
Design of a Web Switch in a Reconfigurable Platform
Christoforos Kachris, Stamatis Vassiliadis

Department of Electrical Engineering,
Mathematics and Computer Science

Delft University of Technology
The Netherlands

{ kachris, stamatis } @ce.et.tudelft.nl

ABSTRACT
The increase of the web traffic has created the need for web
switches that are able to balance the traffic to the server
farms based on their contents (e.g. layer 7 switching). In
this paper we present a web switch implemented in a multi-
processor reconfigurable platform augmented with
hardware co-processors. The system supports the TCP
splicing scheme to accelerate the routing of the packets by
forwarding packets at the IP layer after a connection has
been spliced. The processors are alleviated using special
co-processors for the management of the spliced connection
and the URL string parsing. The proposed scheme can
sustain up to 927Mbps throughput for 64KB request file
size consuming less than 1Watt in a Xilinx Virtex4 FPGA.
Hence, the system provides an efficient combination of
processor’s flexibility and ASIC’s performance. Finally,
the system is compared against a network processor-based
and a software content-based switch in terms of
performance, area, and power.

Categories and Subject Descriptors
C.2.1 Network Architecture and Design

General Terms
Performance, Design

Keywords
Reconfigurable logic, web switch

1. INTRODUCTION
As the web network traffic keeps increasing there is the
need for the ISPs and search engines to accommodate
server clusters to face the increased demand. The most
straightforward way to balance such a cluster is to use a
switch that distribute the network workload based on layer

3 and layer 4 information (such as the IP address and the
TCP or UDP port). However, the load balancing based on
these layers is not efficient enough. First of all, the data
must be replicated to each server; hence any change in the
server content need to be updated on every server.
Furthermore, the use of NAT proxies results to same IP
address for a large number of clients. Hence, the use of IP
address to balance the system is not efficient. Moreover, the
network balancing, using layer 3 and layer 4 information,
can not face more sophisticated requirements, such as
content customization (e.g. content based on language or
geographic region). The solution is the switching based on
layer 7 information. Layer 7 load balancing provides 3
major advantages according to Cisco [1]:

• Scalability and acceleration of the application
• Persistent user sessions on a server
• Content customization based on user profile

Layer 7 load balancing based on the URL (Uniform
Resource Locator) string can be performed either by
distributing the data based on the directory domain or based
on the file type (e.g. html, image, video, script). Load
balancing based on the URL can also provide faster web
response (download time) if specialized servers are used for
each application. Furthermore, layer 7 load balancing
provides session persistence. Session persistence can be
used to forward the traffic of one client always to the same
server in which previous data (transactions) are stored.
Session persistence can be based on an HTTP cookie, a
URL string or an SSL session. Finally, content-based
switching can also provide content customization based on
language or geographical region.

Web switches were initially implemented in software
targeting general purpose computers. The main drawback
of using a software web switch for web balancing is the
additional latency that is introduced. After a web switch has
identified the corresponding server, the packets have to
travel through the web switch to change the packet’s header.
The latency is mainly introduced because of the protocol
stack processing. The packets have to travel until the upper
layer where the switch module will process and forward the
data. But after a connection has been established between a
client and a server, the processing requirements are usually
some header modifications. Hence, the TCP splicing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ANCS’06, December 3-5, 2006, San Jose, California, USA.
Copyright 2006 ACM 1-59593-580-0/06/0012...$5.00.

scheme was introduced in 1998 [5]. The TCP splicing is
used to forward the packets at the IP layer (layer 3) instead
of the upper layers, after a connection has been established.
Hence, the latency is reduced significantly and the
sustained throughput is increased.

This paper presents a software/hardware co-designed
content-based (web) switch which has been implemented in
a multi-processor reconfigurable logic platform (Xilinx
Virtex 4 FPGA). The main software part is executed by the
Xilinx’s MicroBlaze 32-bit customized soft-core processors,
while the most demanding functions such as the URL
parsing has been implemented in hardware co-processors.
Furthermore, the system supports TCP splicing. The main
advantage of the web-switch implemented in
reconfigurable logic is two-fold. First of all, the application
is programmed in a customized RISC processor in C
instead of vendor specific assembly language. In addition,
the proposed scheme can be extended with additional
modules that can be used for other operating modes (such
as cookies-based switching, payload-based switching) or
additional payload processing (encryption, compression,
intrusion detection). These operations would be too time-
consuming to be performed by the current network
processors.
The main contribution of this paper is:
• The implementation of a web switch in a multi-

processor reconfigurable platform supporting TCP
splicing

• The proposed Connection Manager and the URL string
parsing co-processors

• The performance, power, and area evaluation and the
comparison against a network processor-based and a
software-based scheme

This paper is organized in the following way. Section 2
presents the related work in terms of content-based
switching. Section 3 presents the organization of the
proposed scheme, the customized processors and the co-
processors. Section 4 presents the evaluation of the system
in terms of performance, power, and area and the
comparison against other schemes. Finally, section 5
presents the conclusions of this work.

2. RELATED WORK
Until now, three schemes have been proposed for the
implementation of a content based switch. A software
approach (using a general purpose processor) provides
great flexibility but has limited performance. A hardware
approach (ASIC) has increased performance but lacks of
flexibility. The most recent scheme is the use of network
processor that combines the flexibility of processors with
the throughput of the ASIC using basic hardware
coprocessors. However, these coprocessors are usually
modules that are used in general packet processing (CRC,
header checksum, etc.) and can not be used for dedicated
functions such as payload processing or URL parsing.

Furthermore, the network processor platforms incorporate
multiple instances of specialized processors that are
programmed using vendor specific language (e.g. the
microcode used by the micro-engines processors in the
Intel’s IXP network processors).

In [8] a content-based switch is presented, that has been
implemented in hardware. The system consists of input and
output controllers to process the data packets, while the
parsing of HTTT packets and URL based routing is
performed by a general purpose processor. This scheme can
support up to 500 ops/sec with 50msec latency but it can
not be extended or modified in the data plane path.

In [2], [3] a content based switch has been proposed
targeting the Intel IXP network processor. The IXP
network processor consists of 8 multi-threaded micro-
engines and each micro-engine is able to support up to 8
threads. The application has been partitioned into 4 micro-
engines. Two of them are used for the input and output
packet processing, one is used for the client’s packet
processing, and the last one for the server’s packet
processing. The proposed system supports also TCP
splicing to accelerated the throughput and reduce the
latency. Furthermore, a similar design implemented in
software (Linux) has been used for comparison. According
to this paper the network processor scheme can support up
to 700Mbps throughput for 1 MByte of requested file size,
while the Linux scheme can support up to 320 Mbps for the
same requested file size. Using 1 Kbyte requested file size
the throughput is 8.2 and 46.6 Mbps for the Linux-based
and the network processor-based scheme, respectively.

In [4], a similar scheme is proposed based on Intel
network processors but in this case the data processing is
performed by the micro-engines while the control
processing is performed by a host processor. Furthermore,
the general purpose Strong ARM is used to control the
micro-engines. This scheme is able to achieve 3.47 Mpps
(Million packet per seconds) using the older IXP 1200
network processor.

In [5], the TCP splicing mechanism is proposed and a
software implementation under the BSD operating system
(BSDI BSD/OS 3.0) is performed targeting a general
purpose processor. The proposed implementation is able to
sustain up to 70Mbps (in 1998) with almost 85% CPU
utilization. The mean forwarding latency was 102 ms while
the latency of a simple forwarding scheme is 92 ms.

In [6], there is one more implementation of the TCP
splicing as a Linux kernel module. In this case, the
switching is performed based on the URL and then the
connection is spliced between the clients and the servers.
The system was based on Fast Ethernet Network Interfaces
(100Mbps) and the URL-aware switch was based on a
Pentium III 555MHz CPU. According to the paper, the
system was able to issue 233K connection with 1KB file
size with 61.32% CPU utilization.

In the area of string matching there are many papers that
propose several hardware implementations ([18][19]). The

most efficient ones can be implemented in reconfigurable
logic (FPGAs, [20]) but the main disadvantage is that each
time that the string patterns change, a new reconfiguration
is required. The time to synthesize, place and route the new
design and reconfigure the device is prohibited for
applications such as firewalls or web-switched. In these
applications the user must be able to apply in short time the
new rules for string matching.

In this paper we propose a scheme based on
reconfigurable logic (FPGA) using 32-bits customized
RISC processors with specialized hardware co-processors
for content-based switching. The co-processor that is used
for URL switching is based on a scheme in which the data
are stored in internal RAM, hence it can be easily updated
without reconfiguration. The processors can be
programmed using C and not vendor specific language.
Hence, we claim we achieve both the required flexibility
and increased performance. Furthermore, the design can be
extended with additional co-processors for specialized
payload processing (such as encryption, compression, or
intrusion detection). The main concern of the FPGAs are
the increased power consumption compared to an ASIC,
hence a power evaluation is performed to compare it with
other schemes.

3. ORGANIZATION
The main goal of the proposed scheme is to provide the
flexibility of the network processors combined with the
increased performance of an ASIC keeping the power
consumption low. Hence, a careful software-hardware
partitioning has been performed. The system level
organization is shown in Figure 1. The system consists of
two 32-bits RISC soft processors (each one with a 16KB
separate instruction and data memory) and a number of co-
processors used to accelerate the performance of the system.

As the processing requirements of the network traffic
increase, many network processor vendors have used multi-
processors platforms to face the processing demand. There
are two methodologies to exploit the additional processing
power. Either to connect the processors to a pipelined
scheme in which the output of one’s processor is the input
to the next, or to connect them in parallel in which the
whole packet’s processing is performed by each processor.
The main drawback of the first solution is that a careful
partitioning must be performed to each pipeline stage to
avoid an unbalanced system. Hence, each change in the
application would require a different partitioning. Thus, we
have used the parallel scheme in our design in which the
program code is the same to both processors and there is no
need for partitioning.

The processors, the co-processors and the memory units
are all connected using a 32-bits common bus (OPB) which
supports burst transactions. Two Dual-Port Block RAM
modules (16KB BRAMs) have been used for the buffering
of the client’s and server’s packets attached to the OPB bus.
The other port of the memories is connected to the Xilinx’s

Gigabit Media Access Controller (GMAC). The first
GMAC is connected to the client link while the second one
is connected to the server farm. Furthermore, a 32KB
BRAM is used to store the HTTP requests.

The most time consuming functions of the web
switching application are the management of the spliced
connections and the URL parsing. To accelerate the
performance of the system, these two functions have been
implemented in hardware and are connected to the
processors using the shared OPB bus. The Connection
Manager Module is used to control the spliced connection
table (the RAM in which the connections are stored). The
URL Parsing Module is used as a search engine. The input
is the URL string and the output is the corresponding IP
address of the server. Every block RAM (BRAM) is on-
chip (internal) for faster access but the system can be easily
extended to use external RAM to support more connections,
causing some reduction in performance.

3.1 The MicroBlaze processors
The processors that have been used are the Xilinx’s
MicroBlaze processors [14]. Theses processors have been
customized to include a barrel shifter and a pattern compare
unit. The barrel shifter instructions takes 2 cycles while the
pattern compare instructions (such as pattern compare equal)
takes 1 cycle. The use of these additional units provides
improved performance (40%-50% fewer cycles compared
to the initial configuration) since the majority of the
network processing application use bit-wise instructions,
while the area overhead is minimal. Furthermore, the
processors have been extended using a checksum module
for the packet’s header processing. The checksum module
is attached to the processor using a point-to-point interface
called FSL (Fast Simplex Link [15]) that provide a fast
interface between the processor and the co-processor.

MicroBlaze

MicroBlaze

Data
RAM

Inst.
RAM

Inst.
RAM

Data
RAM

Connection
Manager

URL
Parsing
Module

Client
Buffer

Server
Buffer

DMA
Engine

Check
sum

Check
sum

Client
GMAC

Server
GMAC

Connection
BRAM

URL
BRAM

HTTP
Requests

Buffer

32-bit

FSL

FSL

Barrel shifter

Barrel shifter

Pattern compare

Pattern compare

Figure 1. System level architecture

The application that is hosted in the processors is a
simplified version of the TCP splicing used in Linux [10]
that supports the most important features of the TCP
splicing. The simplified version of this application has the
same characteristics as in [3] for the TCP splicing targeting
the Intel network processor. Each processor polls the Client
and the Server buffer for new packets. If there is a new
packet, only the header of this packet is forwarded to the
processor. The processor firstly verifies the IP and the TCP
header using the checksum module. If a packet arrives with
the SYN flag on, the processor sends a command to the
Connection Module to add the new connection. After the
processing of the packet, if there is a new packet created,
then the packet is forwarded to the corresponding buffer
(client or server). When a new http request arrives, the
processor stores the packet in the Request BRAM. After a
connection has been established between the content switch
and the server, the Request packet is retrieved from this
BRAM and is forwarded to the server buffer. Moreover,
after the connection has been established, the packets are
forwarded from the client buffer to the server buffer and
vice versa using DMA burst transfers. Hence, in this case
the processors are used only to check the established
connections and change the packet’s header (such as the IP,
the TCP Sequence number and the header’s checksum).

A list of free indexes is stored also in the shared memory
that stores the request packets. Hence, every time a
processor wants to store a request, firstly it requests an
available index from the free list table and then stores the
request to the provided index. In order not to have
deadlocks, a test and set mechanism is used for the shared
memory. The processor first locks the shared memory and
after receiving the required index it unlocks the memory.
Hence, the consistency is preserved between the two
processors.

Moreover, in order to hide the communication overhead
between the processor and the buffers, the following
scheme is used. The Data BRAM is a dual port RAM, in
which one port is connected directly to the processor while
the other port in connected to the OPB bus using a bus
controller, which supports DMA burst transfers. Hence,
while a packet is processed by the MicroBlaze the next
packet is loaded to a reserved space in the Data BRAM
using DMA transfers. Thus, the communication overhead is
hidden by the packet processing.

3.2 The Connection Manager
In order to accelerate the processing of the packet, a co-
processor has been created to manage the connection table.
The Connection Table is organized as it is shown in Figure
2. Each entry consists of the Client’s IP address, the
Client’s TCP port, the Server’s IP (SIP) in which the
connection has been spliced, the state of the connection
(idle, connected, spliced, etc.) and the initial TCP sequence
number (SEQ field) of the client and the server. The
Server’s IP is 8 bits (the last 8-bits of the 32-bit IP address,

since the first 24 bits of the IP address are usually the same
for a server cluster), thus it can support a cluster server of
up to 256 servers, which is adequate in most of the cases.
The current implementation can support up to 4K
connections while it can be easily extended to support more
connections. The Connection Module supports three
commands:

• Write (IP, TCP, SIP, state, Client SEQ, Server SEQ)

return 0;
• Search (IP, TCP) return SIP, state, Client SEQ, Server

SEQ;
• Delete (IP, TCP) return 0;

The organization of the Connection Manager is shown in
Figure 3. A hash unit is used to create a 10-bit index out of
the 32-bits IP and the 16-bits TCP input. When a new entry
command is sent, the Connection Manager tries to store the
entry into one of the Block RAMs. In case that all of the
BRAMs are occupied (collision) a small CAM (Content
Addressable Memory) is used. The CAM stores the IP and
the TCP field (48-bits) and outputs an index to a RAM in
which the remaining data are stored (Server’s IP,
Connection’s state, etc.). When a search is performed, the

BRAM
1k x 128

BRAM
1k x 128

CAM
128x48

HASHIP address,
TCP Port

BRAM
1k x 128

Compare

Compare

Compare

IP,
TCP

SIP,
State,
CSEQ,
SSEQ

48
10

80
BRAM

128 x 80
7

BRAM
1k x 128

Compare

Figure 3. The Connection Manager

IP address TCP
Port SIP state

32bits 16bits

32bits 32bits

Client SEQ Server SEQ

8bits 8bits

Figure 2. The connection entries

Connection Manager searches each of the BRAMs and if
there is a match in any of them it outputs the result. In case
that the connection data has been stored to the CAM then
the multiplexer selects the CAM output. The CAM that we
used takes 1 clock cycle for read and 16 clock cycles to
write. As is it shown in [11], using four block RAMs we
can reduce significantly the probability of collision. This
scheme can provide a result of a search only in 4 cycles.

To measure the efficiency of the Connection Manager
we used the UC Berkeley Home IP Web Traces [17]. After
extracting the IP address and the Port number of the clients,
we measured the number of BRAM collision for 4096
connections using a simple XOR hash function. The
number of collisions (that hash to the same address over
four times) was 295. The CAM can accommodate 128
entries, hence the probability of a connection collision (in
which the connection can not be stored neither at the
BRAM nor at the CAM) is 4%. Table 1 shows the
probability of a connection collision for several numbers of
BRAMs and for 128 and 256 entries CAM. This scheme
can be easily extended using larger FPGA device. In case
that we use four 16Kx128 BRAMs and a 512 entries CAM
then the probability of connection collision is 5% (there
were 1383 BRAM collisions) and is able to support 64K
connections.

3.3 The URL parsing coprocessor
One of the most computational demanding function, is the
web switching based on the URL string. For example
content distribution can be performed based on the URL
(e.g. the www.foo.edu/publications requests could be
distributed to a separate server than those to
www.foo.edu/people). Another option is the switching
based on the application. For example the HTTP request for
an image could be forwarded to a separate server than the
server for the HTML pages. Hence, an efficient URL
parsing module is necessary to perform fast web switching
based on the URL. In our implementation an efficient form
of a compresses trie has been used. Three separate block
RAMs are incorporated; a 256x32 bits Char RAM, a
256x32 bits Address RAM and a 256x12 bits Control RAM
as it is shown in Figure 4 . The Char Table stores the
characters of the URL string, the Address Table stores the
Server’s IP and an index to the Char Table, while the
Control Table stores several control bits. After a search has
been performed, the Server’s IP (the last 8-bits) is stored to
the Connection Table (Figure 2). To explain the function of

the URL module an indicative example is used, as it is
shown in Table 2, for URL directory based switching. This
table shows the URL and the last byte of the IP address (the
first three bytes are the same for a server cluster) of the
corresponding server. As it is shown, we need a co-
processor that will be able to perform longer prefix
matching of the URL string to the URL table.

The characters are stored in the Char Table using the

following algorithm. As long as the char are unique
compared to the other characters in the same position, the
characters are stored in the Char Table sequentially. When
there are different characters in the same position (e.g. pub
and people) these characters are stored in a separate entry
(e.g. address 2, Figure 5) with an index to the Address
Table for the next characters (e.g. address 3 and address 7
for pub and people, respectively). The L and the S columns
of the Control Table are used to indicate if the
corresponding entry has characters that split to new sub-
string or belong to the same string, respectively. For
example, entry #7 stores characters that belong to the same
string (hence the corresponding S entry is ‘1’) while entry
#4 stores characters that belong to different sub-strings
(misc, “phd”, and “msc”; hence the L entry is ‘1’). The C
column in the Control Table shows if the string is
continued to the next sequentially entry. For example, the
“people” string is continued to entry #8.

Table 1. Collision Probability

Collision Probability Number of BRAMs 128CAM 256CAM
2 18% 15%
3 11% 8%
4 4% 1%
5 0% 0%

Table 2. Directory-based URL Table

URL Server IP
/pub/* 16
/pub/phd/* 17
/pub/msc/* 18
/people/* 19

Char Table (32 bits)
c1 c2 c3

a0 a1 a2 a3
Address Table (32 bits)

V
Control Table (12 bits)
L SC

c0

LC

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

URL
Controller

OPB
Controller

Figure 4. The URL Module

The Control Table holds two more 4-bit columns. The

first column represent if a char is valid in the Char Table,
while the second column (Last char) represent if this is the
last characters, hence there is a valid Server’s IP address in
the Address Table. For example, in the entries in which the
Last Char flag is ‘1’ (the shadow boxes), there is the
Server’s IP address as it shown in the corresponding URL
Table (Table 2).

The URL search algorithm which has been implemented
in the URL controller is shown in Figure 6. The controller
first checks the same level and the same string flags to
identify if the row that is processing holds sequential
characters or characters that point to new sub string. In the
case that the characters are at the same level (used to point
new sub-strings) each character is compared against the
current URL char. If it is the same then the next address is
retrieved from the Address Table. In the case that the same-
string flag is on (second half of the algorithm) the module
compared the valid characters of this row with the
corresponding URL string.

Using this scheme we can achieve a throughput of 1-4
matched characters per cycle. In order to compute the
number of characters that should be stored in each entry of
a LookUp table such as the one in Figure 5 we used the http
request traces from the San Diego Super Computer Center
[12]. According to these traces the maximum number of
characters that are used to describe the first two sub-string
of a URL string (e.g. \pub\phd) is 27 characters. Taking
into account, that the majority of the web-switching is
performed using the first two sub-string we set 28
characters the maximum number of characters that can be
searched by the URL module. Thus, the maximum number
of cycles to output a valid IP address is 28 cycles. The
number of entries is expandable and can accommodate a
large number of URL string. In the current implementation
we used a 1024 entries table; hence the maximum number
of stored characters is 4096. However, in cases that the
URL entries have higher demands, the URL module can be
used as a cache in which the most current entries are stored,
while the remaining entries are used by a software function
in a separate memory. In addition, the most important
feature of this accelerator is that in order to maintain and to
update the URL table there is no need for a heavyweight

reconfiguration. The URL table is stored in BRAM that can
be updated using any external interface (such as UART)
and exploiting the second spare port of the inherent Dual
Port BRAMs.

Furthermore, the URL co-processor can be used for

URL application-based switching. In this case, the server is
selected based on the extension of the requested file, as it is
shown in Table 3. In this example, the requested images
(.gif), the videos (.mpg), the HMTL and the CGI files are
all forwarded to a separate server. In this case, the
processor does not send the first 28 characters. The
processor reads the URL characters until a space is found,
which means that the URL string is finished. Hence, the
last three characters are sent to the URL module for parsing.
The corresponding tables for the URL module are shown in
Figure 7. The first letter of each application extension is

p
u e
b \
* p m
h d
s c
o p l e
\
*

1

2

3

4

5

6

7

8

9

2
3 7

4
1
6 5 6

1
7
1
8

9
1
9

1

1

1

1

1

1
1
1
1

1
1 1
1 1
1 1 1
1 1
1 1
1 1 1 1
1
1

1
1
1

1

Char Table
Address

Table L S Valid Last char

1

C
Control Table

Figure 5. The URL Tables

Figure 6. The URL search algorithm

% Same Level
if Same_level=’1’ then

if char(0)=url(j) and valid=’1’
if Last_Char=’1’
 return ServerIP

 else
 address = url(address);
 j = j + 1;

end if;
 elseif char(1)=url(j) and valid=’1’
 …
 elseif char(2)=url(j) and valid=’1’
 …
elseif char(3)=url(j) and valid=’1’
 …
else
 if url_continued=’1’
 address = address + 1;
 end if;

% Same String
elseif Same_string=’1’

if c(0)=url(j) & c(1)=url(j+1) &
 c(2)=url(j+2) & c(3)=url(j+3)
 if url_continued=’1’
 address = address + 1;
 j = j + 4;
 else if Last_Char=’1’
 return ServerIP;
 else
 address = url(address);
 j = j + 4;
 end if;
elsif c(0)=url(j) & c(1)=url(j+1) &
 c(2)=url(j+2)
 …
elsif c(0)=url(j) & c(1)=url(j+1)
 …
elsif c(0)=url(j)
 …

 end if;

shown in the first row, while the remaining characters of
each row are shown in row 2-5. Using this scheme, we can
find the corresponding server in N+2 cycles where N is the
length of the URL string divided by 4 (the cycles to find the
last 4 characters).

4. EVALUATION
The system has been implemented into the Xilinx Virtex 4
XCV4LX60 FPGA. The FPGA have usually higher power
consumption than the ASICs and lower maximum
frequency. On the other hand, the flexibility of the design
that they offer is the main advantage. In this section we
analyze the performance, the area and the power dissipation
of the proposed scheme in order to compare it against a
network processor. The main advantage of the current
network processors is that they offer a multi-threaded
multi-core platform that operates at a high frequency. For
example, the Intel IXP 2400 processor provides eight 8-
way multithreaded micro-engines that operate at 600MHz.
The main drawback is that these micro-engines are
programmed into a special assembly language thus it does
not provide the flexibility of the common processors. On
the other hand, the proposed scheme uses the MicroBlaze
processors (operated in 100MHZ) that can be programmed
in C, while the most demanding functions (URL parsing,
connection Lookup tables) are implemented in hardware
that can be reconfigured

4.1 Performance
Both the MicroBlaze’s and the miscellaneous modules
operate at 100MHz. Two designs have been used for
performance evaluation. The first one uses only one
processor, hence the overhead of consistency on multi-
processors is eliminated (set and lock, etc). In the second
case, two processors are used performing the same tasks.
The application that it is hosted in the processors is the
spliced web switching using the traces from [17] for the IP
address and some of the traces from [12] for the URL

matching. The requested file size was synthetic in order to
measure how the performance depends on the average
packet size. Figure 8 shows the performance of the system
in both cases for several requested file sizes. The request
packet size (the HTTP requested file) is a crucial factor.
After a connection has been established, the packets are just
forwarded after some of the header fields have been
changed. The performance is measured in traffic bandwidth
(sustained incoming traffic processing).

Figure 9 shows the utilization of the common bus in both
configurations. The OPB common bus is 32-bit bus that
operates at 100MHz. Thus, the maximum sustained
throughput is 3.2Gbps, but the typical data rate is 1.3Gbps.
As it is shown from these figures, in the first case the
bottleneck of the design is the processing power of the
processor. On the other hand, in the second case, the
bottleneck of the design is the bandwidth of the common
bus. The network-processor based scheme, published in [3],
sustain almost 610Mbps for a 64KB packet size while in
the case that the requested packet size is 1Kb the sustained
throughput is lower than 100Mbps. Hence, the proposed
scheme in reconfigurable platform offers significant higher
throughput when the requested file size is small while in
the case that the requested file size is larger (16KB) the
sustained throughput is almost 55% percent higher. Since,
the main bottleneck of the design is the bandwidth of the
common bus, for larger requested file sizes (1024KB) the
throughput of the proposed scheme drops to almost 20%
higher than the network-based scheme.

Table 4 shows the average processing latency for various
packet types compared to the network processor-based and
the software-based scheme presented in [3]. As it is shown
the latency is very close to the scheme based on the Intel
IXP network processor. However, this is the latency for
each processor. Since two of these processors are used the
performance of the system in terms of throughput is almost
55% higher. Furthermore, this table shows that the
proposed architecture have similar performance in terms of

Table 3. Application URL Table

URL Server IP
.gif 16
.mpg 17
.htm 18
.cgi 19

g m h c
i

t m
g

1

2

3

4

5

Char Table

i

p g
f

2 3 4 5

 1
8

1

2

3

4

5 1
9

 1
7

1
6

Address Table

Figure 7. The application based Tables

Performance

0

100

200

300

400

500

600

700

800

900

1000

1KB 2KB 4KB 16KB 64KB

Request Packet Size

B
an

dw
id

th
 (M

bp
s)

1Microblaze 2Microblazes

Figure 8. Performance of the systems

latency with the one based on the network processor but in
our case the design can be extended with other payload
processing modules such as encryption, compression or
intrusion detection without wasting processor’s cycles.

4.2 Area
Table 5 shows the area distribution of the system. As it is
shown, the main constraint is the number of Block RAMs
that have been used. This table shows also the number of
equivalent gates. As it is shown the number of equivalent
gates is much smaller than a typical network processor. As
a figure of merit, the Agere’s PayloadPlus Network
Processor occupies 210 million transistors [13], thus about
35 million gates (assuming 1 gate = 6 transistors). Each
MicroBlaze occupies 1088 Slices including the memory
controllers and each Gigabit MAC occupies 790 slices. The
main area constraint is the use of block RAMs which is
71% of the total block RAMs. The main advantage of the
proposed scheme is that the remaining logic elements
(slices) could be exploited for additional payload-
processing modules (such as encryption, compression, or
intrusion detection). Alternatively, the spare logic elements
could be used to add SRAM or DRAM controllers that
could increase the number of simultaneous connections or
the size of the buffers. For example, the network processor-
scheme ([3]) which uses the Intel IXP2400 is connected to
a 8MB SRAM and a 128MB DRAM hence it can support
more connections than our current scheme.

Figure 10 shows the area distribution by module. As it is
shown in this figure, the CAM for the connections holds
almost 31% of the total design area. This is also the main
reason that the connection are stored in BRAMs using hash
algorithms and only when there is a collision there are
stored in the CAM. Each MicroBlaze occupies almost 11%
of the area and each Gigabit Media Access Controller
occupies 8%. The Connection Module and the URL
Module occupies 9% and 10% respectively.

4.3 Power
The main drawback of FPGAs is the power consumption.
Hence, a detailed power analysis has been performed to
identify the main sources of power consumption. The
following design flow has been used. The system is
synthesized, placed and routed using the Xilinx framework.
Due to a lack of an evaluation board with 2 gigabit network
ports the system has been evaluated from the placed and
routed system. The design has been simulated using the
Modelsim cycle-accurate simulator and the switching
activity of the design has been extracted. The power
consumption of the system has been estimated using the
Xilinx’s XPower tool. This tool compiles the design and
the switching activity and reports the power consumption.

Figure 11 shows the power distribution by type of the
system. According to this figure 42% of the power
consumption is consumed by the signals. The clock
consumes 29% of the overall power, while the logic
consumes also 29% of the power.

Table 4. Processing Latency for packets

Latency (us) Packet Type Reconf. IXP2400[3] Linux[3]
SYN 5.5 7.2 48
ACK/Req. 8.8 8.8 52 Control

Packet
SYN/ACK 8.5 8.5 42
Data 6.9 6.5 13.6 Data

Packet ACK 6.6 6.5 13.6

Table 5. Area allocation

Module Number Utilization
Slices 9847 32%
DSP48 6 9%
BRAM16 96 71%
Equivalent gates 301,948

Area Allocation by Module
Microblaze0

11%

Microblaze1
11%

Conn. Module
9%

URL Module
10%

GMAC0
8%

GMAC1
8%

CAM
31%

Misc.
12%

Figure 10. Area allocation by Module

Bus Utilization

0
10
20
30
40
50
60
70
80

1KB 2KB 4KB 16KB 64KB

Request Packet Size (bytes)

U
til

iz
at

io
n

(%
)

1Microblaze 2Microblazes

Figure 9. Bus Utilization

Figure 12 shows the dynamic power distribution by

module. As it is shown, each processor consumes almost
20% the total power. Each Gigabit Media Access
Controller consumes 13% of the power excluding the IO
power, while the miscellaneous components (bus, co-
processors) consume 34% of the power. Overall, the power
consumption (including the core and the IO power
consumption) is 870mW. The IO modules consume
235.4mW (operated at 2.5V) while the remaining power
(634.6mW) is consumed by the internal modules (operated
at 1.2V).

As a figure of merit, in [16] it is shown that the Intel IXP
2400 network processor consumes almost 13.3W for the
IPv4 forwarding benchmark achieving 8Gbps forwarding
throughput. The low power consumption in our scheme is
mainly caused by the use of low frequency components.
The typical network processor use micro-processors that
operate in high frequency (e.g. the IXP 2400 micro-engines
use 600MHz clock frequency). Since, the power
consumption is proportional to the frequency the use of
100MHz clock frequency in our scheme keeps the power
consumption to low level.

5. CONCLUSIONS
The use of FPGAs is an appealing alternative to the use of
specialized platform (such as network or digital signal
processors) because of the flexibility they provide. On the
other hand the main concern against the use of the FPGAs
is the power consumption and the limited clock frequency.
In this paper we have presented an efficient architecture for
content-based switching that can be used to server cluster to
provide higher response time to web users. The proposed
scheme provides higher throughput compared to a
mainstream network processor, while the power
consumption is less than a network processor. This is due to
the fact that specialized hardware coprocessors are used to
accelerate the critical functions while the operating
frequency of the system (which is the main source of power
consumption) is held low (100 MHz). However, the
flexibility is preserved using two soft-core 32-bit RISC
processors customized for network processing instructions
(barrel shifters, pattern comparison and checksum modules).
Hence, we claim that a careful architecture in which the
processor, the communication and the co-processors
compose a balanced system, a viable and efficient system
can be created that can perform better or equal to the
current network processors for a limited number of
connections. The proposed scheme can be extended using
SRAM and DRAM controllers to support more connections.

Furthermore, the utilization of dynamically
reconfigurable systems can further increase the
performance and the flexibility of the proposed scheme.
Dynamic reconfiguration provides the flexibility to
add/remove more specialized co-processors during run-time
based on the requirements of the application. Hence, in the
future work we are investigating a content-based switch in
which the co-processors will be loaded depending on the
content switch configuration (URL-based, payload-based,
cookie-based, etc.).

REFERENCES
[1] Z. Naseh, H. Khan, “Designing Content Switching

Solutions”, Cisco Press, ISBN: 1-58705-213-X
[2] L. Zhao, Y. Luo, L. Bhuyan, R. Iyer, “Design and

Implementation of a Content-aware Switch using a
Network Processor”, Proceedings of the 13th
Symposium on High Performance Interconnects
(HOTI’05), August 2005, CA, USA

[3] L. Zhao, Y. Luo, L. Bhuyan, R. Iyer, “SpiceNP: A
TCP Splicer using a Network Processor”, Proceedings
of the 1st Symposium on Architectures for Networking
and Communications Systems (ANCS’05), October
2005, NJ, USA

[4] T. Spalink, S. Karlin, L. Peterson, Y. Gottlieb,
“Building a Robust Software-Based Router Using
Network Processors”, Proceedings of the 18th ACM

Power Distribution by Module (mW)
Microblaze0

39.9
20%

Microblaze1
39.9
20%Misc.

67.14
34%

GMAC0
24.49
13%

GMAC1
24.49
13%

Figure 11. Power Distribution by Module

Power Distribution by Type (mW)

Clock
49.1
29%

Logic
50.1
29%

Signals
72.8
42%

Figure 12. Power Distribution by type

symposium on Operating systems principles, pages
216 -229, 2001

[5] D. A. Maltz, P. Bhagwat, “TCP Splicing for
Application Layer Proxy Performance”, IBM Research
Report RC 21139, 1998

[6] A. Cohen, S. Rangarajan, H. Slye, “On the
Performance of TCP Splicing for URL-aware
Redirection”, In proceedings of the 2nd USENIX
Symposium on Internet Technologies and Systems,
Boulder, CO, Oct. 1999

[7] “Analyzing the Performance of Web Switches”,
Application Note, Foundry Networks

[8] A. Apostolopoulos, D. Aubespin, V. Peris, P.
Pradhan, D. Saha, “Design, Implementation and
Performance of a Content-Based Switch”, Proceedings
of the Infocom 2000

[9] D. Maltz, P. Bhagwat, “TCP Splicing for
Application Layer Proxy Performance”

[10] Linux Virtual Server Project,
http://www.linuxvirtualserver.org

[11] A. Moestedt, P. Sjödin, “IP Address Lookup in
Hardware for High-Speed Routing”, IEEE Hot
Interconnects VI, pp. 31-39, Stanford, CA USA,
August 1998

[12] Web caching, San Diego Super Computer Center
Web Traces, http://www.web-caching.com

[13] “Agere Systems Network Processor Design”,
Synopsis, Compiler Magazine, April 05

[14] “MicroBlaze Processor Reference Guide”, Xilinx
Documentation, May 2005

[15] “Fast Simplex Link Bus v2.00”, Xilinx
Documentation, April 2005

[16] “IXP2400 Intel Network Processor IPv4 Forwarding
Benchmark Full Disclosure Report for Gigabit
Ethernet”, Network Processing Forum, March 5, 2003

[17] “UCB-home-IP traces Nov 17”, UC Berkeley Home
IP Web Traces , The Internet Traffic Archive

[18] B. C. Brodie, R. K. Cytron, D. E. Taylor, “A
Scalable Architecture for High-Throughput Regular-
Expression Pattern Matching”, The 33rd Annual
International Symposium on Computer Architecture,
June 2006, Boston, MA

[19] S. Fide, S. Jenks, “A Survey of String Matching
Approaches in Hardware”, TR SPDS 06-01, University
of California - Irvine, March 2006

[20] I. Sourdis, D.N. Pnevmatikatos, S. Wong, S.
Vassiliadis, A Reconfigurable Perfect-Hashing Scheme
for Packet Inspection, proceedings of 15th
International Conference on Field Programmable
Logic and Applications (FPL 2005), Tampere, Finland,
August 2005

