A Hardware CachenemcpyAccelerator

Stephan Wong, Filipa Duarte, and Stamatis Vassiliadis

Computer Engineering, Delft University of Technology
Mekelweg 4, 2628 CD Delft, The Netherlands
{J.S.S.M.Wong, F.Duarte, S.Vassiliadis }@ewi.tudelft.nl

Abstract—In this paper, we present a hardware solution to void *memcpy(void *dest,void *src,
perform the commonly used memcpyoperation with the goal to size_t size)
reduce the time to perform the actual memory copies. This is {
accomplished by taking advantage of the presence of a cache char *tmp=(char *)dest, *s=(char *)src;
that is found next to many current-day (embedded) processors.
Additionally, the currently presented solution assumes that the
to be copied data is already in the cache and is aligned by
the cache-line size. We present the concept and implementation retyrn dest:
details of the proposed hardware module and the system used}
to experiment both our hardware and an optimized software
implementation of the memcpy function. Experimental results It is worth noting that there has been extensive research on

show that the proposed hardware solution is at least 79% faster how to optimize this function in software. The most utilized

than an optimized hand-coded software solution. solution is to hand-write this function in assembly and link it

to the operating system instead of compiling the C code. This

will result in more efficient code, however the optimizations
Currently, main memory accesses remain a performange only valid for the selected system.

bottleneck in any computing system. Many solutions to over- |n this paper, we present a hardware unit that performs

come this bottleneck have been proposed in literature e memcpyoperation using an additional indexing table in

simply reducing the amount of main memory accesses (B} existing cache organization. Our proposed solution has the
introducing small and fast caches, changing data structurggiiowing advantages:

modifying algorithms, etc.). Such solutions are the result of

many profiling investigations of the targeted applications in *
guestion that determine the number and type of main memory
accesses. Profiling information has been gathered by authors
providing valuable insight into how a program behaves, e.g.,
with regard to the main memory, by identifying the most
compute-intensive or data-intensive parts of the program.

In [1], the authors presented benchmarking and profiling
results of the Linux kernel for 32-bit and 64-bit PowerPCs
(PPCs). The authors conclude that optimizations are necessary
to decrease the overhead of operations related to (1) mainte-
nance of cache consistency with the main memory, (2) main®
memory copying, and (3) page table entries. In [2], the authors
present profiling results of the Bluetooth protocol working
under the Linux operating system. In this work, it is concluded The proposed hardware solution is different from a Direct
that the main memory copies are the most time-consumifgmory Access (DMA) controller that simply offloads the
operations. Both [1] and [2] provide profiling informationProcessor from performing the necessary memory operations.
identifying an operating system functionemcpyas having |-€- the memory operations are still performed, but just not
a major impact on the performance of the system. by the processor that can now do other useful work.

Thememcpyfunction is responsible for copying data of size The paper is organized as follows. In Section I, we present

sizefrom memory addressrc to memory addresdst The C related work. In Section Ill, we introduce the cache organi-
code is presented below: zation that is used for our evaluation and in Section IV we

present the concept of the proposed hardware solution. In
Section V, we discuss the platform used for the implemen-

while (size--)
tmp++ = *s++

I. INTRODUCTION

it performs amemcpyof one cache-line in 30 clock cy-
cles and performsnemcpig of cache-lines sizes varying
from 32 bytes to 256 bytes (which are common values
for cache-lines), 79% to 93% faster than an optimized
software implementation, respectively.

« it avoids duplicating data in caches, because the copy
(of the original data) is simply represented by inserting
an additional pointer to the original data that is already
present in the cache. This pointer allows the ‘copied’ data
to be accessed from the cache.

it offloads the processor as it is no longer required to
perform the copies word by word (or the largest data
unit the utilized architecture supports).

/**

* Copy one area of memory to another

* @dst: Where to copy to (copy) tation of the memory copy hardware. The details of both the
* @src: Where to copy from (original data) cache, thenemcpyhardware and software are also presented.
* @size: Size of the area to copy . .

k) In Section VI, we present the experimental results for both

the software and hardware implementations of themcpy

utilizing the same processor and compare the results. Finally,

in Section VII, we draw some conclusions. Address 4
Il. RELATED WORK l l l
i . Address
In many network related applicationsiemcpyamong oth- Cache Cache Cache Buffers o
ers) is considered to be an time-consuming operation. Seve valid Tag bata =
. CPU Memory Memory Memories €
solutions (both software and hardware) have been proposeq S — 2
. . . . ate Directon >
reduce the impact ofmemcpy In this section, we describe ’ pata O
the related work presenting, first, profiling information o coache Rl
some of those network related applications and, second, < Data
present some of the solutions proposed to reduce the imp v

of the memcpy We also highlight the difference between our
approach and existing solutions.

In [3] and [4], the authors present profiling results of the
TCP/IP and UDP/IP protocols. They conclude that the main
performance bottlenecks in network-related functionalities are

the checksum calculations and data movements. In particug{10] introduced a new portable communication library, that
in [4] the authors present that approximately 70% of the gkovides one-sided communication capabilities for distributed
processing time of the TCP/IP or UDP/IP protocol is dugrray libraries, and supports remote memory copy, accumulate,
to data movement operations. In this paper, the authors aifl synchronization operations optimized for non-contiguous
present network traffic traces. They show that 86% of the UQRta transfers.
traffic and 99% of the TCP traffic in a LAN (Local Area A solution not considered until now (to our best knowledge)
Network) is less than 200 bytes and that 99.7% of the traffis to develop a dedicated hardware unit to handle data move-
in a WAN (Wide Area Network) is less than 500 bytes. ment by exploiting the presence of a cache that is closely
In [5], the authors present a survey of the solutions proposatiached to many current-day processors. Our solution does
in literature to alleviate the network subsystem bottlenecksot require the usage of a DMA controller nor a vector unit,
Those solutions include (1) checksum optimizations (merge it is more flexible than the solutions proposed by [5] and
copying and checksum, checksum offloading and checksy®}, and it can be applied to a majority of the computing
elimination), (2) using a DMA instead of Programmable Inpuystems. Assumptions made in the currently proposed solution
Output (PIO), and (3) avoiding cross domain data transfesise guided by the the profiling information provided in [4]. In
through ‘zero-copying’ schemes. order to implement such a hardware unit, we chose the Virtex
Hardware optimizations, besides DMA support, includd Pro FPGA (Field Programmable Gate Array) as it allows
the use of vector processors. Specifically for the PPC, tfa fast prototyping. The platform Xilinx University Program
Velocity Engine (also known as AltiVec [6]) expands théXUP) [11] design provides the necessary functionality to
current PPC architecture through addition of a 128-bit vectprove the concept.
execution unit. This unit operates concurrently with existing
integer and floating-point units. This approach expands the o .)]
processors capabilities to concurrently address high-bandwidtH* cache is divided in two main parts: a cache directory
data processing (such as streaming video) and the algorith@ftd cache data-memories. The cache directory can be seen
intensive computations. as a list of the main memory addresses of the data stored in
Several software solutions have been proposed, basicdll§ corresponding location of the cache data-memory (which
variations on the ‘zero-coping’ scheme. In [7], the authof§ the one that contains the data). In our implementation, the
propose a ‘zero-copy’ message transfer with a pin-down c&ache directory is constituted by Mo different memories: a
che technique, which avoid memory copies between the u§&¢he tag-memory and a cache valid-memory. Figure 1 depicts
specified memory area and a communication buffer area. AR€ referred cache organization. The address provided by the
other ‘zero-copy’ technique is presented by the same authBf9cessor is divided into 3 parts: the index, the tag, and the
in [8]. In this paper, the authors design an implementati set. Theindex is used to access the cache directory and

of the message passing interface (MPI) using a ‘zero-cogrlige cache data-m_emone_:s. Tteg is written to the cache tag-
message transfer primitive supported by a lower commuiRemory (on a write) or is used to compare with a tag already

cation layer to realize a high performance communicatidﬂ the cache tag-memory (on a read). If the tag supplied by
library. Software solutions for optimizing memory copie§ € (_:ache tag-memory is the same as_the_tag of _the address
have also been presented in [9]. The authors designed é?ﬁa"'ded _by the processor and the valid b't supplled by the
implemented new protocols of transmission targeted to paraﬁ:@lChe valid-memory is set, a cache read hit is registered. On a

computing that squeeze the most out of the high speed Myri he riadl_h't’ Fhe data Slépphgdbby tZe c?rghetgata-mer?ones
network, without wasting time in system calls or memor e cache-line) is accessed and, based obfisef the correc

copies, giving all the speed to the applications. The authd grd is accessed. On a write hit, besides the tag, the index and

Fig. 1. Typical cache organization.

IIl. CACHE ORGANIZATION

the offset, also a byte write signal is used. This signal identifies | . Tag = Index = Offset =

which byte, within the selected word, is to be written. from addrbus | Tag Index Memepy HW Offset

In the remainder of this section, we present some implemen-
tation details of the cache organization pertaining the chosen
experimentation platform (discussed in Section V-A).

On a read request, if the data is in cache (read hit), the
processor will have the data available on the bus on the next
clock cycle. If the data is not in cache (read miss) the processor
has to stall until data is provided by the main memory (the time
to have the data provided by the main memory is depended
on the memory technology and implementation).

On a write request, both the cache and the main memory Legend Data Cache
will be updated, if the data is in the cache (write hit); or only
update the main memory, if the data is not in the cache (write
miss). In our design, this will not trigger a load of a cache-line.
The cache-line load will only be triggered when a read miss
happens. This implementation is a standard implementation of ¢
a write-through cache.

If a read request is issued after a write and the requestagl 2. Read request to both the indexing table and cache oftracpy
data is not in the cache, the processor stalls until the writ@dware unit
instruction is finished and the read data is available to be
provided to the cache and to the processor.

Val|Index | Tag | Index + Tag
Bit| src | dst src

A 4

Traditional hw

Memcpy hw

A 4

val| Tag [] Jodta [[]

to data bus

memcpyis extensively used on network processing and 86%
IV. memcpyHARDWARE ORGANIZATION to 99% of the packets are less than 200 bytes [4], we can
safely assume, from [1], [2], and [4], that a typical value of

Our hardware solution of thememcpyoperation stems from) AN
the simple observation that in many cases the data to be cop‘"ile'@em(:py'S between 128 10 200 bytes. This implies 4 to 6

(of size sizd from a source addressre) to a destination cache-lines when assuming an cache-line size of 32 bytes.

address dsi) is already present inside the cache. Performig%If tr|1_e a?jdrfhssesi_ to perzorm rabem(;:pyon_ are ﬂnOt cachg-th
the memcpyoperation in a traditional manner (utilizing load '€ aligned, the alignment can bé done in softwareé an e

and stores) would pollute the cache by either inserting daﬁégned addresses provided to the hardwgre_. The software
already present in the cache or overwriting data that may o has .to perform the copy of the remaining words and
needed later on. The proposed solution has the advantag@¥fs: This software part will have the same performance as
not performing the actual data movements (resulting in thae Software part that performs bytes and words copy of the
mentioned disadvantages) and of being independent of fftware implementation ahemcpy(we will address the the

cache organization. Instead, the proposed solution perform§°z§tware implementation in Section V-B).
memcpyutilizing an additional indexing table inside the cache. F19ure 2 depicts the read process, for both the copy and the

The table is accessed by the index part of dseaddress and original da’Fa, highlighting the indexing table and the necessary
contains the tag and the index parts of #re address, the control logic. On a read request, the index part of theladdre_:ss
tag part of thedst address and a bit stating that it is a vali®Provided by the processor will be used to access the indexing
entry. Each indexing table entry is a pointer to an entire cacH@ble:

line. Summarizing, thenemcpyoperation can now be simply < If the valid bit in the corresponded entry of the table is
replaced by introducing a new index table to the cache data- Set (the requested data is a copy) and:

memories by assuming that the data to be copied is already - If the tag part of the address provided by the pro-
present in the cache and that the data is already aligned to cessor and the tag stored on the table are the same
a cache-line size. Finally, in order to maintain consistency in (a read hit on the indexing table), the output will
the main memory, any write operation to the data at either the give the index part of the correspondiags address,
source or destination locations (stored over multiple cache- which is used to access the cache.
lines) will result in the invalidation of the corresponding cache- — If the tag part of the address provided by the proces-
line and writing the cache-line back to the main memory. Of sor and the tag stored on the table are not the same (a
course, the cache-line is updated with the new data of the write read miss on the indexing table) then the index part
operation before writing it back to the main memory. of the address provided by the processor is used to
For the moment, our solution assumes copies of only entire access the cache (and it follows the cache accessing
cache-lines and data is resident in the cache. However, accord- procedure described in Section Il1).

ing to [2], the size of anmemcpyoperation in the Bluetooth
standard under Linux is typically 339 bytes and according to
[1], 98% of the memcpycalls are less than 128 bytes. As

« If the valid bit in the corresponded entry of the index table
is not set (the requested data is not a copy), then the index
part of the address provided by the processor is used

TABLE |
HIT/MISS COMBINATION IN THE CACHE AND INDEXING TABLE =1 g
o o Data
OCM| 3 o Cache
Indexing Table | Cache Comments PPC Data | ® 2
hit hit Original data in cache and = OCM 2
copy in the indexing table DDR Chntrl
hit miss Cannot occur y
miss hit Original data in cache and no Instructions
copy in the indexing table
miss miss No original data in cache - PLB |
A

External
h 4 DDR

to access the cache (and it follows the cache accessing High Speed
procedure described in Section IlI). FPGA Peripherals

Table | summarizes the different cases of hits/misses on the
indexing table and on the cache. It is worth mentioning that
the case hit on the indexing table and miss on the cache cannot
occur because this would imply that the requested data is not
in the cache. For this to happen, data had to be changed, due

to a write hit or a load overwriting the current content of the . . .
A typical problem on the software implementation of a

reqqesteq cache “ne'. On .SUCh cases, the .correspondent IIn?nce)rr]ncp}tunction is to ensure that therc and thedstaddresses
the indexing table is invalidated (as explained below). As th ; L
0 not overlap. However, this problem does not exist in our

copy may be considered as a pointer to the original data, if tsglution. If the addresses overlap, they are both present in the

original data_is changed (written to) the correspo_rldem Copr},dexing table and in the cache, which means they are both
has to be written to memory and the table entry invalidated, inting to the copy and the oriéinal data. On a write to the

The same situation happg ns vyhen the copy ltself is Ch.angg\aerlapped address, the cache will be updated (because there
For a write request, the indexing table is accessed using the

index part of the address provided by the processor. was a write hit) and the indexing table entry will not change

e . (because it will still point to the new data).
« If the valid bit is set (to write to a copy) and:

Fig. 3. System used to experiment tmemcpyhardware

- If the tag part Of the addreSS prOVided by the pro— V |MPLEMENTAT|ON ENVlRONMENT
cessor is the same as the tag stored on the entry of
the indexing table (a write hit): We implemented the proposed hardware solution on an XUP

Jlatform containing a Virtex Il Pro FPGA with two PowerPC
access the cache: (PPC) 405 cores, although only one was used. The PPC
2) Write the data given by the cache to addreddnning at 100 MHz has an internal cache (a 16 Kbytes, two-
provided by the processor in the main memoryV& associative)._ As the proposed solution qperate together
3) Invalidate the indexing table entry, setting th&vith a cache, we implemented our own cache in order to have
valid bit to zero: control/access over it, and so we disabled the PPC internal
_ If the tag part of the address provided by the proqache. Further details on the FPGA chip is given below.
cessor is not the same as the tag stored on the enr WO main buses are used to connect the PPC to _peripherals:
of the indexing table (a write miss): the Peripheral Local Bus (PLB) bus and the On-Chip Memory
. OCM) bus. The PLB is used to connect the FPGA user
1) Use the address provided by the proc.essor gic and high speed peripherals to the PPC. It has a hand-
2) 3\%?853;?: tgatchheeczrl?wéhaen??gl mmeaﬁogémory shaking protocol that, obviously becomes less efficient when

. . o 'the number of peripherals increase. The main memory is
3) SeaTCh the indexing table to de if the ad.dr.esﬁormally connected on this bus. The OCM bus is normally
prOV|.d_ec_i _by the processor points t(_) an Or'g'nalljsed to connect the FPGA Block RAMs to the PPC and it is
df_ita’ _'f _'t is, set the valid bit to zero;) constituted by a data side and an instruction side.
« If the valid bit is not set, then the address provided by The gata side of the OCM bus has an access time equivalent
the processor is not on the indexing table (not a write 1§ 5 cache access [12], so we migrate the memory hierarchy

1) Use the index given by the indexing table t

a copy): . to this bus. This implies disabling the internal cache of the
1) Use the address provided by the processor to accegsC and implement a cache and a main memory controller on
the cache and the main memory; the data side of the OCM bus. Figure 3 depicts the described

2) Write data to the cache and the main memory; system. The interface that the data side OCM bus provides

3) Search the indexing table to find if the addre§a3] has 22 bits address bus (bits 0 to 7 and 30 to 31 are
provided by the processor points to an original dataeserved by the processor), 32 bits of separate read and write
if it is, set the valid bit to zero; data bus and 4 bits of byte write bus. The byte write bus is

cLUUrrryurtryuuriyurryrrriururyruuiyuuiry i vy ru Uy Uiy Ui Uity Ut

Enable 1 I L] | [LI] -
Address Bus 2001 = 200007 | e e i R] =] 21E008 Joewn [21402C [PTEPOE | el el o PR 1 = 1] [z1E00p Joewe T2AEQOF
Byte Write Bus TO0 7777 Jo00 777 OOO0 [{0000 [T foo00 [T =
Wiite Data Bus DODPO0Z0 AAAAAAAR ememe [— D0ODDDDOD JEEEEEEEE [o Jemzgez

Fead Data Bus oo AAAARAAR —{— JDOODODDD JEEEEEOEE =T ¥
Cache State Tnit - fimit fread Rt {int f~~ Jinit Jrerie_mi== T- 1 Jimit Tread it Jinit [~} finit [wiite_miss [init

1st memcpy clk 69th memcpy clk

Fig. 4. Waveform of the softwarmemcpyfor one copy of a cache-line

TABLE I src = (int *)0xal400004;
ESTIMATION OF THE RESOURCES USED TO IMPLEMENT THE CACHE AND 4g = tag and index part of the src address
memcpyHARDWARE
dst = (int *)0xal400008;
*dst = // tag and index part of the dst address
Total Used in Used in memcpy
Available Cache Hardware size = (int *)0xa140000c;
Slices 13696 | 658 (4%) 4507 (32%) *size = // number of cache-lines to copy
Flip-Flops || 27392 | 352 (1%) 1157 (4%)
LUTs 27392 | 1162 (4%) 7126 (26%) start = (int *)0xa1400000;
IOBs 556 164 (29%) 108 (19%) *start = O0x1; // start the hardware memcpy
BRAMs 136 34 (25%) 99 (72%)
Gelk 16 2 (12%) 2 (12%) B. memcpyin software

The XUP platform provides a PPC compiler, however the
memcpyfunction implemented by this compiler does not
used to identify whether it is a read or a write, and, if it is @rovide any optimization for a cache-line copy. Comparing
write, of how many bytes. a hardware implementation efiemcpywith such a software
,) implementation is unfair.
A. Cache andnemcpyimplementation One optimized implementation of this function is found in
We implemented a 32 Kbytes direct-mapped write-throughe Linux kernel for PPC. This optimizeshemcpyfunction
cache with 32 bytes cache-line. This implies that, from the hand-written, in assembly, and it includes cache manage-
22 bits of the address, 9 bits are for the tag part of thgent instructions. As we implemented our own cache, it was
address, 10 bits for the index and 3 bits for the offset. Thecessary to change this optimized implementation in order to
cache and thenemcpyhardware used 37 RAM (Random Ad-suite our system. All the optimizations for word or cache-line
dressable Memory) memory arrays [14] and 1 CAM (Contegbpies were kept.
Addressable Memory) memory array [15], both developed by The optimized software implementation of theemcpyis
LogiCORE. Table Il presents the estimation of the percentaged, faster than the default implementation. The software

of FPGA resources needed to implement the cache and fhglementation ofmemcpyreferred to in this paper is the
memcpyhardware. The RAM memory arrays read or write datodified Linux implementation.

in one clock cycle, while the CAM memory array provides

data in one clock cycle for a read and it takes two clock VI. RESULTS AND COMPARISON

cycles for a write. As the CAM is on the critical path of We implemented the hardwameemcpyindexing table in

the memcpyhardware, the performance of a copy of a cach&HDL. We used the ModelSim XE-IIl [16], a HDL simulation

line is bounded to the write time of this memory. Thus, ownvironment, that enables to verify the HDL source code and

solution can perform a copy of one cache-line in two clockinctional and timing models of the designs. Both the software

cycles. implementation omemcpyand the hardware unit are analyzed
The PPC is expecting to have the requested data availab$ing this tool.

on the read data bus on the second clock cycle. When thd-or the software implementation ohemcpy there is a

PPC reads the data that was previousigmcpy it needs to period to calculate if the addresses overlap and if there are

wait one clock cycle for the indexing table and the normal origytes or words to perform anemcpyon. This time is 74

clock cycle for the cache to provide the data. However, PRibck cycles and the total time to performn@emcpyof one

only expects data on the OCM bus after two clock cycles, sache-line in software is 143 clock cycles (Figure 4 depicts

even if the data is available before, it is not used. The latenttye waveform of the software version nfemcpyfor a copy

that a indexing table for thmemcpytakes is, then, hidden onof one cache-line). For memcpyof five cache-lines (typical

the latency of the PPC itself. sizes formemcpy according to [1] and [4], are between 128
In order to perform amemcpyin hardware, thememcpy and 200 bytes, or 4 to 6 cache-lines, in our case) the software

function in the program has to substituted by: implementation takes 419 clock cycles. For the hardware

ok L]

Enable

[I B

[) s s I o

Address Bus 3FGB3E

|ZTE00E

SFCEA6

Byte Wiite Bus TOOQ

[1117

Dooon

Wiite Data Bus AT6F8020

[00242506

ATE7E02C

Read Data Bus 0000000

N. Cachelines T

3

7!

Src Address Bus TODQ0

| EEle]

42505 42506

42807

42808

42509 poooo

1st memcpy clk

10th memepy clk

Fig. 5. Waveform of the hardwamaemcpyfor a copy of five cache-lines

TABLE IIl
PERFORMANCE OF THE HARDWARE AND SOFTWARENEMcpy memcpy
o Software ¢ Hardware
1 Cache- 5 Cache- 1024 Cache- memcpy memcpy
line Copy | lines Copies | lines Copies
SWmemcpy|| 143 ck 419 clk 70730 clk LRy
HW memcpy|| 30 clk 38 clk 2076 clk 1100 PO =
(79%) (91%) (97%) 1000 o
£ 900 SIS ad
= 500 It
o o
. . . . =] /
implementation, there is also a setup period of transferril g 600 -
the src anddst addresses and trszeto the hardware unit of o so0 "
28 clock cycles. On a copy of one cache-line the unit tak % 400 ¥
2 clock cycles and it takes 10 clock cycles to perform th = 300 7
copy of the five cache-lines (Figure 5 depicts the wavefor 200
of the hardware unit performing ememcpyof five cache- 100

lines). Consequently, on a copy of one cache-line, our soluti
performs 79% better than the software implementation. (o n
the copy of five cache-lines the benefit is of 91%. Table |
presents the number of clock cycles and percentage that a cupy
of 1, 5 and 1024 cache-lines take in software and in hardware.
Generalizing, anemcpyperformed in hardware takes 28 clock
cycles of setup time plus 2 clock cycles per cache-line.

On aread of both the copy or the original data, the PPC wikerform memory copies are:
have the data available in 2 clock cycles. On a write, the data, ganefits:
will be updated in the cache (for a write to the original data in
one clock cycle and, for a write to a copy, it will take one clock
cycle to invalidate the line, plus the time needed to copy the
data to the main memory). Figure 6 depicts the performance
of the software and hardware implementationneémcpyfor
different number of cache-lines, represented in bytes instead of
cache-lines. As expected, the benefit of our solution increase
with the size of the copy. We also compared our solution with ®
AltiVec [6] solution of memcpy In [6], the authors present
values for a copy of 160 bytes around 586 MB/sec (the picture
presented does not allow to determine exact values, and no
values are referred in the text). As the PPC runs at 750 MHz
in their implementation, this corresponds to around 210 clock
cycles. Our PPC is running at 100 MHz and we can perform a
memcpyin 38 clock cycles, for the same 160 bytes (5 cache- In this paper, we presented a hardware unit that performs
lines). We can perform approximately 80% better than [6], ifie memcpyoperation using an additional indexing table in an
terms of clock cycles, although the throughput we can achiegxisting cache organization.
is only 421 MB/sec (due to the difference in the PPC clock). Our proposed solution performs memcpyof one cache-

The current benefits and limitations of our solution tdine in 30 clock cycles and performmaemcpig of cache-lines

Bytes copied

Fig. 6. memcpythroughput

— No duplication of data in the cache;
Offloading the processor;
Each cache-line copy takes 2 clock cycles (excluding
a setup time of 28 clock cycles for the first copy);
Performing copies with overlapped addresses does
not hamper our solution.
Current limitations:
— Only support copies of entire cache-lines: the word
and byte copies have to be performed in software;
— Data has to be in cache;
— Maximum size of amemcpyis 1024 bytes.

VII. CONCLUSIONS

sizes varying from 32 bytes to 256 bytes (which are commors]
values for cache-lines), 79% to 93% faster than an optimize[g]
software implementation, respectively.

The indexing table to the cache also avoids duplicating data
in caches, because the copy (of the original data) is simpl
represented by inserting an additional pointer to the origina{]
data that is already present in the cache. This pointer allows the
‘copied’ data to be accessed from the cache. Our solution alilo
offloads the processor as it is no longer required to perfor
the copies word by word (or the largest data unit the utilized

architecture supports). 0]

REFERENCES

[1] P. Mackerras, “Low-Level Optimizations in tehe PowerPC Linux Ker{11]
nels,” in Proc. of the Linux Symposiyr@003, pp. 321-331.
[2] F. Duarte and S. Wong, “Profiling Bluetooth and Linux on the Xilinx[12]
Virtex-1l Pro,” in Proc. IEEE 9th Euromicro Conference on Digital
System Desigr2006. [13]
D. Clark, V. Jacobson, J. Romkey, and H. Salwen, “An Analysis of
TCP Processing OverheadEEE Communications Magazingp. 23— [14]
29, June 1989.
[4] J. Kay and J. Pasquale, “Profiling and Reducing Processing Overheads
in TCP/IP,” IEEE/ACM Transactions on Networkingp. 817-828, Dec. [15]
1996.
P. Wang and Z. Liu, “Operating System Support for High-Performandé6]
Networking, A Survey,”Journal of China Universities of Posts and
Telecommunicationgpp. 32-42, Sept. 2004.

(3]

(5]

“Enhanced TCP/IP Performance with AltiVec,”
http://www.freescale.com/AltiVec.

H. Tezuka, F.O'Carroll, A. Hori, and Y. Ishikawa, “Pin-down Cache:
A Virtual Memory Management Technique for Zero-copy Communica-
tion,” in Proc.IEEE 12th International Parallel Processing Symposium
1998, pp. 308-315.

F. O'Carroll, H. Tezuka, A. Hori, and Y. Ishikawa, “The design and
implementation of zero copy MPI using commodity hardware with a
high performance network,” iRroc. ACM 12th International Conference
on Supercomputingl998, pp. 243-250.

] L. Prylli and B. Tourancheau, “BIP: A New Protocol Designed for

High Performance Networking on Myrinet,” ifProc. International
Parallel Processing Symposium Workshop on Personal Computer Based
Networks of Workstations.998.

J. Nieplocha and B. Carpenter, “ARMCI: A Portable Remote Memory
Copy Library for Distributed Array Libraries and Compiler Run-Time
Systems,’Lecture Notes in Computer Sciengp. 533-546, Apr. 1999.
“Xilinx University Program,”

http://www.xilinx.com/univ/.

“PLB vs. OCM Comparison Using the Packet Processor Software,”
http://www.xilinx.com/bvdocs/appnotes/xapp644.pdf.

“Data Side OCM Bus v1.0 (v2.00a),”
http://www.xilinx.com/bvdocs/ipcenter/datheet/ dsocm.pdf.
“Single-Port Block Memory Core v6.2,”
http://www.xilinx.com/ipcenter/catalog/logicore/docs/
sp.block-mem.pdf.

“Content Addressable Memory v5.1,”
http://lwww.xilinx.com/ipcenter/catalog/logicore/docs/ cam.pdf.
“ModelSim™ Xilinx Edition 111"

http://www.xilinx.com/ise/verification/ mxeletails.html.

