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ABSTRACT 
The increase of the web traffic has created the need for web 
switches that are able to balance the traffic to the server 
farms based on their contents (e.g. layer 7 switching). In 
this paper we present a web switch implemented in a multi-
processor reconfigurable platform augmented with 
hardware co-processors. The system supports the TCP 
splicing scheme to accelerate the routing of the packets by 
forwarding packets at the IP layer after a connection has 
been spliced. The processors are alleviated using special 
co-processors for the management of the spliced connection 
and the URL string parsing. The proposed scheme can 
sustain up to 927Mbps throughput for 64KB request file 
size consuming less than 1Watt in a Xilinx Virtex4 FPGA. 
Hence, the system provides an efficient combination of 
processor’s flexibility and ASIC’s performance. Finally, 
the system is compared against a network processor-based 
and a software content-based switch in terms of 
performance, area, and power. 
 
Categories and Subject Descriptors 
C.2.1 Network Architecture and Design 

General Terms 
Performance, Design 
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1. INTRODUCTION 
As the web network traffic keeps increasing there is the 
need for the ISPs and search engines to accommodate 
server clusters to face the increased demand. The most 
straightforward way to balance such a cluster is to use a 
switch that distribute the network workload based on layer 

3 and layer 4 information (such as the IP address and the 
TCP or UDP port). However, the load balancing based on 
these layers is not efficient enough. First of all, the data 
must be replicated to each server; hence any change in the 
server content need to be updated on every server. 
Furthermore, the use of NAT proxies results to same IP 
address for a large number of clients. Hence, the use of IP 
address to balance the system is not efficient. Moreover, the 
network balancing, using layer 3 and layer 4 information, 
can not face more sophisticated requirements, such as 
content customization (e.g. content based on language or 
geographic region). The solution is the switching based on 
layer 7 information. Layer 7 load balancing provides 3 
major advantages according to Cisco [1]: 

• Scalability and acceleration of the application 
• Persistent user sessions on a server 
• Content customization based on user profile 

Layer 7 load balancing based on the URL  (Uniform 
Resource Locator) string can be performed either by 
distributing the data based on the directory domain or based 
on the file type (e.g. html, image, video, script). Load 
balancing based on the URL can also provide faster web 
response (download time) if specialized servers are used for 
each application. Furthermore, layer 7 load balancing 
provides session persistence. Session persistence can be 
used to forward the traffic of one client always to the same 
server in which previous data (transactions) are stored. 
Session persistence can be based on an HTTP cookie, a 
URL string or an SSL session. Finally, content-based 
switching can also provide content customization based on 
language or geographical region.  

Web switches were initially implemented in software 
targeting general purpose computers. The main drawback 
of using a software web switch for web balancing is the 
additional latency that is introduced. After a web switch has 
identified the corresponding server, the packets have to 
travel through the web switch to change the packet’s header. 
The latency is mainly introduced because of the protocol 
stack processing. The packets have to travel until the upper 
layer where the switch module will process and forward the 
data. But after a connection has been established between a 
client and a server, the processing requirements are usually 
some header modifications. Hence, the TCP splicing 
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scheme was introduced in 1998 [5]. The TCP splicing is 
used to forward the packets at the IP layer (layer 3) instead 
of the upper layers, after a connection has been established. 
Hence, the latency is reduced significantly and the 
sustained throughput is increased.  

This paper presents a software/hardware co-designed 
content-based (web) switch which has been implemented in 
a multi-processor reconfigurable logic platform (Xilinx 
Virtex 4 FPGA). The main software part is executed by the 
Xilinx’s MicroBlaze 32-bit customized soft-core processors, 
while the most demanding functions such as the URL 
parsing has been implemented in hardware co-processors.  
Furthermore, the system supports TCP splicing. The main 
advantage of the web-switch implemented in 
reconfigurable logic is two-fold. First of all, the application 
is programmed in a customized RISC processor in C 
instead of vendor specific assembly language. In addition, 
the proposed scheme can be extended with additional 
modules that can be used for other operating modes (such 
as cookies-based switching, payload-based switching) or 
additional payload processing (encryption, compression, 
intrusion detection). These operations would be too time-
consuming to be performed by the current network 
processors.  
The main contribution of this paper is: 
• The implementation of a web switch in a multi-

processor reconfigurable platform supporting TCP 
splicing 

• The proposed Connection Manager and the URL string 
parsing co-processors 

• The performance, power, and area evaluation and the 
comparison against a network processor-based and a 
software-based scheme 

This paper is organized in the following way. Section 2 
presents the related work in terms of content-based 
switching. Section 3 presents the organization of the 
proposed scheme, the customized processors and the co-
processors. Section 4 presents the evaluation of the system 
in terms of performance, power, and area and the 
comparison against other schemes. Finally, section 5 
presents the conclusions of this work. 
 
2. RELATED WORK 
Until now, three schemes have been proposed for the 
implementation of a content based switch. A software 
approach (using a general purpose processor) provides 
great flexibility but has limited performance. A hardware 
approach (ASIC) has increased performance but lacks of 
flexibility. The most recent scheme is the use of network 
processor that combines the flexibility of processors with 
the throughput of the ASIC using basic hardware 
coprocessors. However, these coprocessors are usually 
modules that are used in general packet processing (CRC, 
header checksum, etc.) and can not be used for dedicated 
functions such as payload processing or URL parsing. 

Furthermore, the network processor platforms incorporate 
multiple instances of specialized processors that are 
programmed using vendor specific language (e.g. the 
microcode used by the micro-engines processors in the 
Intel’s IXP network processors). 

In [8] a content-based switch is presented, that has been 
implemented in hardware. The system consists of input and 
output controllers to process the data packets, while the 
parsing of HTTT packets and URL based routing is 
performed by a general purpose processor. This scheme can 
support up to 500 ops/sec with 50msec latency but it can 
not be extended or modified in the data plane path. 

In [2], [3] a content based switch has been proposed 
targeting the Intel IXP network processor.  The IXP 
network processor consists of 8 multi-threaded micro-
engines and each micro-engine is able to support up to 8 
threads. The application has been partitioned into 4 micro-
engines. Two of them are used for the input and output 
packet processing, one is used for the client’s packet 
processing, and the last one for the server’s packet 
processing. The proposed system supports also TCP 
splicing to accelerated the throughput and reduce the 
latency. Furthermore, a similar design implemented in 
software (Linux) has been used for comparison. According 
to this paper the network processor scheme can support up 
to 700Mbps throughput for 1 MByte of requested file size, 
while the Linux scheme can support up to 320 Mbps for the 
same requested file size. Using 1 Kbyte requested file size 
the throughput is 8.2 and 46.6 Mbps for the Linux-based 
and the network processor-based scheme, respectively.  

In [4], a similar scheme is proposed based on Intel 
network processors but in this case the data processing is 
performed by the micro-engines while the control 
processing is performed by a host processor. Furthermore, 
the general purpose Strong ARM is used to control the 
micro-engines. This scheme is able to achieve 3.47 Mpps 
(Million packet per seconds) using the older IXP 1200 
network processor.  

In [5], the TCP splicing mechanism is proposed and a 
software implementation under the BSD operating system 
(BSDI BSD/OS 3.0) is performed targeting a general 
purpose processor. The proposed implementation is able to 
sustain up to 70Mbps (in 1998) with almost 85% CPU 
utilization. The mean forwarding latency was 102 ms while 
the latency of a simple forwarding scheme is 92 ms.  

In [6], there is one more implementation of the TCP 
splicing as a Linux kernel module. In this case, the 
switching is performed based on the URL and then the 
connection is spliced between the clients and the servers. 
The system was based on Fast Ethernet Network Interfaces 
(100Mbps) and the URL-aware switch was based on a 
Pentium III 555MHz CPU. According to the paper, the 
system was able to issue 233K connection with 1KB file 
size with 61.32% CPU utilization. 

In the area of string matching there are many papers that 
propose several hardware implementations ([18][19]). The 



most efficient ones can be implemented in reconfigurable 
logic (FPGAs, [20]) but the main disadvantage is that each 
time that the string patterns change, a new reconfiguration 
is required. The time to synthesize, place and route the new 
design and reconfigure the device is prohibited for 
applications such as firewalls or web-switched. In these 
applications the user must be able to apply in short time the 
new rules for string matching. 

In this paper we propose a scheme based on 
reconfigurable logic (FPGA) using 32-bits customized 
RISC processors with specialized hardware co-processors 
for content-based switching. The co-processor that is used 
for URL switching is based on a scheme in which the data 
are stored in internal RAM, hence it can be easily updated 
without reconfiguration. The processors can be 
programmed using C and not vendor specific language. 
Hence, we claim we achieve both the required flexibility 
and increased performance. Furthermore, the design can be 
extended with additional co-processors for specialized 
payload processing (such as encryption, compression, or 
intrusion detection). The main concern of the FPGAs are 
the increased power consumption compared to an ASIC, 
hence a power evaluation is performed to compare it with 
other schemes.  
 
3. ORGANIZATION 
The main goal of the proposed scheme is to provide the 
flexibility of the network processors combined with the 
increased performance of an ASIC keeping the power 
consumption low. Hence, a careful software-hardware 
partitioning has been performed. The system level 
organization is shown in Figure 1. The system consists of 
two 32-bits RISC soft processors (each one with a 16KB 
separate instruction and data memory) and a number of co-
processors used to accelerate the performance of the system.  

As the processing requirements of the network traffic 
increase, many network processor vendors have used multi-
processors platforms to face the processing demand. There 
are two methodologies to exploit the additional processing 
power. Either to connect the processors to a pipelined 
scheme in which the output of one’s processor is the input 
to the next, or to connect them in parallel in which the 
whole packet’s processing is performed by each processor. 
The main drawback of the first solution is that a careful 
partitioning must be performed to each pipeline stage to 
avoid an unbalanced system. Hence, each change in the 
application would require a different partitioning. Thus, we 
have used the parallel scheme in our design in which the 
program code is the same to both processors and there is no 
need for partitioning.  

The processors, the co-processors and the memory units 
are all connected using a 32-bits common bus (OPB) which 
supports burst transactions. Two Dual-Port Block RAM 
modules (16KB BRAMs) have been used for the buffering 
of the client’s and server’s packets attached to the OPB bus. 
The other port of the memories is connected to the Xilinx’s 

Gigabit Media Access Controller (GMAC). The first 
GMAC is connected to the client link while the second one 
is connected to the server farm. Furthermore, a 32KB 
BRAM is used to store the HTTP requests. 

The most time consuming functions of the web 
switching application are the management of the spliced 
connections and the URL parsing. To accelerate the 
performance of the system, these two functions have been 
implemented in hardware and are connected to the 
processors using the shared OPB bus. The Connection 
Manager Module is used to control the spliced connection 
table (the RAM in which the connections are stored). The 
URL Parsing Module is used as a search engine. The input 
is the URL string and the output is the corresponding IP 
address of the server. Every block RAM (BRAM) is on-
chip (internal) for faster access but the system can be easily 
extended to use external RAM to support more connections, 
causing some reduction in performance. 
 
3.1 The MicroBlaze processors 
The processors that have been used are the Xilinx’s 
MicroBlaze processors [14]. Theses processors have been 
customized to include a barrel shifter and a pattern compare 
unit. The barrel shifter instructions takes 2 cycles while the 
pattern compare instructions (such as pattern compare equal) 
takes 1 cycle. The use of these additional units provides 
improved performance (40%-50% fewer cycles compared 
to the initial configuration) since the majority of the 
network processing application use bit-wise instructions, 
while the area overhead is minimal. Furthermore, the 
processors have been extended using a checksum module 
for the packet’s header processing. The checksum module 
is attached to the processor using a point-to-point interface 
called FSL (Fast Simplex Link [15]) that provide a fast 
interface between the processor and the co-processor. 
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The application that is hosted in the processors is a 
simplified version of the TCP splicing used in Linux [10] 
that supports the most important features of the TCP 
splicing. The simplified version of this application has the 
same characteristics as in [3] for the TCP splicing targeting 
the Intel network processor. Each processor polls the Client 
and the Server buffer for new packets. If there is a new 
packet, only the header of this packet is forwarded to the 
processor. The processor firstly verifies the IP and the TCP 
header using the checksum module. If a packet arrives with 
the SYN flag on, the processor sends a command to the 
Connection Module to add the new connection. After the 
processing of the packet, if there is a new packet created, 
then the packet is forwarded to the corresponding buffer 
(client or server). When a new http request arrives, the 
processor stores the packet in the Request BRAM. After a 
connection has been established between the content switch 
and the server, the Request packet is retrieved from this 
BRAM and is forwarded to the server buffer. Moreover, 
after the connection has been established, the packets are 
forwarded from the client buffer to the server buffer and 
vice versa using DMA burst transfers. Hence, in this case 
the processors are used only to check the established 
connections and change the packet’s header (such as the IP, 
the TCP Sequence number and the header’s checksum).  

A list of free indexes is stored also in the shared memory 
that stores the request packets. Hence, every time a 
processor wants to store a request, firstly it requests an 
available index from the free list table and then stores the 
request to the provided index. In order not to have 
deadlocks, a test and set mechanism is used for the shared 
memory. The processor first locks the shared memory and 
after receiving the required index it unlocks the memory. 
Hence, the consistency is preserved between the two 
processors. 

Moreover, in order to hide the communication overhead 
between the processor and the buffers, the following 
scheme is used. The Data BRAM is a dual port RAM, in 
which one port is connected directly to the processor while 
the other port in connected to the OPB bus using a bus 
controller, which supports DMA burst transfers. Hence, 
while a packet is processed by the MicroBlaze the next 
packet is loaded to a reserved space in the Data BRAM 
using DMA transfers. Thus, the communication overhead is 
hidden by the packet processing.  
 
3.2 The Connection Manager 
In order to accelerate the processing of the packet, a co-
processor has been created to manage the connection table. 
The Connection Table is organized as it is shown in Figure 
2. Each entry consists of the Client’s IP address, the 
Client’s TCP port, the Server’s IP (SIP) in which the 
connection has been spliced, the state of the connection 
(idle, connected, spliced, etc.) and the initial TCP sequence 
number (SEQ field) of the client and the server. The 
Server’s IP is 8 bits (the last 8-bits of the 32-bit IP address, 

since the first 24 bits of the IP address are usually the same 
for a server cluster), thus it can support a cluster server of 
up to 256 servers, which is adequate in most of the cases. 
The current implementation can support up to 4K 
connections while it can be easily extended to support more 
connections. The Connection Module supports three 
commands: 
 
• Write (IP, TCP, SIP, state, Client SEQ, Server SEQ) 

return 0; 
• Search (IP, TCP) return SIP, state, Client SEQ, Server 

SEQ; 
• Delete (IP, TCP) return 0; 
 

 
 

 
 
The organization of the Connection Manager is shown in 
Figure 3. A hash unit is used to create a 10-bit index out of 
the 32-bits IP and the 16-bits TCP input. When a new entry 
command is sent, the Connection Manager tries to store the 
entry into one of the Block RAMs. In case that all of the 
BRAMs are occupied (collision) a small CAM (Content 
Addressable Memory) is used. The CAM stores the IP and 
the TCP field (48-bits) and outputs an index to a RAM in 
which the remaining data are stored (Server’s IP, 
Connection’s state, etc.). When a search is performed, the 
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Connection Manager searches each of the BRAMs and if 
there is a match in any of them it outputs the result. In case 
that the connection data has been stored to the CAM then 
the multiplexer selects the CAM output. The CAM that we 
used takes 1 clock cycle for read and 16 clock cycles to 
write. As is it shown in [11], using four block RAMs we 
can reduce significantly the probability of collision. This 
scheme can provide a result of a search only in 4 cycles. 

To measure the efficiency of the Connection Manager 
we used the UC Berkeley Home IP Web Traces [17]. After 
extracting the IP address and the Port number of the clients, 
we measured the number of BRAM collision for 4096 
connections using a simple XOR hash function. The 
number of collisions (that hash to the same address over 
four times) was 295. The CAM can accommodate 128 
entries, hence the probability of a connection collision (in 
which the connection can not be stored neither at the 
BRAM nor at the CAM) is 4%. Table 1 shows the 
probability of a connection collision for several numbers of 
BRAMs and for 128 and 256 entries CAM. This scheme 
can be easily extended using larger FPGA device. In case 
that we use four 16Kx128 BRAMs and a 512 entries CAM 
then the probability of connection collision is 5% (there 
were 1383 BRAM collisions) and is able to support 64K 
connections. 

 
 
3.3 The URL parsing coprocessor 
One of the most computational demanding function, is the 
web switching based on the URL string. For example 
content distribution can be performed based on the URL 
(e.g. the www.foo.edu/publications requests could be 
distributed to a separate server than those to 
www.foo.edu/people).  Another option is the switching 
based on the application. For example the HTTP request for 
an image could be forwarded to a separate server than the 
server for the HTML pages. Hence, an efficient URL 
parsing module is necessary to perform fast web switching 
based on the URL. In our implementation an efficient form 
of a compresses trie has been used. Three separate block 
RAMs are incorporated; a 256x32 bits Char RAM, a 
256x32 bits Address RAM and a 256x12 bits Control RAM 
as it is shown in Figure 4 . The Char Table stores the 
characters of the URL string, the Address Table stores the 
Server’s IP and an index to the Char Table, while the 
Control Table stores several control bits. After a search has 
been performed, the Server’s IP (the last 8-bits) is stored to 
the Connection Table (Figure 2). To explain the function of 

the URL module an indicative example is used, as it is 
shown in Table 2, for URL directory based switching. This 
table shows the URL and the last byte of the IP address (the 
first three bytes are the same for a server cluster) of the 
corresponding server. As it is shown, we need a co-
processor that will be able to perform longer prefix 
matching of the URL string to the URL table.  

 
The characters are stored in the Char Table using the 

following algorithm. As long as the char are unique 
compared to the other characters in the same position, the 
characters are stored in the Char Table sequentially. When 
there are different characters in the same position (e.g. pub 
and people) these characters are stored in a separate entry 
(e.g. address 2, Figure 5) with an index to the Address 
Table for the next characters (e.g. address 3 and address 7 
for pub and people, respectively).  The L and the S columns 
of the Control Table are used to indicate if the 
corresponding entry has characters that split to new sub-
string or belong to the same string, respectively. For 
example, entry #7 stores characters that belong to the same 
string (hence the corresponding S entry is ‘1’) while entry 
#4 stores characters that belong to different sub-strings 
(misc, “phd”, and “msc”; hence the L entry is ‘1’). The C 
column in the Control Table shows if the string is 
continued to the next sequentially entry. For example, the 
“people” string is continued to entry #8. 

 
 

 

Table 1. Collision Probability 

Collision Probability Number of BRAMs 128CAM 256CAM 
2 18% 15% 
3 11% 8% 
4 4% 1% 
5 0% 0% 

Table 2. Directory-based URL Table 

URL Server IP 
/pub/* 16 
/pub/phd/* 17 
/pub/msc/* 18 
/people/* 19 
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Figure 4. The URL Module



 
The Control Table holds two more 4-bit columns. The 

first column represent if a char is valid in the Char Table, 
while the second column (Last char) represent if this is the 
last characters, hence there is a valid Server’s IP address in 
the Address Table. For example, in the entries in which the 
Last Char flag is ‘1’ (the shadow boxes), there is the 
Server’s IP address as it shown in the corresponding URL 
Table (Table 2). 

The URL search algorithm which has been implemented 
in the URL controller is shown in Figure 6. The controller 
first checks the same level and the same string flags to 
identify if the row that is processing holds sequential 
characters or characters that point to new sub string. In the 
case that the characters are at the same level (used to point 
new sub-strings) each character is compared against the 
current URL char. If it is the same then the next address is 
retrieved from the Address Table. In the case that the same-
string flag is on (second half of the algorithm) the module 
compared the valid characters of this row with the 
corresponding URL string.  

Using this scheme we can achieve a throughput of 1-4 
matched characters per cycle. In order to compute the 
number of characters that should be stored in each entry of 
a LookUp table such as the one in Figure 5 we used the http 
request traces from the San Diego Super Computer Center 
[12]. According to these traces the maximum number of 
characters that are used to describe the first two sub-string 
of a URL string (e.g. \pub\phd) is 27 characters. Taking 
into account, that the majority of the web-switching is 
performed using the first two sub-string we set 28 
characters the maximum number of characters that can be 
searched by the URL module. Thus, the maximum number 
of cycles to output a valid IP address is 28 cycles. The 
number of entries is expandable and can accommodate a 
large number of URL string. In the current implementation 
we used a 1024 entries table; hence the maximum number 
of stored characters is 4096. However, in cases that the 
URL entries have higher demands, the URL module can be 
used as a cache in which the most current entries are stored, 
while the remaining entries are used by a software function 
in a separate memory. In addition, the most important 
feature of this accelerator is that in order to maintain and to 
update the URL table there is no need for a heavyweight 

reconfiguration. The URL table is stored in BRAM that can 
be updated using any external interface (such as UART) 
and exploiting the second spare port of the inherent Dual 
Port BRAMs. 

 

 
Furthermore, the URL co-processor can be used for 

URL application-based switching. In this case, the server is 
selected based on the extension of the requested file, as it is 
shown in Table 3. In this example, the requested images 
(.gif), the videos (.mpg), the HMTL and the CGI files are 
all forwarded to a separate server. In this case, the 
processor does not send the first 28 characters. The 
processor reads the URL characters until a space is found, 
which means that the URL string is finished. Hence, the 
last three characters are sent to the URL module for parsing. 
The corresponding tables for the URL module are shown in 
Figure 7. The first letter of each application extension is 
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Figure 5. The URL Tables 

Figure 6. The URL search algorithm 

% Same Level 
if Same_level=’1’ then 

if char(0)=url(j) and valid=’1’ 
if Last_Char=’1’ 
  return ServerIP 

    else 
      address = url(address);      
      j = j + 1; 

end if; 
  elseif char(1)=url(j) and valid=’1’ 
    … 
  elseif char(2)=url(j) and valid=’1’ 
   … 
elseif char(3)=url(j) and valid=’1’ 
  … 
else 
  if url_continued=’1’ 
    address = address + 1; 
  end if; 

% Same String 
elseif Same_string=’1’ 

if c(0)=url(j) & c(1)=url(j+1) &  
   c(2)=url(j+2) & c(3)=url(j+3) 
  if url_continued=’1’ 
    address = address + 1; 
    j = j + 4; 
  else if Last_Char=’1’  
    return ServerIP; 
  else  
    address = url(address); 
    j = j + 4; 
  end if; 
elsif c(0)=url(j) & c(1)=url(j+1) & 
      c(2)=url(j+2) 
  … 
elsif c(0)=url(j) & c(1)=url(j+1) 
  … 
elsif c(0)=url(j) 
  … 

 end if;



shown in the first row, while the remaining characters of 
each row are shown in row 2-5. Using this scheme, we can 
find the corresponding server in N+2 cycles where N is the 
length of the URL string divided by 4 (the cycles to find the 
last 4 characters).  

 

 
 
4. EVALUATION 
The system has been implemented into the Xilinx Virtex 4 
XCV4LX60 FPGA. The FPGA have usually higher power 
consumption than the ASICs and lower maximum 
frequency. On the other hand, the flexibility of the design 
that they offer is the main advantage. In this section we 
analyze the performance, the area and the power dissipation 
of the proposed scheme in order to compare it against a 
network processor. The main advantage of the current 
network processors is that they offer a multi-threaded 
multi-core platform that operates at a high frequency. For 
example, the Intel IXP 2400 processor provides eight 8-
way multithreaded micro-engines that operate at 600MHz. 
The main drawback is that these micro-engines are 
programmed into a special assembly language thus it does 
not provide the flexibility of the common processors. On 
the other hand, the proposed scheme uses the MicroBlaze 
processors (operated in 100MHZ) that can be programmed 
in C, while the most demanding functions (URL parsing, 
connection Lookup tables) are implemented in hardware 
that can be reconfigured 
 
4.1 Performance 
Both the MicroBlaze’s and the miscellaneous modules 
operate at 100MHz. Two designs have been used for 
performance evaluation. The first one uses only one 
processor, hence the overhead of consistency on multi-
processors is eliminated (set and lock, etc). In the second 
case, two processors are used performing the same tasks. 
The application that it is hosted in the processors is the 
spliced web switching using the traces from [17] for the IP 
address and some of the traces from [12] for the URL 

matching. The requested file size was synthetic in order to 
measure how the performance depends on the average 
packet size. Figure 8 shows the performance of the system 
in both cases for several requested file sizes. The request 
packet size (the HTTP requested file) is a crucial factor. 
After a connection has been established, the packets are just 
forwarded after some of the header fields have been 
changed. The performance is measured in traffic bandwidth 
(sustained incoming traffic processing).  

Figure 9 shows the utilization of the common bus in both 
configurations. The OPB common bus is 32-bit bus that 
operates at 100MHz. Thus, the maximum sustained 
throughput is 3.2Gbps, but the typical data rate is 1.3Gbps. 
As it is shown from these figures, in the first case the 
bottleneck of the design is the processing power of the 
processor. On the other hand, in the second case, the 
bottleneck of the design is the bandwidth of the common 
bus. The network-processor based scheme, published in [3], 
sustain almost 610Mbps for a 64KB packet size while in 
the case that the requested packet size is 1Kb the sustained 
throughput is lower than 100Mbps. Hence, the proposed 
scheme in reconfigurable platform offers significant higher 
throughput when the requested file size is small while in 
the case that the requested file size is larger (16KB) the 
sustained throughput is almost 55% percent higher. Since, 
the main bottleneck of the design is the bandwidth of the 
common bus, for larger requested file sizes (1024KB) the 
throughput of the proposed scheme drops to almost 20% 
higher than the network-based scheme. 

Table 4 shows the average processing latency for various 
packet types compared to the network processor-based and 
the software-based scheme presented in [3]. As it is shown 
the latency is very close to the scheme based on the Intel 
IXP network processor. However, this is the latency for 
each processor. Since two of these processors are used the 
performance of the system in terms of throughput is almost 
55% higher. Furthermore, this table shows that the 
proposed architecture have similar performance in terms of 

Table 3. Application URL Table 
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Figure 7. The application based Tables 
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latency with the one based on the network processor but in 
our case the design can be extended with other payload 
processing modules such as encryption, compression or 
intrusion detection without wasting processor’s cycles. 

 

 
4.2 Area 
Table 5 shows the area distribution of the system. As it is 
shown, the main constraint is the number of Block RAMs 
that have been used. This table shows also the number of 
equivalent gates. As it is shown the number of equivalent 
gates is much smaller than a typical network processor. As 
a figure of merit, the Agere’s PayloadPlus Network 
Processor occupies 210 million transistors [13], thus about 
35 million gates (assuming 1 gate = 6 transistors).  Each 
MicroBlaze occupies 1088 Slices including the memory 
controllers and each Gigabit MAC occupies 790 slices. The 
main area constraint is the use of block RAMs which is 
71% of the total block RAMs. The main advantage of the 
proposed scheme is that the remaining logic elements 
(slices) could be exploited for additional payload-
processing modules (such as encryption, compression, or 
intrusion detection). Alternatively, the spare logic elements 
could be used to add SRAM or DRAM controllers that 
could increase the number of simultaneous connections or 
the size of the buffers. For example, the network processor-
scheme ([3]) which uses the Intel IXP2400 is connected to 
a 8MB SRAM and a 128MB DRAM hence it can support 
more connections than our current scheme. 

  
 
Figure 10 shows the area distribution by module. As it is 
shown in this figure, the CAM for the connections holds 
almost 31% of the total design area. This is also the main 
reason that the connection are stored in BRAMs using hash 
algorithms and only when there is a collision there are 
stored in the CAM. Each MicroBlaze occupies almost 11% 
of the area and each Gigabit Media Access Controller 
occupies 8%. The Connection Module and the URL 
Module occupies 9% and 10% respectively. 

 
4.3 Power 
The main drawback of FPGAs is the power consumption. 
Hence, a detailed power analysis has been performed to 
identify the main sources of power consumption. The 
following design flow has been used. The system is 
synthesized, placed and routed using the Xilinx framework. 
Due to a lack of an evaluation board with 2 gigabit network 
ports the system has been evaluated from the placed and 
routed system. The design has been simulated using the 
Modelsim cycle-accurate simulator and the switching 
activity of the design has been extracted. The power 
consumption of the system has been estimated using the 
Xilinx’s XPower tool. This tool compiles the design and 
the switching activity and reports the power consumption.  

Figure 11 shows the power distribution by type of the 
system. According to this figure 42% of the power 
consumption is consumed by the signals. The clock 
consumes 29% of the overall power, while the logic 
consumes also 29% of the power. 

Table 4. Processing Latency for packets 

Latency (us) Packet Type Reconf. IXP2400[3] Linux[3] 
SYN 5.5 7.2 48 
ACK/Req. 8.8 8.8 52 Control 

Packet 
SYN/ACK 8.5 8.5 42 
Data 6.9 6.5 13.6 Data 

Packet ACK 6.6 6.5 13.6 
 

Table 5. Area allocation 

Module Number Utilization 
Slices  9847 32% 
DSP48 6 9% 
BRAM16 96 71% 
Equivalent gates 301,948  
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Figure 10. Area allocation by Module 
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Figure 12 shows the dynamic power distribution by 

module. As it is shown, each processor consumes almost 
20% the total power. Each Gigabit Media Access 
Controller consumes 13% of the power excluding the IO 
power, while the miscellaneous components (bus, co-
processors) consume 34% of the power. Overall, the power 
consumption (including the core and the IO power 
consumption) is 870mW.  The IO modules consume 
235.4mW (operated at 2.5V) while the remaining power 
(634.6mW) is consumed by the internal modules (operated 
at 1.2V). 

As a figure of merit, in [16] it is shown that the Intel IXP 
2400 network processor consumes almost 13.3W for the 
IPv4 forwarding benchmark achieving 8Gbps forwarding 
throughput. The low power consumption in our scheme is 
mainly caused by the use of low frequency components. 
The typical network processor use micro-processors that 
operate in high frequency (e.g. the IXP 2400 micro-engines 
use 600MHz clock frequency). Since, the power 
consumption is proportional to the frequency the use of 
100MHz clock frequency in our scheme keeps the power 
consumption to low level. 

 

 

5. CONCLUSIONS 
The use of FPGAs is an appealing alternative to the use of 
specialized platform (such as network or digital signal 
processors) because of the flexibility they provide. On the 
other hand the main concern against the use of the FPGAs 
is the power consumption and the limited clock frequency. 
In this paper we have presented an efficient architecture for 
content-based switching that can be used to server cluster to 
provide higher response time to web users. The proposed 
scheme provides higher throughput compared to a 
mainstream network processor, while the power 
consumption is less than a network processor. This is due to 
the fact that specialized hardware coprocessors are used to 
accelerate the critical functions while the operating 
frequency of the system (which is the main source of power 
consumption) is held low (100 MHz). However, the 
flexibility is preserved using two soft-core 32-bit RISC 
processors customized for network processing instructions 
(barrel shifters, pattern comparison and checksum modules). 
Hence, we claim that a careful architecture in which the 
processor, the communication and the co-processors 
compose a balanced system, a viable and efficient system 
can be created that can perform better or equal to the 
current network processors for a limited number of 
connections. The proposed scheme can be extended using 
SRAM and DRAM controllers to support more connections. 

Furthermore, the utilization of dynamically 
reconfigurable systems can further increase the 
performance and the flexibility of the proposed scheme. 
Dynamic reconfiguration provides the flexibility to 
add/remove more specialized co-processors during run-time 
based on the requirements of the application. Hence, in the 
future work we are investigating a content-based switch in 
which the co-processors will be loaded depending on the 
content switch configuration (URL-based, payload-based, 
cookie-based, etc.). 
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