer allows the ‘copied’ data
to be accessed from the cache.

• it offloads the processor as it is no longer required to
perform the copies word by word (or the largest data
unit the utilized architecture supports).

The proposed hardware solution is different from a Direct
Memory Access (DMA) controller that simply offloads the
processor from performing the necessary memory operations.
I.e., the memory operations are still performed, but just not
by the processor that can now do other useful work.

The paper is organized as follows. In Section II, we present
related work. In Section III, we introduce the cache organi-
zation that is used for our evaluation and in Section IV we
present the concept of the proposed hardware solution. In
Section V, we discuss the platform used for the implemen-
tation of the memory copy hardware. The details of both the
cache, thememcpyhardware and software are also presented.
In Section VI, we present the experimental results for both
the software and hardware implementations of thememcpy

utilizing the same processor and compare the results. Finally,
in Section VII, we draw some conclusions.

II. RELATED WORK

In many network related applications,memcpy(among oth-
ers) is considered to be an time-consuming operation. Several
solutions (both software and hardware) have been proposed to
reduce the impact ofmemcpy. In this section, we describe
the related work presenting, first, profiling information of
some of those network related applications and, second, we
present some of the solutions proposed to reduce the impact
of the memcpy. We also highlight the difference between our
approach and existing solutions.

In [3] and [4], the authors present profiling results of the
TCP/IP and UDP/IP protocols. They conclude that the main
performance bottlenecks in network-related functionalities are
the checksum calculations and data movements. In particular,
in [4] the authors present that approximately 70% of the all
processing time of the TCP/IP or UDP/IP protocol is due
to data movement operations. In this paper, the authors also
present network traffic traces. They show that 86% of the UDP
traffic and 99% of the TCP traffic in a LAN (Local Area
Network) is less than 200 bytes and that 99.7% of the traffic
in a WAN (Wide Area Network) is less than 500 bytes.

In [5], the authors present a survey of the solutions proposed
in literature to alleviate the network subsystem bottlenecks.
Those solutions include (1) checksum optimizations (merge
copying and checksum, checksum offloading and checksum
elimination), (2) using a DMA instead of Programmable Input
Output (PIO), and (3) avoiding cross domain data transfers
through ‘zero-copying’ schemes.

Hardware optimizations, besides DMA support, include
the use of vector processors. Specifically for the PPC, the
Velocity Engine (also known as AltiVec [6]) expands the
current PPC architecture through addition of a 128-bit vector
execution unit. This unit operates concurrently with existing
integer and floating-point units. This approach expands the
processors capabilities to concurrently address high-bandwidth
data processing (such as streaming video) and the algorithmic
intensive computations.

Several software solutions have been proposed, basically
variations on the ‘zero-coping’ scheme. In [7], the authors
propose a ‘zero-copy’ message transfer with a pin-down ca-
che technique, which avoid memory copies between the user
specified memory area and a communication buffer area. An-
other ‘zero-copy’ technique is presented by the same authors
in [8]. In this paper, the authors design an implementation
of the message passing interface (MPI) using a ‘zero-copy’
message transfer primitive supported by a lower communi-
cation layer to realize a high performance communication
library. Software solutions for optimizing memory copies
have also been presented in [9]. The authors designed and
implemented new protocols of transmission targeted to parallel
computing that squeeze the most out of the high speed Myrinet
network, without wasting time in system calls or memory
copies, giving all the speed to the applications. The authors

Cache

Data

Memories

Cache

Controller

S
ys

te
m

 B
us

Data

Buffers

Address

Buffers

Address

Data

CPU

Cache

Valid

Memory

Cache

Tag

Memory

Cache Directory

Fig. 1. Typical cache organization.

of [10] introduced a new portable communication library, that
provides one-sided communication capabilities for distributed
array libraries, and supports remote memory copy, accumulate,
and synchronization operations optimized for non-contiguous
data transfers.

A solution not considered until now (to our best knowledge)
is to develop a dedicated hardware unit to handle data move-
ment by exploiting the presence of a cache that is closely
attached to many current-day processors. Our solution does
not require the usage of a DMA controller nor a vector unit,
so it is more flexible than the solutions proposed by [5] and
[6], and it can be applied to a majority of the computing
systems. Assumptions made in the currently proposed solution
are guided by the the profiling information provided in [4]. In
order to implement such a hardware unit, we chose the Virtex
II Pro FPGA (Field Programmable Gate Array) as it allows
for fast prototyping. The platform Xilinx University Program
(XUP) [11] design provides the necessary functionality to
prove the concept.

III. C ACHE ORGANIZATION

A cache is divided in two main parts: a cache directory
and cache data-memories. The cache directory can be seen
as a list of the main memory addresses of the data stored in
the corresponding location of the cache data-memory (which
is the one that contains the data). In our implementation, the
cache directory is constituted by two different memories: a
cache tag-memory and a cache valid-memory. Figure 1 depicts
the referred cache organization. The address provided by the
processor is divided into 3 parts: the index, the tag, and the
offset. The index is used to access the cache directory and
the cache data-memories. Thetag is written to the cache tag-
memory (on a write) or is used to compare with a tag already
in the cache tag-memory (on a read). If the tag supplied by
the cache tag-memory is the same as the tag of the address
provided by the processor and the valid bit supplied by the
cache valid-memory is set, a cache read hit is registered. On a
cache read hit, the data supplied by the cache data-memories
(the cache-line) is accessed and, based on theoffset, the correct
word is accessed. On a write hit, besides the tag, the index and

the offset, also a byte write signal is used. This signal identifies
which byte, within the selected word, is to be written.

In the remainder of this section, we present some implemen-
tation details of the cache organization pertaining the chosen
experimentation platform (discussed in Section V-A).

On a read request, if the data is in cache (read hit), the
processor will have the data available on the bus on the next
clock cycle. If the data is not in cache (read miss) the processor
has to stall until data is provided by the main memory (the time
to have the data provided by the main memory is depended
on the memory technology and implementation).

On a write request, both the cache and the main memory
will be updated, if the data is in the cache (write hit); or only
update the main memory, if the data is not in the cache (write
miss). In our design, this will not trigger a load of a cache-line.
The cache-line load will only be triggered when a read miss
happens. This implementation is a standard implementation of
a write-through cache.

If a read request is issued after a write and the requested
data is not in the cache, the processor stalls until the write
instruction is finished and the read data is available to be
provided to the cache and to the processor.

IV. memcpyHARDWARE ORGANIZATION

Our hardware solution of thememcpyoperation stems from
the simple observation that in many cases the data to be copied
(of size size) from a source address (src) to a destination
address (dst) is already present inside the cache. Performing
the memcpyoperation in a traditional manner (utilizing loads
and stores) would pollute the cache by either inserting data
already present in the cache or overwriting data that may be
needed later on. The proposed solution has the advantage of
not performing the actual data movements (resulting in the
mentioned disadvantages) and of being independent of the
cache organization. Instead, the proposed solution performs a
memcpyutilizing an additional indexing table inside the cache.
The table is accessed by the index part of thedst address and
contains the tag and the index parts of thesrc address, the
tag part of thedst address and a bit stating that it is a valid
entry. Each indexing table entry is a pointer to an entire cache-
line. Summarizing, thememcpyoperation can now be simply
replaced by introducing a new index table to the cache data-
memories by assuming that the data to be copied is already
present in the cache and that the data is already aligned to
a cache-line size. Finally, in order to maintain consistency in
the main memory, any write operation to the data at either the
source or destination locations (stored over multiple cache-
lines) will result in the invalidation of the corresponding cache-
line and writing the cache-line back to the main memory. Of
course, the cache-line is updated with the new data of the write
operation before writing it back to the main memory.

For the moment, our solution assumes copies of only entire
cache-lines and data is resident in the cache. However, accord-
ing to [2], the size of amemcpyoperation in the Bluetooth
standard under Linux is typically 339 bytes and according to
[1], 98% of the memcpycalls are less than 128 bytes. As

Val

Bit

Index

src

Tag

dst

Val
 Tag

Index + Tag

src

Tag
 Index
 Offset

8
 16
 17
 26
 27
 29

Index
Tag

Memcpy HW

to data bus

Legend

Memcpy hw

Traditional hw

from addr bus

Data

Hit/Miss

Data Cache

Offset

Fig. 2. Read request to both the indexing table and cache of thememcpy
hardware unit

memcpyis extensively used on network processing and 86%
to 99% of the packets are less than 200 bytes [4], we can
safely assume, from [1], [2], and [4], that a typical value of
a memcpyis between 128 to 200 bytes. This implies 4 to 6
cache-lines when assuming an cache-line size of 32 bytes.

If the addresses to perform amemcpyon are not cache-
line aligned, the alignment can be done in software and the
aligned addresses provided to the hardware. The software
also has to perform the copy of the remaining words and
bytes. This software part will have the same performance as
the software part that performs bytes and words copy of the
software implementation ofmemcpy(we will address the the
software implementation in Section V-B).

Figure 2 depicts the read process, for both the copy and the
original data, highlighting the indexing table and the necessary
control logic. On a read request, the index part of the address
provided by the processor will be used to access the indexing
table:

• If the valid bit in the corresponded entry of the table is
set (the requested data is a copy) and:

– If the tag part of the address provided by the pro-
cessor and the tag stored on the table are the same
(a read hit on the indexing table), the output will
give the index part of the correspondingsrc address,
which is used to access the cache.

– If the tag part of the address provided by the proces-
sor and the tag stored on the table are not the same (a
read miss on the indexing table) then the index part
of the address provided by the processor is used to
access the cache (and it follows the cache accessing
procedure described in Section III).

• If the valid bit in the corresponded entry of the index table
is not set (the requested data is not a copy), then the index
part of the address provided by the processor is used

TABLE I

HIT /M ISS COMBINATION IN THE CACHE AND INDEXING TABLE

Indexing Table Cache Comments
hit hit Original data in cache and

copy in the indexing table
hit miss Cannot occur

miss hit Original data in cache and no
copy in the indexing table

miss miss No original data in cache

to access the cache (and it follows the cache accessing
procedure described in Section III).

Table I summarizes the different cases of hits/misses on the
indexing table and on the cache. It is worth mentioning that
the case hit on the indexing table and miss on the cache cannot
occur because this would imply that the requested data is not
in the cache. For this to happen, data had to be changed, due
to a write hit or a load overwriting the current content of the
requested cache line. On such cases, the correspondent line on
the indexing table is invalidated (as explained below). As the
copy may be considered as a pointer to the original data, if the
original data is changed (written to) the correspondent copy
has to be written to memory and the table entry invalidated.
The same situation happens when the copy itself is changed.
For a write request, the indexing table is accessed using the
index part of the address provided by the processor.
• If the valid bit is set (to write to a copy) and:

– If the tag part of the address provided by the pro-
cessor is the same as the tag stored on the entry of
the indexing table (a write hit):

1) Use the index given by the indexing table to
access the cache;

2) Write the data given by the cache to address
provided by the processor in the main memory;

3) Invalidate the indexing table entry, setting the
valid bit to zero;

– If the tag part of the address provided by the pro-
cessor is not the same as the tag stored on the entry
of the indexing table (a write miss):

1) Use the address provided by the processor to
access the cache and the main memory;

2) Write data to the cache and the main memory;
3) Search the indexing table to find if the address

provided by the processor points to an original
data; if it is, set the valid bit to zero;

• If the valid bit is not set, then the address provided by
the processor is not on the indexing table (not a write to
a copy):

1) Use the address provided by the processor to access
the cache and the main memory;

2) Write data to the cache and the main memory;
3) Search the indexing table to find if the address

provided by the processor points to an original data;
if it is, set the valid bit to zero;

Data

Cache

PLB

Arbiter

PLB

External

DDR

PPC

FPGA

BRAM

High Speed

Peripherals

D
ata O

C
M

Interface

OCM

OCM 2

DDR Cntrl

Instructions

Data

Fig. 3. System used to experiment thememcpyhardware

A typical problem on the software implementation of a
memcpyfunction is to ensure that thesrc and thedstaddresses
do not overlap. However, this problem does not exist in our
solution. If the addresses overlap, they are both present in the
indexing table and in the cache, which means they are both
pointing to the copy and the original data. On a write to the
overlapped address, the cache will be updated (because there
was a write hit) and the indexing table entry will not change
(because it will still point to the new data).

V. I MPLEMENTATION ENVIRONMENT

We implemented the proposed hardware solution on an XUP
platform containing a Virtex II Pro FPGA with two PowerPC
(PPC) 405 cores, although only one was used. The PPC
running at 100 MHz has an internal cache (a 16 Kbytes, two-
way associative). As the proposed solution operate together
with a cache, we implemented our own cache in order to have
control/access over it, and so we disabled the PPC internal
cache. Further details on the FPGA chip is given below.

Two main buses are used to connect the PPC to peripherals:
the Peripheral Local Bus (PLB) bus and the On-Chip Memory
(OCM) bus. The PLB is used to connect the FPGA user
logic and high speed peripherals to the PPC. It has a hand-
shaking protocol that, obviously becomes less efficient when
the number of peripherals increase. The main memory is
normally connected on this bus. The OCM bus is normally
used to connect the FPGA Block RAMs to the PPC and it is
constituted by a data side and an instruction side.

The data side of the OCM bus has an access time equivalent
to a cache access [12], so we migrate the memory hierarchy
to this bus. This implies disabling the internal cache of the
PPC and implement a cache and a main memory controller on
the data side of the OCM bus. Figure 3 depicts the described
system. The interface that the data side OCM bus provides
[13] has 22 bits address bus (bits 0 to 7 and 30 to 31 are
reserved by the processor), 32 bits of separate read and write
data bus and 4 bits of byte write bus. The byte write bus is

Fig. 4. Waveform of the softwarememcpyfor one copy of a cache-line

TABLE II

ESTIMATION OF THE RESOURCES USED TO IMPLEMENT THE CACHE AND

memcpyHARDWARE

Total Used in Used in memcpy
Available Cache Hardware

Slices 13696 658 (4%) 4507 (32%)
Flip-Flops 27392 352 (1%) 1157 (4%)

LUTs 27392 1162 (4%) 7126 (26%)
IOBs 556 164 (29%) 108 (19%)

BRAMs 136 34 (25%) 99 (72%)
Gclk 16 2 (12%) 2 (12%)

used to identify whether it is a read or a write, and, if it is a
write, of how many bytes.

A. Cache andmemcpyimplementation

We implemented a 32 Kbytes direct-mapped write-through
cache with 32 bytes cache-line. This implies that, from the
22 bits of the address, 9 bits are for the tag part of the
address, 10 bits for the index and 3 bits for the offset. The
cache and thememcpyhardware used 37 RAM (Random Ad-
dressable Memory) memory arrays [14] and 1 CAM (Content
Addressable Memory) memory array [15], both developed by
LogiCORE. Table II presents the estimation of the percentage
of FPGA resources needed to implement the cache and the
memcpyhardware. The RAM memory arrays read or write data
in one clock cycle, while the CAM memory array provides
data in one clock cycle for a read and it takes two clock
cycles for a write. As the CAM is on the critical path of
the memcpyhardware, the performance of a copy of a cache-
line is bounded to the write time of this memory. Thus, our
solution can perform a copy of one cache-line in two clock
cycles.

The PPC is expecting to have the requested data available
on the read data bus on the second clock cycle. When the
PPC reads the data that was previouslymemcpy, it needs to
wait one clock cycle for the indexing table and the normal one
clock cycle for the cache to provide the data. However, PPC
only expects data on the OCM bus after two clock cycles, so
even if the data is available before, it is not used. The latency
that a indexing table for thememcpytakes is, then, hidden on
the latency of the PPC itself.

In order to perform amemcpyin hardware, thememcpy
function in the program has to substituted by:

src = (int *)0xa1400004;
*src = // tag and index part of the src address

dst = (int *)0xa1400008;
*dst = // tag and index part of the dst address

size = (int *)0xa140000c;
*size = // number of cache-lines to copy

start = (int *)0xa1400000;
*start = 0x1; // start the hardware memcpy

B. memcpyin software

The XUP platform provides a PPC compiler, however the
memcpy function implemented by this compiler does not
provide any optimization for a cache-line copy. Comparing
a hardware implementation ofmemcpywith such a software
implementation is unfair.

One optimized implementation of this function is found in
the Linux kernel for PPC. This optimizedmemcpyfunction
is hand-written, in assembly, and it includes cache manage-
ment instructions. As we implemented our own cache, it was
necessary to change this optimized implementation in order to
suite our system. All the optimizations for word or cache-line
copies were kept.

The optimized software implementation of thememcpyis
32% faster than the default implementation. The software
implementation ofmemcpyreferred to in this paper is the
modified Linux implementation.

VI. RESULTS AND COMPARISON

We implemented the hardwarememcpyindexing table in
VHDL. We used the ModelSim XE-III [16], a HDL simulation
environment, that enables to verify the HDL source code and
functional and timing models of the designs. Both the software
implementation ofmemcpyand the hardware unit are analyzed
using this tool.

For the software implementation ofmemcpy, there is a
period to calculate if the addresses overlap and if there are
bytes or words to perform amemcpyon. This time is 74
clock cycles and the total time to perform amemcpyof one
cache-line in software is 143 clock cycles (Figure 4 depicts
the waveform of the software version ofmemcpyfor a copy
of one cache-line). For amemcpyof five cache-lines (typical
sizes formemcpy, according to [1] and [4], are between 128
and 200 bytes, or 4 to 6 cache-lines, in our case) the software
implementation takes 419 clock cycles. For the hardware

Fig. 5. Waveform of the hardwarememcpyfor a copy of five cache-lines

TABLE III

PERFORMANCE OF THE HARDWARE AND SOFTWAREmemcpy

1 Cache- 5 Cache- 1024 Cache-
line Copy lines Copies lines Copies

SW memcpy 143 clk 419 clk 70730 clk
HW memcpy 30 clk 38 clk 2076 clk

(79%) (91%) (97%)

implementation, there is also a setup period of transferring
the src anddst addresses and thesizeto the hardware unit of
28 clock cycles. On a copy of one cache-line the unit takes
2 clock cycles and it takes 10 clock cycles to perform the
copy of the five cache-lines (Figure 5 depicts the waveform
of the hardware unit performing amemcpyof five cache-
lines). Consequently, on a copy of one cache-line, our solution
performs 79% better than the software implementation. On
the copy of five cache-lines the benefit is of 91%. Table III
presents the number of clock cycles and percentage that a copy
of 1, 5 and 1024 cache-lines take in software and in hardware.
Generalizing, amemcpyperformed in hardware takes 28 clock
cycles of setup time plus 2 clock cycles per cache-line.

On a read of both the copy or the original data, the PPC will
have the data available in 2 clock cycles. On a write, the data
will be updated in the cache (for a write to the original data in
one clock cycle and, for a write to a copy, it will take one clock
cycle to invalidate the line, plus the time needed to copy the
data to the main memory). Figure 6 depicts the performance
of the software and hardware implementation ofmemcpyfor
different number of cache-lines, represented in bytes instead of
cache-lines. As expected, the benefit of our solution increase
with the size of the copy. We also compared our solution with
AltiVec [6] solution of memcpy. In [6], the authors present
values for a copy of 160 bytes around 586 MB/sec (the picture
presented does not allow to determine exact values, and no
values are referred in the text). As the PPC runs at 750 MHz
in their implementation, this corresponds to around 210 clock
cycles. Our PPC is running at 100 MHz and we can perform a
memcpyin 38 clock cycles, for the same 160 bytes (5 cache-
lines). We can perform approximately 80% better than [6], in
terms of clock cycles, although the throughput we can achieve
is only 421 MB/sec (due to the difference in the PPC clock).

The current benefits and limitations of our solution to

Fig. 6. memcpythroughput

perform memory copies are:

• Benefits:

– No duplication of data in the cache;
– Offloading the processor;
– Each cache-line copy takes 2 clock cycles (excluding

a setup time of 28 clock cycles for the first copy);
– Performing copies with overlapped addresses does

not hamper our solution.

• Current limitations:

– Only support copies of entire cache-lines: the word
and byte copies have to be performed in software;

– Data has to be in cache;
– Maximum size of amemcpyis 1024 bytes.

VII. C ONCLUSIONS

In this paper, we presented a hardware unit that performs
thememcpyoperation using an additional indexing table in an
existing cache organization.

Our proposed solution performs amemcpyof one cache-
line in 30 clock cycles and performsmemcpy’s of cache-lines

sizes varying from 32 bytes to 256 bytes (which are common
values for cache-lines), 79% to 93% faster than an optimized
software implementation, respectively.

The indexing table to the cache also avoids duplicating data
in caches, because the copy (of the original data) is simply
represented by inserting an additional pointer to the original
data that is already present in the cache. This pointer allows the
‘copied’ data to be accessed from the cache. Our solution also
offloads the processor as it is no longer required to perform
the copies word by word (or the largest data unit the utilized
architecture supports).

REFERENCES

[1] P. Mackerras, “Low-Level Optimizations in tehe PowerPC Linux Ker-
nels,” in Proc. of the Linux Symposium, 2003, pp. 321–331.

[2] F. Duarte and S. Wong, “Profiling Bluetooth and Linux on the Xilinx
Virtex-II Pro,” in Proc. IEEE 9th Euromicro Conference on Digital
System Design, 2006.

[3] D. Clark, V. Jacobson, J. Romkey, and H. Salwen, “An Analysis of
TCP Processing Overhead,”IEEE Communications Magazine, pp. 23–
29, June 1989.

[4] J. Kay and J. Pasquale, “Profiling and Reducing Processing Overheads
in TCP/IP,” IEEE/ACM Transactions on Networking, pp. 817–828, Dec.
1996.

[5] P. Wang and Z. Liu, “Operating System Support for High-Performance
Networking, A Survey,”Journal of China Universities of Posts and
Telecommunications, pp. 32–42, Sept. 2004.

[6] “Enhanced TCP/IP Performance with AltiVec,”
http://www.freescale.com/AltiVec.

[7] H. Tezuka, F.O’Carroll, A. Hori, and Y. Ishikawa, “Pin-down Cache:
A Virtual Memory Management Technique for Zero-copy Communica-
tion,” in Proc.IEEE 12th International Parallel Processing Symposium,
1998, pp. 308–315.

[8] F. O’Carroll, H. Tezuka, A. Hori, and Y. Ishikawa, “The design and
implementation of zero copy MPI using commodity hardware with a
high performance network,” inProc. ACM 12th International Conference
on Supercomputing, 1998, pp. 243–250.

[9] L. Prylli and B. Tourancheau, “BIP: A New Protocol Designed for
High Performance Networking on Myrinet,” inProc. International
Parallel Processing Symposium Workshop on Personal Computer Based
Networks of Workstations, 1998.

[10] J. Nieplocha and B. Carpenter, “ARMCI: A Portable Remote Memory
Copy Library for Distributed Array Libraries and Compiler Run-Time
Systems,”Lecture Notes in Computer Science, pp. 533–546, Apr. 1999.

[11] “Xilinx University Program,”
http://www.xilinx.com/univ/.

[12] “PLB vs. OCM Comparison Using the Packet Processor Software,”
http://www.xilinx.com/bvdocs/appnotes/xapp644.pdf.

[13] “Data Side OCM Bus v1.0 (v2.00a),”
http://www.xilinx.com/bvdocs/ipcenter/datasheet/ dsocm.pdf.

[14] “Single-Port Block Memory Core v6.2,”
http://www.xilinx.com/ipcenter/catalog/logicore/docs/
sp block mem.pdf.

[15] “Content Addressable Memory v5.1,”
http://www.xilinx.com/ipcenter/catalog/logicore/docs/ cam.pdf.

[16] “ModelSimTMXilinx Edition III,”
http://www.xilinx.com/ise/verification/ mxedetails.html.

