
Reconfigurable Fabric Interconnects

Stamatis Vassiliadis and Ioannis Sourdis

Computer Engineering, TU Delft,

The Netherlands,

{stamatis, sourdis}@ce.et.tudelft.nl

Abstract— Using the existing reconfigurable network infras-
tructure of FPGAs we describe reconfigurable interconnection
networks, denoted as FLUX Networks. That is networks where
the processing elements, forming a parallel system, have in-
terconnects that are explicitly formed (dynamically) by request
using reconfigurable fabric, rather than being fixed. We perform
several experiments to show the viability of our approach. More
precisely, we present examples where the FLUX Networks per-
form up to 32 times better compared to a rigid fixed interconnect.
Furthermore, we show that, based on the data size and the
processing element hardware cost, different topologies might be
suitable for a single algorithm. The implication of the above
is that changing interconnects (dynamically) on demand using
reconfigurable fabric could be beneficial.

I. INTRODUCTION

In multiprocessor systems, developed algorithms have in

mind an interconnection network. Traditionally speaking, in-

terconnection networks are rigid and often change from one

design point to the next. A consequence of the above is that

algorithms and software, when ported to a new family of

multiprocessor parallel systems, will not scale in terms of

performance (at least) and new software development has to

be under way if performance is critical. In [1], as means to

resolve (alleviate) scalability and portability we introduced the

FLUX Networks, where the network configuration is adapted

on demand to fit the network to the needs of an application.

In this paper, we introduce the use of reconfigurable fabric

as an excellent potential for FLUX Networks implementation

platform. In our proposal there exists no logical interconnec-

tion of the processors, interconnects instead are established

(dynamically) on demand by loading the entire network or

individual physical connections. We describe some potential

implementation and a programming paradigm (extension of

[1], [2]) that may allow the interconnects to be fused with

traditional and reconfigurable programming models.

The paper is organized as follows: In Section II we present a

background discussion. In Section III we present different so-

lutions for reconfigurable networks to change dynamically on

demand processing and interconnecting of processors allowing

them to adapt to the interconnect demands of software. In

Section IV we provide initial experimental data supporting our

approach, and finally, in Section V we present our conclusions.

II. BACKGROUND & FPGA CONJUNCTURES

As indicated earlier, multiprocessor systems are designed

based on a specific hardwired interconnect topology. That is,

This work was supported by the European Commission in the context of the
Scalable computer ARChitectures (SARC) integrated project #27648 (FP6).

Processing
Element

Router

Router

Processing
Element

8 bits
32 bits

64 bits

PEPEPE

PEPEPE

PEPEPE

PEPEPE

PEPEPE

PEPEPE

Time: t

Time: t+1

Fig. 1. Adapting interconnects on demand.

the designer provides the physical structure of the intercon-

nects having in mind a regular network topology such as

crossbar, cube, fat-tree, etc. Furthermore, the network structure

is fixed and rigid. For example, once the designer fixes the

link width, it will remain the same for the entire life time

of a parallel system. Additionally, since the physical structure

of the network is rigid, the way communications occur may

be restricted. Even when it is found that different communica-

tion/network schemes will be more beneficial to achieve better

performance because of the rigid network restrictions (e.g.

fixed buffer space, bus width, etc.) in most circumstances the

benefits can not be achieved. Clearly for these circumstances

a different physical organization is required and such an

organization can not be accommodated by fixed networks. For

example, as depicted in Figure 1, an application at time “t”

requires a 2D mesh topology, while at time “t+1” the lower

processing elements (PEs) need to transfer large amount of

data to the middle PE. A fixed/rigid network would not be

able to alleviate these communication requirements, resulting

in substantial performance drawbacks. On the contrary, in

reconfigurable fabrics the interconnects can be reconfigured,

e.g. changing the PE router, link width and buffering size,

(and possibly the communication scheme and algorithm) to

accommodate the communication traffic. In the example of

Figure 1, extra links and buffering in the middle PE are

added and several PE routers change. In addition, the width

of several links changes, that is, critical links become wider

(64 instead of 32 bits), while links which are not often

used become narrower (8 instead of 32 bits). This way, in

FLUX networks the hardware resources are better utilized

to facilitate the communication requirements of the current

application/program phase and maximize performance.

Obviously, some classes of applications benefit from a

specific physical structure. A general purpose parallel system

is build however to accommodate a multiplicity of application

classes. Given that a provided interconnection network and

communication scheme does not fit a pre-specified inter-

connection mechanism, not all applications can substantially

benefit from parallel processing.

To alleviate performance penalties, numerous researchers

have provided algorithms of mapping communication net-

works needed for an application of different interconnections

[3]. Considering VLSI chip structures, the current designer

practices may not be the most appropriate. Currently, algo-

rithms should be created to suit the multiprocessor system

topology in order to maximize performance. Alternatively, we

propose the interconnection network to be provided (dynami-

cally) on demand to fit an algorithm’s/program’s communica-

tion needs. In order to allow for on demand interconnection

networks, connections have to be “adapted”. This is possi-

ble because reconfigurable technologies have an underlying

network that can be “modified”. Consequently, it may be

of benefit for multiprocessors using reconfigurable fabric, to

not commit in advance the underlying network structure into

specific interconnects.

In [1] we experimented on rigid physical underlying net-

works, and showed that based on the underlying network,

different mappings are suitable for different algorithms. In

the next sections, we answer the following question: “Can

it be beneficial, in reconfigurable fabric, to change inter-

connection networks (dynamically) on demand depending on

the algorithm/program needs?” We answer affirmatively tak-

ing into account the characteristics of current reconfigurable

technology and new parameters such as the area cost of the

interconnection network and the processing elements.

S

DM

Fig. 2. Direct connec-
tion of nodes S,D (S →

D) and indirect connec-
tion through node M (S
→ M → D).

In ASIC a direct logical connection1

from a point S to a point D and an

indirect connection S to D via a third

switching node M can be the same,

since they share the same physical

interconnections. On the contrary, re-

configurable physical networks allow

a multiplicity of interconnects for two

points. Consequently, the conjuncture

stated above for rigid networks may

not hold true for reconfigurable fabrics.

We use Xilinx Virtex2Pro and show

that the direct connection (Figure 2) is substantially faster

(60% of the indirect latency), keeping the distance of the nodes

constant. Thus the physical reconfigurable fabric could match

the logical network of an application and possibly improve

performance. Considering that mapping a single edge onto

two edges is common to occur when mapping a topology

into another, especially when mapping a denser network into

a sparser one, our argument becomes even stronger.

1Logical is the network which the application designer has in mind. Physical
network is the network available by the designed chip.

NoC
Algorithm Phase 1 Mapping 1

time: t

43

65

21PE

PE

PE

PE

PE

PE

PE

PE

7

Algorithm Phase 2
Mapping 2
time: t+1

PE PE
8

2

5

7

6

1

9

4

3

3

2

1

4

7

5

PE

6

9

8

7

6

2

1

4

3

5 PE

PE
Reconfigu-

rable

Reconfigu-
rable Area

I/F to NoC

Fig. 3. FLUX Networks on demand with static PE placement.

III. RECONFIGURABLE FLUX NETWORKS ON DEMAND

To improve some of the network-related bottlenecks for

parallel processing, we investigate and propose to use the

existing reconfigurable fabric on demand rather than statically

setting up a logical network in a physical (as performed by

the existing systems) and then attempt to map algorithms

network necessities on the preexisting network. That is, before

(or during) program execution the most suitable network is

installed, and consequently is replaced by a different network

if it is no longer needed. This is achieved, in difference to

existing proposals, explicitly by the program.

Reconfigurable Interconnects: Figure 3 depicts an imple-

mentation scheme of our proposal. This multiprocessor system

consists of several PEs and a reconfigurable part that can

interconnect them in different topologies. For instance, in

case of an algorithm implemented for binary-trees (BT), this

scheme can connect the PEs in a BT topology. Similarly, for an

algorithm that is suitable for a mesh interconnect, the network

can be a mesh. Clearly the topologies will follow different

physical links to match the logical structure of each algorithm

(phase). Obviously, this flexibility is limited by the resources

available for the interconnection. This means that the number

of the PEs which can be connected in a specific topology

depends on the routing resources available (wires and switch

boxes). The reconfigurable FLUX networks can change during

the execution of a single program. More precisely, if different

phases of a program “prefer” different topologies, then the

interconnection network could change at run-time. Finally,

the PEs can either be statically (hardcores), or dynamically

(softcores) placed.

1 2 3 4

8 7 6 5

Fig. 4. Direct connections addi-
tional to the network topology.

Direct “point-to-point” &

Chaotic Interconnects: The

FPGA routing architectures

provide an underlying “un-

used” reconfigurable network.

That means that a network

structure per se may not be

needed and processors could

be connected on demand at

point to point networks if there are available connections

(unused routing resources). Figure 4 depicts the way unused

wires can be used to connect two PEs additionally to the

interconnection network. In this example a direct connection

between PEs #1 and #5 can be established besides the existing

Ring topology due to a critical event. This connection should

be set when needed and released when the data exchange

is finished. Alternatively, the interconnections can be build

on dynamically established connections (chaotic network), if

some specific conditions are satisfied, discarding any fixed

network topology to directly interconnect PEs based on the

communication requests of the application and the available

connections. Apart from the complex routing algorithms that

this solution requires, a second problem is timing. Not know-

ing in advance the wire length of each connection implies

that proper mechanisms are required to guarantee correct

communication between the PEs (e.g. GALS).

Multi-Chip Interconnects: The FLUX Network schemes

mentioned above can be considered to connect several multi-

processor chips in order to construct a larger system. However,

we should note that off-chip interconnection has different

characteristics and therefore we need to deal with some

additional design and performance issues such as limited off-

chip communication bandwidth, due to limited fixed location

I/O pins that cannot operate as fast as the on-chip busses.

Technology Considerations: Current technology allows

for reconfiguration to be done before program execution.

Thus loading an network before program execution is readily

available. Regarding dynamic reconfiguration, we first note

that a network is used for substantially long time (e.g. scientific

applications) in parallel systems that perform massive data op-

erations with the same network requirements. Direct point-to-

point and chaotic interconnects could be difficult to implement

in current technologies because they require small area and fast

reconfigurability not supported by current FPGA technologies

[4]. Numerous approaches can be envisioned, however outside

of the scope of the paper, to change current commercial chips

to incorporate smaller dynamic reconfigurability slides for

point-to-point and chaotic interconnects in the near future.

PROGRAM

SET Network #1

PROGRAM

SET Network #2

SET Network #N

PROGRAM

Fig. 5. SET

Network before
or during pro-
gram execution.

Programming Paradigm for Reconfig-

urable FLUX Networks: In order for a

network to exhibit the properties described

above, explicit network calls should be added

to the programming paradigm. The FLUX

networks allow physical network hardware

descriptions to coexist with common pro-

gramming constructs. Arbitrary interconnec-

tion networks can be applied/mapped before

program execution or at runtime. A network

can be called on demand in reconfigurable

technology via explicit calls. To achieve ex-

plicit calls we extend the Molen paradigm [2] to support net-

work reconfigurations on demand. Figure 5 illustrates the way

SET Network instructions activate the network reconfigura-

tion process before or during the program execution. Similarly

to the MOLEN programming paradigm, the desired network

configuration (bitstream) is downloaded to the reconfigurable

unit and subsequently the program execution starts/continues

using the newly installed interconnection network.

TABLE I

IMPLEMENTATION RESULTS: 255-NODES BT & 256-NODES MESH.

link Routing AreaFreq. diameter
#nodes#links

average

width logic cells MHz#cycles(delay) links/node

8-L BT 32 22,008 254 14 (120 ns) 255 254 2

16×16 mesh 32 77,184 250 30 (55 ns) 256 480 3.3

IV. EXPERIMENTAL RESULTS

In this section, we perform several case studies using

Xilinx Virtex2Pro-100 and several parallel algorithms and

interconnection networks. We show the area and performance

gains when using the most suitable topology, and investigate

the parameters that affect the network choice.

Case Study 1: Binary-Tree and 2-D Mesh Implementa-

tion. In this case study, we implemented a 256-nodes mesh

in Virtex2Pro-100 FPGA, which is the maximum we could

fit on the chip (87% occupancy). Then, we implemented an

255-nodes BT. Both use a 32-bit bus width and have the same

cycle time. Table I depicts our findings. The main conclusion

is that even though the BT has 53% (254/480) total links and

60% (2/3.3) average links per node, it requires for the same

number of nodes 22K vs. 77K logic cells, which account 29%

of the mesh. The suggestion of the example implementation

is the following: one would expect, due to the average total

number of links, average number of links per node and number

of nodes, the mesh network to require twice the area of the BT.

This however, is not the case as it requires almost 4× more

area. This implies that for a given area constraint, depending

on the network, substantially bigger network than expected

could be implemented and vice versa.

Case Study 2: Binary-Tree vs. its 2-D Mesh mapping. In

the second case study we evaluate the performance of BT and

2D mesh networks on a BT algorithm. In order to run the BT

algorithm into a 2-D mesh we utilize two mapping algorithms

with different edge congestion, expansion, and dilation2 to

map the logical BT topology of the algorithm into the 2D

mesh physical network. The first one is proposed by Lee and

Choi3 [5] and the second one is the well known H-trees4 [6].

Subsequently, we evaluate the performance of a 2-D mesh

physical topology, compared to a BT physical topology when

running the prefix sum algorithm for BTs described in [7]. For

a given set X = x0, x1, . . . , xn−1 the algorithm calculates the

prefix sums S = s0, s1, . . . , sn−1, where si = x0+x1+. . .+xi

for i = 0, 1, . . . , n − 1. Figure 6 depicts the total number of

cycles required to execute the algorithm for different sizes of

sets and number of nodes. Clearly, the BT topology is up to

32× faster, compared to the 2-D mesh (Lee Choi and H-tree

mappings). We can also notice that the processing data affect

the performance of the networks. Medium size networks have

2When embedding topology A into topology B, edge congestion is the
maximum number of A edges, mapped onto any B edge, expansion is the
ratio of number of the B nodes to the number of A nodes, and dilation is the
maximum number of links in B that any edge of A is mapped onto.

3Edge congestion=2, optimum expansion (2
p

2p
−1

), dilation D

2
+ 1 for the

edges between the 2nd and 3rd level of the tree, where D is the dimension
of a D × D mesh.

4Edge congestion one, expansion asymptotically twice the optimum, and

dilation= D+1

4
.

6

8

10

12

14

16

18

20

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

BT_data2^20
Mesh_Htrees_data2^20

BT_data2^16
Mesh_Htrees_data2^16
Mesh_Lee_Choi_data2^16
BT_data2^13
Mesh_Htrees_data2^13
Mesh_Lee_Choi_data2^13

Mesh_Lee_Choi_data2^20

Number of nodes 2^x

Nu
m
be
r o

f c
yc
le
s 2

^x

Fig. 6. Performance of the Prefix sums algorithm for different data sizes,
number of nodes, and networks.

larger BT-Mesh performance gap when processing smaller

data sets. In addition, for larger data sizes and large networks

the performance gap is higher. Considering the area results

of the previous case study for the BT and the 2-D mesh, we

can state the following: given a specific area constraint for

an interconnection network of a multiprocessor system, then

a 1023-node BT (10-levels) could fit in about the area of a

256-node mesh. In this case, the BT would be 4 to 8× better

depending on the data size, even for small or medium systems.

0.4

0.6

0.8

1
1.2

1.4

1.6

1.8

10 12 14 16 18 20 22 24 26

Fig. 7. Performance ratio between a 7-L or 6-L FT and a 8-L BT in sorting.

Case study 3: Sorting in Binary and Fat trees. For

this study we implemented the routing structures of an 8-

level binary-tree (BT) and 7 and 6-level fat-trees (FT). We

chose to implement BTs and FTs of different levels in order

to create structures of similar area. However, since the trees

do not have the same number of PEs, we need to take into

account the area of the PEs in order to fairly compare their

area cost. As Table II depicts, the 8-level BT has similar area

to the 6 or the 7-level FT, when the PEs are small (<29 logic

cells) or large (>357 logic cells) respectively. We evaluate

the performance of the sorting algorithm described in [8],

including the latency of loading and unloading data for these

three networks for different data sizes. Figure 7 illustrates

the performance ratio between the 7 and 6-level FT and the

BT. The 7-level FT is up to 1.7× better than the 8-level BT,

however for large data sets is less efficient. For small data

sizes the 6-level FT performs better than the BT up to 1.3×,

while for larger data sets it is less efficient and requires 2× the

latency of the 8-L BT. In general, as the data set gets larger the

performance ratio decreases. That is because the initial sorting

in the leaf nodes, becomes the dominant factor compared to

the load/unload communication delay. One would assume that

TABLE II

IMPLEMENTATION RESULTS: 8-L BINARY-TREE & 6,7-L FAT-TREES.

link Routing AreaTotal AreaTotal AreaFreq. diameter
#nodes#links

max links

width Logic Cells PE=29LC PE=357LCMHz#cycles(delay) per node

8L-BT 32 22,008 29,403 113,043 254 14 (55 ns) 255 254 3

7L-FT 32 67,592 71,275 112,931 238 12 (50 ns) 127 384 128

6L-FT 32 27,432 29,259 49,923 257 10 (39 ns) 63 160 64

the FT topology is more suitable for sorting than the BT, since

FT I/O bandwidth is substantially higher. However, this case

study clearly shows that we cannot choose in all cases the most

suitable topology according only to the application. There are

other parameters that should be taken into account such as

the data size, the underlying technology and the architecture

of the PEs. This makes our argument stronger, meaning that

reconfigurable interconnects can be proved beneficial even

when it is not clear in advance which topology is suitable.

The above case study indicates that the overall performance

depends on the data size and PEs area requirements. Assuming

a certain area constrain on a chip, the same program may

demand a different interconnection network, depending on the

amount of data it has to operate upon, implying that the

networks on demand will have been the correct choice.

V. CONCLUSIONS

In this paper, we introduced the use of reconfigurable fabrics

as an implementation platform for the FLUX networks and

discussed some performance potential for parallel applications

suitable for different interconnection topologies. We showed

that when using the reconfigurable fabric, FLUX networks can

be beneficial compared to rigid physical underlying networks.

We studied different types of reconfigurable interconnections

and presented case studies which suggest that the performance

of a parallel algorithm drops when using other topologies

than the appropriate one (up to 32×). The implication of the

above is that by determining the network in advance and by

exploiting network instalments (statically or dynamically) sub-

stantial gain can be expected. Reconfigurable FLUX networks

can provide the most suitable topology to match the logical

structure of an application and maximize performance.

REFERENCES

[1] S. Vassiliadis and I. Sourdis, “FLUX Networks: Interconnects on De-
mand,” in Int. Conf. on Embedded Computer Systems: Architectures,

Modeling and Simulation (IC-SAMOS), July 2006, pp. 160–167.
[2] S. Vassiliadis, S. Wong, G. N. Gaydadjiev, K. Bertels, G. Kuzmanov, and

E. M. Panainte, “The Molen Polymorphic Processor,” IEEE Transactions

on Computers, pp. 1363– 1375, November 2004.
[3] B. Monien and I. Sudborough, “Embedding one interconnection network

in another,” In Computational Graph Theory, G. Tinhofer et al. Eds.,

Computing Supplementa, vol. 7, pp. 257–282, 1990.
[4] P. Sedcole, B. Blodget, J. Anderson, P. Lysaght, and T. Becker, “Modular

Partial Reconfiguration in Virtex FPGAs,” in Proceedings of 15th Int.

Conference on Field Programmable Logic and Applications, 2005.
[5] S.-K. Lee and H.-A. Choi, “Embedding of Complete Binary Trees into

Meshes with Row-Column Routing,” IEEE Trans. Parallel Distrib. Syst.,
vol. 7, no. 5, pp. 493–497, 1996.

[6] S. A. Browning, “The Tree Machine: A Highly Concurrent Computing
Environment,” Ph.D. dissertation, CS Dept., CalTech, 1980.

[7] S. G. Akl, The design and analysis of parallel algorithms. NJ, USA:
Prentice-Hall, Inc., 1989.

[8] T. H. Cormen, E. Leiserson, Charles, and R. L. Rivest, Introduction to

Algorithms, ser. Cambridge. Massachusetts: The MIT Press, 1990.

