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Abstract
Color space conversion is an important kernel in mul-

timedia codecs such as JPEG and MPEG. When imple-
mented using SIMD instructions, however, the performance
improvement is often limited due to two reasons. First, cor-
responding color space components are stored at non-unit
strides and, second, intermediate results can be larger than
8 bits. In this paper we show that extended subwords and
the Matrix Register File (MRF) can be employed to miti-
gate these limitations. These techniques avoid rearrange-
ment instructions and increase the number of subwords that
are processed in parallel. Experimental results have been
obtained by extending the SimpleScalar toolset. The results
show that extended subwords and the MRF yield a speedup
of up to 2.45x and 1.78x over MMX for the RGB-to-YCbCr
and YCbCr-to-RGB kernels, respectively. Compared to C
implementations, speedups of up to 10.09x and 6.74x, re-
spectively, are obtained. Additionally, the results show that
the speedup over MMX is higher for low issue rates. This
means that extended subwords and the MRF are suitable
techniques for embedded multimedia systems where high is-
sue rates and out-of-order execution are too expensive. The
results also show that using more registers improves perfor-
mance substantially.

Keywords: Color space conversion, SIMD architectures,
multimedia extensions.

1 Introduction

Many color images are represented using the RGB color
space. RGB representations, however, are highly cor-
related, which implies that the RGB color space is not
well-suited for independent coding [12]. Compression
standards such as JPEG and MPEG, therefore, employ
the YCbCr color space and need to transform from the
RGB to the YCbCr color space (RGB-to-YCbCr) and vice

versa (YCbCr-to-RGB). Color space conversion is a time-
consuming operation. It has been reported that it con-
sumes up to 40% of the processing time of a highly op-
timized decoder [3, 2]. Consequently, the performance
of JPEG/MPEG coders/decoders (codecs) can be improved
significantly by accelerating color space conversion.

Since color space conversions exhibit significant
amounts of data-level parallelism, they could be imple-
mented using Single-Instruction Multiple-Data (SIMD) in-
structions. Virtually all contemporary processors support
such SIMD extensions. Examples include desktop and
laptop processors such as the Pentium and the PowerPC,
digital signal processors such as the Texas Instruments
TMS320C64x families [15] and the Analog Devices Tiger-
Sharc processor [5], as well as processors mainly targeted
at the embedded market such as ARM. SIMD instructions
are particularly suited for embedded processors because
they offer high performance at low energy consumption.
Color space conversion, however, has certain characteris-
tics which make it difficult to implement it efficiently using
existing SIMD extensions such as MMX [8] and SSE [9].

First, the color components are usually stored as un-
signed bytes but intermediate results require precision
larger than 8-bit. This necessitates conversion overhead and
reduces the number of color components that are processed
in parallel by a single SIMD instruction by a factor of 2.
Second, often the band interleaved format is used where
the color components of each pixel are adjacent in mem-
ory. This implies that in order to employ SIMD instructions
either one of the subwords in a register will be unused or
the data has to be reorganized so that the red data of dif-
ferent pixels are contained in one register, the green data
in another, and the blue data in a third register. In the first
case a quarter of the processing capacity will be wasted and
in the second case many overhead instructions need to be
executed.



In this paper we propose the use of extended subwords
and the Matrix Register File (MRF) to overcome the afore-
mentioned limitations. Extended subwords use registers
that are wider than the packed format used to store the data.
Specifically, for every byte of data there are four extra bits.
For example, four 16-bit values are represented in a regis-
ter as four 24-bit quantities. The MRF allows to load data
stored consecutively in memory to a column of the regis-
ter file, where a column corresponds to corresponding sub-
words of different registers.

Given the importance of color space conversion and
the difficulty of obtaining high performance using existing
SIMD architectures, several (micro)architectural techniques
have been proposed to accelerate it. Bensaali and Amira [3]
and Sima et al. [13] proposed to employ reconfigurable
hardware. Compared to ASICs, however, FPGAs are slower
and consume more power. Agostini et al. have proposed a
parallel and pipelined architecture for color space conver-
sion from RGB to YCbCr. Kim [7] focused on two archi-
tectural enhancements for processing color images. First,
a pixel truncation technique is considered that reduces data
content in individual pixel word sizes for chrominance and
luminance. Second, a color-aware multimedia instruction
set extension (CAX) that supports parallel operations on
two-packed, 16-bit (6:5:5) YCbCr data on a 32-bit datap-
ath. That means that Kim used pixel-truncation technique.
This technique reduces the accuracy of the color space con-
versions compared to 24-bit implementation (8-bit for each
color component). Slingerland and Smith [14] proposed
that SIMD architectures implement strided loads and stores
to gather non-adjacent data elements as would be useful in
color space conversion. Strided memory accesses would
eliminate the overhead instructions, but such memory ac-
cesses are naturally slower than conventional memory ac-
cess. Additionally, in [4] it was indicated that one reason for
poor VIRAM memory performance for color space conver-
sion is because of the strided memory accesses. The MRF,
on the other hand, allows to read and write adjacent data
elements.

In our previous work [11], we used extended subwords
and matrix register file techniques to implement many 2D
media kernels such as (I)DCT, pixel padding, and 2 × 2
Haar transform. Performance was evaluated by calculating
the dynamic number of instructions, without using any sim-
ulators.

As previously mentioned, color space conversions ker-
nels have certain features compared to other media kernels.
Consequently, in this paper we want to implement and eval-
uate these important kernels using those two techniques.
Our work differs from others in the following manner. First,
we apply extended subwords and MRF techniques to accel-
erate color space conversions. We significantly extend to
use these techniques by providing experimental results ob-

tained by a detailed, cycle-accurate simulator. Our work
shows that combining these two techniques eliminates re-
arrangement instructions that are needed for color space
conversions on the existing SIMD processors. An interest-
ing conclusion from this work is that the MRF can be used
to reorganize strided data. Second, we have designed new
SIMD instructions and evaluated them using SimpleScalar
toolset for implementation of multimedia kernels such as
color space conversions.

We refer to MMX enhanced with extended subwords
and the MRF as Modified MMX (MMMX, pronounced as
triple-MX). In this paper we demonstrate that MMMX pro-
vides significant speedups over standard MMX for color
space conversions. Specifically, experimental results ob-
tained using the sim-outorder simulator of the Sim-
pleScalar toolset [1] show that:

• The MMMX implementation of RGB-to-YCbCr is up
to 2.45x faster than the MMX implementation and
MMMX is up to 1.78x faster than MMX for YCbCr-
to-RGB.

• We also compare the results to C implementations.
Compared to C implementations, the MMMX imple-
mentations are up 10.09x and 6.74x faster for RGB-to-
YCbCr and YCbCr-to-RGB, respectively.

• The speedups achieved by MMMX are higher for low
issue rates. This indicates that MMMX is suitable for
embedded processors, since high issue rates are inap-
propriate for embedded processors.

• For historical reasons, MMX has only 8 architectural
registers. Consequently, the constants needed for color
space conversion cannot be kept in registers. Our sim-
ulation results show that adding more registers yields
significant performance improvements.

This paper is organized as follows. Section 2 describes
the MMMX architecture. Section 3 discusses the color
space conversions and their fixed-point implementations in
MMX and MMMX. The experimental results are presented
in Section 4, and conclusions are drawn in Section 5.

2 MMMX Architecture
In this section we briefly describe the MMMX architec-

ture which features extended subwords and matrix register
file (MRF). In addition, we briefly discuss the area overhead
and delay of the proposed techniques.

2.1 Extended Subwords and MRF

Multimedia data is typically stored in memory using a
narrow data type, for example, 8-bit pixels or 16-bit audio
samples. Furthermore, to prevent overflow while process-
ing them, the data elements have to be unpacked after they



Memory address: 0x1000 

fld8s12    mm6,  (0x1000)

F      FF      0      13       F      AB      0      2A       F      A7       0        01      0       02     0       03

0xFF     0x13    0xAB     0x2A     0xA7     0x01     0x02    0x03

Figure 1. Illustration of the fld8s12 instruc-
tion.

have been loaded into a register. The conversion overhead
and the fact that the unpacked data no longer fits in a sin-
gle register limit the performance improvement that can be
obtained by applying SIMD instructions. To avoid this con-
version overhead and to increase parallelism, we employ
extended subwords. This means that the registers are wider
than the data loaded into them. Specifically, for every byte
of data, there are four extra bits. This implies that MMMX
registers are 96 bits wide, while MMX has 64-bit registers.
These registers are treaded either as a vector of eight 12-bit
subwords, four 24-bit subwords, or two 48-bit quantities.

When loading data into an MMMX register, the sub-
words are automatically unpacked. For example, as illus-
trated in Figure 1, the instruction fld8s12 loads eight
signed bytes and unpacks them to signed 12-bit quanti-
ties. Vice versa, store instructions automatically saturate
(clip) and pack the subwords. For example, the instruction
fst12s8u saturates the 12-bit signed subwords to 8-bit
unsigned subwords before storing them to memory.

The MRF allows to view the register file as a matrix.
Each register corresponds to a row of the matrix and cor-
responding subwords in different registers correspond to a
column. In other words, MRF [i, j] corresponds to the jth
subwords of register i. “Load-column” instructions load
data elements stored consecutively in memory into a col-
umn of the MRF.

Figure 2 illustrates how the MRF can be used to reor-
ganize the band interleaved data so that each register con-
tains either red, green, or blue data. With eight load column
instructions (fldc8u12) eight red, eight green, and eight
blue values are loaded into each register. Each load col-
umn instruction loads eight bytes (three red, three green,
and two blue) values as is shown in Figure 2. To provide
correct arrangement of RGB values for each pixel in differ-
ent subwords of the registers an offset, which is multiple of
6 bytes for each fldc8u12 instruction is used.

Most MMMX instructions are direct counterparts of
MMX instructions. For example, the MMMX instruc-
tions fsub{12,24,48} (subtraction of 12-, 24-, 48-bit
subwords) and fadd{12,24,48} (addition of 12-, 24-
, 48-bit subwords) correspond to the MMX instructions
psub{b,w,d} and padd{b,w,d}, respectively. In con-
trast to MMX, however, MMMX does not support vari-

r1       g1       b1      r2       g2      b2      r3       g3       b3      r4       g4      b4      r5        g5        . . .
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Figure 2. Illustration of the fldc8u12 instruc-
tion.

MMX/SSE (Int. part) MMMX
Datapath 64-bit 96-bit
Size of register file 8 x 64-bit 8 x 96-bit
Shared with Floating point reg. Dedicated
Access to register file row-wise row- & col.-wise
# of partitioned ALU 8 8
Size of the integer sub. 8-, 16-, and 32-bit 12-, 24-,and 48-bit
High and low mul. ins. 16-bit 12-, 24-,and 48-bit
The size of MAC ope. 16-bit 12-, 24-,and 48-bit
MAC instruction pmaddwd fmadd{12,24,48}
Special purpose ins. No/pavg{b,w},psadbw No
Saturate Add/Sub. Yes No
Overhead instructions packsswb,packssdw funpckl12

packuswb,punpckhbw funpckl24
punpckhwd,punpckhdq funpckh12
punpcklbw,punpcklwd funpckh24
punpckldq/pshufw

Table 1. The main differences between
MMX/SSE and MMMX architectures.

ants of these instructions that automatically saturate the
results to the maximum value representable by the sub-
word data type. They are not needed because, as explained
above, load instructions automatically unpack and store in-
structions automatically pack and saturate. Another dif-
ference with MMX is that MMMX supports multiplica-
tion instructions for the smallest subword data type (12-bit).
Specifically, the instructions fmul12{l,h} multiply the
eight corresponding subwords of the source and destination
operands and write the low-order (fmul12l) or high-order
(fmul12h) 12 bits of the 24-bit product to the destination
operand. In MMX/SSE, the packed multiply does not sup-
port the packed byte data type but only packed word (16-
bit). We have used the fmul12h instruction in the fixed-
point MMMX implementation of color space conversion.

The main differences between MMX/SSE and MMMX
architectures in integer part are in Table 1. As this ta-
ble depicts there are SIMD instructions for different data
types in the MMMX ISA. There are funpckl{12,24}
and funpckh{12,24} instructions in the MMMX ISA
for reshuffling the lower and higher packed subwords.



2.2 Area Overhead and Delay

In this section we discuss coarse estimates of the area
overhead of extended subwords and wide partitioned ALUs
using area estimates found in literature. Providing accurate
estimates is beyond the scope of this paper and will be the
subject of future work. We also briefly discuss the latency
and throughput of SIMD instructions.

MMX and MMMX have only eight architectural SIMD
registers, but we assume 32 64-bit physical (renaming) reg-
isters. Under this assumption, the total area overhead for
extended subwords is 1Kb, which is very small. In a recent
paper [16], an area breakdown of the TM3270 media pro-
cessor, the latest TriMedia VLIW processor, has been pre-
sented. The register file constitutes about 12% of the total
area. The TriMedia register file is relatively large, however,
because it consists of 128 32-bit registers and has 10 32-bit
read and 5 32-bit write ports. The area of a register file is the
product of the number of registers, the number of bits per
register, and the size of a register cell [10]. Furthermore,
the size of a cell is proportional to (3 + p)(4 + p), where
p is the total number of ports. The most aggressive super-
scalar processor we have simulated issues at most 4 (SIMD)
instructions per cycle and requires 8 read and 4 write ports.
Since we assume 32 64-bit physical registers and require
at most 12 ports, the MMX register file would constitute
at most 4.2% of the total area. Under these assumptions,
implementing extended subwords would require less than
2.1% of the total area.

A 32-bit ALU requires less than 0.05mm2 in a 0.18µm
CMOS process [10], so a coarse approximation of the area
of a 64-bit partitioned ALU is 0.1mm2 and of a 96-bit parti-
tioned ALU 0.15mm2. A relatively small integrated circuit
is 1cm2. Therefore, four 64-bit SIMD ALUs, as is assumed
in the most aggressive MMX-enhanced superscalar, require
less than 0.4% of the total area and four 96-bit SIMD ALUs
take less than 0.6% of the total area. In other words, the
area overhead of 96-bit SIMD units instead of 64-bit SIMD
units is very small.

In our simulations we assume that the latency and
throughput of SIMD instructions are equal to the latency
and throughput of the corresponding scalar instructions.
This is a conservative assumption given that the SIMD in-
structions perform the same operation but on narrower data
types.

3 Color Space Conversion

In this section we discuss the RGB-to-YCbCr and
YCbCr-to-RGB color space conversions and describe their
implementations in MMX and MMMX.

Conversion between the YCbCr and RGB formats and
vice versa can be accomplished with the following transfor-
mations.

Figure 3. Mean square error for different bit
widths in implementation of color space con-
version.
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In both equations, the coefficients have been rounded to
three fractional decimal digits.

Color space conversions are usually defined using
floating-point arithmetic but here, to avoid long-latency
floating-point operations, we use fixed-point arithmetic.
Specifically, for MMX we use 16-bit fixed-point numbers
and for MMMX we approximate the color space conver-
sion using 12-bit fixed-point arithmetic. To determine the
accuracy of these approximations, we have performed two
tests. First, we have measured the maximum absolute er-
ror by checking all possible RGB values (0 ≤ R, G, B ≤
255). For both the MMMX implementation (12-bit) and
the MMX implementation (16-bit), the maximum absolute
error compared to a single-precision floating-point imple-
mentation is 1. An 8-bit fixed-point implementation, on the
other hand, has a maximum absolute error of 3. This in-
dicates that the MMX implementation cannot employ 8-bit
fixed-point arithmetic, since the accuracy is too low. Sec-
ond, we have measured the mean square error (MSE) for
real images such as “Lena” as well as randomly generated
inputs. Figure 3 depicts the MSE of the 8-, 12-, and 16-bit
implementations as a function of the image size. It shows
that MSE of the 12- and 16-bit implementations are very
close to each other and that the MSE of the 8-bit implemen-
tation is much larger.

We now briefly sketch the MMX and MMMX imple-
mentations of the color space conversion kernels. We have
developed two MMX implementations. In both implemen-
tations, the coefficients are represented as 16-bit fixed-point
values because, as shown above, 8 bits are insufficient. In
the first implementation, referred to as MMX-InnerProduct,
color space conversion is carried out by computing the inner
product of every row of the transformation matrix with the



red, green, and blue data of every pixel. This implementa-
tion uses the packed multiply-add (pmaddwd) instruction
to multiply the RGB values with the corresponding con-
stants and to sum the two high-order and the two low-order
words. Hereafter, however, the two doublewords packed in
one register needed to be added. Since MMX does not pro-
vide such an instruction, unpack instructions are needed to
place them in different registers. Another disadvantage of
this implementation is that one of the subwords will be un-
used, because a pixel has three color components and there
are four 16-bit subwords in an MMX register. In other
words, 25% of the processing capability is wasted. Over-
all, this implementation needs to execute 312 instructions
to process eight pixels.

In the second implementation, referred to as MMX-
BandSeparated, we first rearrange the subwords contained
in several registers so that the red data is contained in one
register, the green data in another register, and the blue data
in a third register. In other words, we first change from the
band interleaved to the band separated format. Although
this requires many rearrangement instructions, the main ad-
vantage of this scheme is that hereafter the packed multiply
high instruction can be used to multiply, e.g., four red val-
ues with the same constant. This instruction simply ignores
the 16 low-order bits of the 32-bit products, but these bits
are not needed. This implementation needs to execute 124
instructions to process eight pixels.

We have measured the execution times of both
the MMX-InnerProduct implementation and the MMX-
BandSeparated implementation on the Pentium 4 using cy-
cle counters [6]. For an image of size 576 × 768, the
MMX-BandSeparated implementation is faster by a factor
of 4.10x. This is mainly due to three reasons. First, as men-
tioned before, in the MMX-InnerProduct implementation a
quarter of the processing capability is wasted. Second, the
packed multiply-add produces two 32-bit results but of the
32 bits only the 16 higher-order bits are really needed. In
the MMX-BandSeparated implementation the packed mul-
tiply high instruction is used, which simply discards the 16
lower-order bits. Because of this, the MMX-BandSeparated
implementation can exploit more data-level parallelism dur-
ing subsequent processing. Third, the MMX-InnerProduct
implementation uses unaligned memory accesses because
the color components of one pixel may be stored in mem-
ory locations which cross an address that is a multiple of 8.
Although this could be avoided, this would incur significant
rearrangement overhead. Because MMX-BandSeparated is
much faster, we will use this implementation for our com-
parison with MMMX. We note, however, that this imple-
mentation is also not very efficient because many instruc-
tions are needed to go from the band interleaved to the band
separated format. For example, to do this for 8 pixels re-
quires 38 instructions.

The MMMX implementation is similar to the second
MMX implementation. However, due to the MRF, changing
from the band interleaved to the band separated format can
be done with zero cost. Furthermore, in the MMMX im-
plementation 12-bit arithmetic is used, which allows to per-
form 8 operations in a single SIMD instruction. The 12-bit
constant coefficients are stored in memory as 16-bit values.
During execution these coefficients are packed to 12-bit val-
ues. The total number of instructions needed to process 16
pixels using MMMX is 86, while the MMX-BandSeparated
implementation requires 248 instructions.

4 Experimental Evaluation

In this section we evaluate MMMX by comparing the
performance of the MMMX implementations of the color
space conversion kernels to the performance of the C and
MMX implementations.

4.1 Simulation Environment and Method-
ology

In order to evaluate MMMX, we have used the
sim-outorder simulator of the SimpleScalar toolset [1],
which a detailed, execution-driven simulator that supports
out-of-order issue and execution.

We remark that we have not simulated MMX and
MMMX but rather RISC-like approximations. For exam-
ple, one operand of many MMX and MMMX instructions
can be a memory location, but we have simulated load/store
architectures. This was done because the SimpleScalar ar-
chitecture is RISC. This does not affect the validity of our
simulations, however, because our main objective is to com-
pare the performance of an SIMD architecture without ex-
tended subwords and the MRF to the same architecture with
these features. Furthermore, MMX instructions involv-
ing memory operands are translated to RISC-like micro-
operations (µOPs) in the Pentium 4. We also remark that
the correctness of the MMX and MMMX codes has been
validated by comparing their output to the output of corre-
sponding C programs.

Table 2 depicts the main parameters of the modeled pro-
cessors. We modeled processors with issue widths varying
from 1 to 4 instructions per cycle. So, when four SIMD
instructions are issued simultaneously, up to 32 data op-
erations are executed in parallel. When the issue width is
doubled, the number of integer ALUs and SIMD ALUs is
scaled accordingly. For most parameters we used the de-
fault values, except for the size of the register update unit
(RUU), which is 16 by default. This, however, is insuffi-
cient to find many independent instructions. We, therefore,
used an RUU size of 64 instead. As remarked before, the
latency and throughput of SIMD instructions are assumed
to be equal to the latency and throughput of the correspond-
ing scalar instructions. This is a realistic, even conservative



Parameter
Issue width 1/2/4
Integer & SIMD ALU 1/2/4
Integer & SIMD MULT 1/2/4
L1 Instruction cache 32KB,direct-mapped, 64-byte lines,

1-cycle hit time
L1 Data cache 32KB,4-way set associative, 64-byte lines,

1-cycle hit time, LRU replacement
L2 Unified cache 256KB, 4-way set associative, 64-byte

lines,
6-cycle hit time, LRU replacement

Main memory latency 18 cycles for the first chunk, 2 thereafter
Memory bus width 16 bytes
RUU entries 64
Load-store queue size 8
Execution out-of-order

Table 2. Processor configuration.

assumption given that the SIMD instructions perform the
same operation but on narrower data types.

We have implemented three versions of each kernel: one
in C, one in assembly using MMX, and one using MMMX.
The different versions of each kernel employ the same al-
gorithm and data types. Each program consists of three
parts, for reading the image, for performing color space
conversion, and for storing the transformed image. Only
the color space conversion has been implemented in MMX
and MMMX and we report only the time taken by this part.
All programs have been compiled using the Simplescalar
compiler with optimization level -O2.

4.2 Experimental Results

Figure 4 depicts the speedup of the MMX and MMMX
implementations of the RGB-to-YCbCr kernel for out-of-
order processors with different issue widths. The speedup is
relative to the time taken by the C implementation when ex-
ecuted on the processor with the same issue width. Figure 5
depicts the results for the YCbCr-to-RGB kernel. The re-
sults show that MMMX outperforms MMX significantly for
both kernels. Specifically, for RGB-to-YCbCr, the speedup
of MMMX over MMX is between 1.96x for the 4-way pro-
cessor and 2.45x for the 1-way processor. For the YCbCr-
to-RGB kernel, the speedup of MMMX over MMX is be-
tween 1.65x (4-way) and 1.78x (1-way). The reason that the
speedups for RGB-to-YCbCr are higher than for YCbCr-to-
RGB is that in the first kernel, the input is in the band inter-
leaved format and needs to be changed to the band separated
format, which requires many rearrangement instructions us-
ing MMX, while MMMX uses the MRF. In the second ker-
nel, the input is already in the band separated format so that
MMX does not incur this overhead.

An interesting observations is that MMMX exhibits
higher speedup for lower issue rates. For instance, on the
1-way processor, MMMX obtains an average speedup of
8.42x over the C implementation. On the 4-way processor,
the average speedup over the C implementation running on

Figure 4. Speedup of MMX and MMMX over
the C implementation of the RGB-to-YCbCr
kernel for different issue widths using out-of-
order execution.

Figure 5. Speedup of MMX and MMMX over
the C implementation of the YCbCr-to-RGB
kernel for different issue widths using out-of-
order execution.

the 4-way processor is 6.18x. This result demonstrates that
MMMX is a suitable candidate for embedded multimedia
systems where high issue rates and out-of-order execution
are too expensive. The reason that MMMX exhibits higher
speedup for lower issue rates is that the C implementation
achieves higher IPCs, as shown in Figure 6 for the RGB-
to-YCbCr kernel. Because MMX and MMMX pack sev-
eral independent operations in a single SIMD instruction
(MMMX even more than MMX), the distance between de-
pendent instructions decreases. In other words, when the
C implementation is executed the available data-level paral-
lelism is exploited as instruction-level parallelism. Further-
more, because the C implementation executes more loop
iterations than the MMX and MMMX implementations, the
branch prediction accuracy is higher.

The main reason why MMMX improves performance
compared to MMX is that it needs to execute fewer instru-
tions than MMX. To illustrate this, Figure 7 depicts both the
speedup of MMX and MMMX over the C implementation
as well as the instruction ratio, i.e., the ratio of the num-
ber of instructions committed by the C implementations of
both kernels to the number of instructions committed by the
MMX and MMMX implementations. These results are for
the 1-way out-of-order processor. It can be seen that in gen-
eral, the speedup is close to the instruction count reduction.
In all cases, the speedup is slightly smaller than the ratio



Figure 6. Instructions per cycle for RGB-to-
YCbCr on out-of-order processors with differ-
ent issue widths.

Figure 7. Ratio of committed instructions (C
implementation to MMX and MMMX) against
speedup for both kernels on 1-way out-of-
order processor.

of committed instructions. This can be attributed to mem-
ory stall cycles, since MMX and MMMX do not reduce the
time waiting for memory.

On average, MMMX reduces the dynamic number of
instructions by a factor of 2.22 compared to MMX. This
reduction comes from four factors. First, due to extended
subwords, the MMMX implementation can employ 8-way
parallel SIMD instructions while MMX can employ only 4-
way parallelism. Second, the MRF allows to reorganize the
data from band interleaved to band separated with zero cost,
while MMX requires a significant amount of rearrangement
overhead. Third, because MMMX processes more values
in parallel, it reduces the loop overhead. Although the loop
overhead incurred in the MMX implementation can be re-
duced by loop unrolling, this would increase the instruction
footprints of the kernels. Finally, because 8 elements fit in
a single MMMX register, the number of register copy in-
structions (movq) is reduced from 22 in each iteration of
the MMX implementation of the RGB-to-YCbCr kernel to
15 in each iteration of the MMMX implementation.

4.3 Impact of the Number of Registers

It is well-known that for ISA legacy reasons, MMX has
only 8 architectural registers. Because of this, the con-
stants needed for performing color space conversion can-
not be kept in registers but have to be reloaded from mem-
ory (cache) in each loop iteration. Although the constants

will be found in cache most of the times, the number of
load/store instructions is relatively large compared to the
number of arithmetic instructions. In this section we con-
sider the effect of adding more registers to the MMMX ar-
chitecture.

First, we consider the effect of adding two registers to
the MMMX architecture, so 10 in total. These registers are
used to hold the fixed-point representations of the additive
constants 16.5 and 128.5. Figure 8 shows that the speedup
of MMMX with two additional registers over MMX (with
8 registers) is 2.97x for the RGB-to-YCbCr kernel and
1.89x for the YCbCr-to-RGB kernel. With 8 registers the
speedups are 2.45x and 1.78x, respectively. So adding
two registers improves performance by factors of 1.21x and
1.06x, respectively.

Next, we consider the effects of employing 13 extra me-
dia registers for the RGB-to-YCbCr kernel. 11 of these reg-
isters are used to hold constants and 2 to hold intermediate
results. Since two of the constant coefficients in the YCbCr-
to-RGB kernel are zero and three of them are the same, for
this kernel we need to employ only 9 additional registers.
As can be seen in Figure 8, in this case the speedup of
MMMX over MMX is 3.64x for RGB-to-YCbCr and 2.24x
for YCbCr-to-RGB. So using 13 (resp. 9) extra registers
provides an additional performance improvement by a fac-
tor of 1.49x (resp. 1.38x). Again, as also shown in Figure 8,
the main reason for these performance improvements is the
reduced number of instructions that need to be executed. It
is interesting to observe, however, that in most cases the
speedup is larger than the reduction of the dynamic instruc-
tion count. This is because keeping the constants in reg-
isters also reduces the memory stall cycles. Although the
processor with only 8 media registers will mostly find the
constants in the cache, sometimes it will not due to cache
conflicts in which case it has to stall waiting for data to ar-
rive from memory.

5 Conclusions

Because e.g. the red data of adjacent pixels are spaced 3
bytes apart and because intermediate results are wider than
8 bits, it is difficult to vectorize color space conversion ef-
ficiently using a conventional SIMD architecture such as
MMX. In this paper we have shown that extended subwords
and the matrix register file (MRF) are suitable techniques
to overcome these limitations. With extended subwords the
subwords of the media registers are wider than the subwords
stored in memory. Extended subwords technique allows to
perform many computations without overflow and, there-
fore, avoids packing/unpacking conversion overhead and
increases the number of operations that can be performed
in parallel by a single SIMD instruction. The MRF allows
to view the register file as a matrix in which corresponding
subwords in different registers correspond to a column of



Figure 8. Speedup of MMMX over MMX and ratio of committed instructions (MMX to MMMX) on the
1-way out-of-order processor.

the matrix. Specifically, it is possible to load data stored
consecutively in memory into a column of the MRF. Al-
though the MRF has been proposed for block-based multi-
media kernels such as the (I)DCT and motion estimation, in
this paper we have shown that it can also be used for other
permutations than matrix transposition.

We have considered the RGB-to-YCbCr and YCbCr-to-
RGB kernels because these kernels consume a significant
fraction of the total processing time of JPEG and MPEG
encoders and decoders. Experimental results have been ob-
tained using an extended version of the sim-outorder
simulator of the SimpleScalar toolset. The results show
that MMMX, which features extended subwords and the
MFR, improves performance compared to a C implemen-
tation by up to 10.09x for the RGB-to-YCbCr kernel and
by up to 6.74x for the YCbCr-to-RGB kernel. Compared
to MMX, MMMX improves performance by up to 2.45x
and 1.78x, respectively. Additionally, the results show that
MMMX exhibits higher relative performance for lower-
issue rates. This indicates that extended subwords and the
MRF are suitable techniques for embedded multimedia sys-
tems where high issue rates and out-of-order execution are
too expensive. The results also show that additional media
registers would improve performance significantly, since
it would allow to hold the constant coefficients in regis-
ters during the entire execution of the color space conver-
sion kernels. For example, the results show that using at
most 21 media registers provides an additional speedup over
MMX of up to 1.49x and 1.38x for the RGB-to-YCbCr and
YCbCr-to-RGB kernels, respectively.

Our future work will focus on considering the impact
of out-of-order execution for larger register files and mem-
ory behavior of the color space conversions. In addition,
we want to use extended subwords and the matrix register
file techniques to implement other color space conversions
such as RGB to CMYK conversion to develop new SIMD
instructions.
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