
External Memory Controller for Virtex II Pro
Blagomir Donchev

Department of Microelectronics
Technical University-So�a

8, Kliment Ohridski, Bl.2, 1000, So�a, Bulgaria
Email: donchev@ecad.tu-so�a.bg

Georgi Kuzmanov, Georgi N.Gaydadjiev
Computer Engineering, EEMCS
Delft University of Technology

Mekelweg 4, 2628CD Delft, The Netherlands
Email:{g.kuzmanov,g.n.gaydadjiev}@ewi.tudelft.nl

Abstract� An implementation of an On Chip Memory (OCM)
based Dual Data Rate external memory controller (OCM2DDR)
for Virtex II Pro is described. The proposed OCM2DDR
controller comprises Data Side OCM (DSOCM) bus interface
module, read and write control logic, halt read module and Xilinx
DDR controller IP core. The presented design supports 16MB of
external DDR memory and 32 to 64 bits data conversion for single
read and write operations. Our implementation uses 1063 slices
of Virtex2Pro FPGA and runs at 100 MHz. The major bene�ts
of the proposed design are high bandwidth to external memory
with reduced and more predictable access times compared to the
Xilinx PLB DDR controller implementation. More specially, our
read and write accesses are 2,44 and 4,25 times faster, than the
PLB based solution respectively.

I. INTRODUCTION

The PowerPC (PPC) hard cores embedded in the Virtex
II Pro Field Programable Gate Arrays (FPGA) have two bus
interfaces that can be used for memory access: the Processor
Local Bus (PLB) and the On-Chip Memory controller (OCM)
Bus. The OCM bus supports interface to on-chip Block RAM
(BRAM) only. This type of RAM has short and uniform access
times, however it is limited by the size of a single chip memory
only [1]. To access larger data volumes, dedicated interface to
external RAMs is needed but is not currently supported. PLB is
the only solution, provided by Xilinx, for connecting external
memories to Virtex II Pro FPGA. Although PLB supports a
variety of external memory types, such as SRAM, SDRAM,
and DDR, and addresses larger storage capacities compared
to OCM, it has one major drawback. This drawback is that
PLB is not a dedicated memory interface but it is based
on the shared bus concept. The latter concept implies that
each PLB connected memory module has to compete for the
bus resources with other peripheral modules attached, which
potentially leads to performance degradation.

The goal of this paper is to propose a dedicated memory
design solution that solves both the access time limitation
of the PLB and the storage capacity limitation of the OCM.
The proposed solution of the above design challenges is a
memory controller hereafter referred to as OCM2DDR con-
troller. For our design, we consider Double Data Rate (DDR)
dynamic RAM due to its best performnce/cost ratio compared
to static memories (SRAMs) and other dynamic memory
types (e.g.,SDRAM). The OCM2DDR controller consists of
a module for input and output 32/64 bits data conversion, a
Xilinx DDR controller (v1.11) [2], an addressing module and a

control unit. The system is implemented on the Digilent XUP
V2P development platform [3], which embeds a Virtex-II Pro
XC2VP30 FPGA and 256 MB DDR RAM. The key features
of the proposed controller are:
• Communication with external DDR memory through the

Data Side OCM Controller (DSOCM);
• Run time adjustable read and write access times;
• 100 MHz operational frequency;
• Trivial resource utilization: 7.8% slices and 3.8 % �ip-

�ops of the XC2VP30 device;
• 4,25 write speedup and 2,44 read speed up compared to

Xilinx PLB DDR implementation.
The remainder of this paper is organized as follows: The

motivation for this work is presented in Section II. Sec-
tion III introduces the OCM2DDR controller organization
and provides short discussion on its modules and on the
speci�c clock generation strategy utilized. The implementation
results of OCM2DDR controller are presented in Section IV.
Finally, Section V summaries the �ndings and presents the
conclusions.

II. MOTIVATION

The PowerPC cores in the Virtex2Pro are supported by two
memory interfaces: the OCM and the PLB. The timing and
the protocols of these interfaces are conceptually different. In
this section, we brie�y discuss the differences between these
two interfaces. Based on their advantages and drawbacks, we
motivate the need of a controller, combining some advantages
of both the OCM and the PLB.

OCM provides a dedicated interface between the PowerPC
core and the on chip BRAMs. Some key features of this
interface are: separate Instruction Side OCM(ISOCM) and
Data Side OCM(DSOCM); short and �xed access time to the
BRAM memory.

PLB is based on IBM's 64-bit CoreConnect technology and
uses an arbitration policy to control the slave devices attached
to the bus. Some key features of this bus are: 64 bits wide data
bus; 32 bits wide address bus, and 8-word cache line transfers.
Xilinx provides several PLB-based external memory solutions,
including a DDR SDRAM controller, which is a soft IP core
with the following features [2]:
• PLB interface;
• Auto-refresh cycles generation;

• Single-beat and burst memory transactions;
• 32 and 64 bits DDR data widths;
• Error correction code (ECC).
Despite all PLB advantages, there exist two essential draw-

backs: 1) Low speed and 2) The non-deterministic memory
access times. A short comparison between the PLB and the
OCM is presented bellow (for more elaborated comparison
one can refer to [4]):
Operating frequency: The PLB operating speed dependents on
the maximum operating frequency of the PLB arbiter and the
FPGA IP blocks that are connected to it. On the other hand,
the OCM speed dependents only on the amount of on-chip
memory that is connected to it.
Shared vs. Dedicated: The PLB is a shared bus, and allows up
to sixteen masters and sixteen slaves. All devices connected
to the PLB have to share the available bus bandwidth. There
is no arbitration on the OCM bus because of its dedicated
interface.
Non-deterministic vs. Deterministic timing: The fact that the
PLB must share its bandwidth with many masters and slaves
makes its access times unpredictable. Because the OCM is a
dedicated interface, it has deterministic timing.

It can be concluded that one considerable drawback of the
PLB is the speed limitation imposed by the bus arbitration. An-
other severe PLB drawback is that the bus bandwidth is shared
among all attached devices, which results in non-deterministic
latencies. A positive feature of the PLB is the support for large
memory sizes. In contrast to PLB, the OCM bus speed depends
only on the amount of the connected BRAMs. The OCM bus
is dedicated and its timing is deterministic. Serious drawback
of the OCM is that the supported memory capacity is limited
to the available on-chip BRAMs. Moreover, Xilinx does not
provide any dedicated interface to external memories similar
to the one they provide to the internal ones through OCM.
This causes severe problems when fast and uniform access to
external memory is required. The above observations indicate
the origin of serious design problems, which arise when fast
external memory accesses are required.

The above design problems motivated our research towards
�nding a performance ef�cient interface solution between the
Virtex2Pro embedded PPCs and external memories with large
storage capacities. More speci�cally, we propose a design,
which combines a high speed and deterministic OCM interface
from one hand and the PLB advantages to support external
memory on the other.

III. OCM2DDR CONTROLLER ORGANIZATION

The block diagram of the OCM2DDR controller is shown
on Figure 1. The OCM2DDR controller consist of the follow-
ing modules:
DSOCM interface: DSOCM is a data memory controller,
which is integrated in PPC. It is connected through accepts
an address and associated control signals with the processor
during a load instruction, and passes valid address to the
OCM2DDR controller. For store instructions, a valid addresses

Fig. 1. Block diagram of OCM to DDR controller

Fig. 2. Clock Architecture and Initialization chain

from the processor are accompanied by the data and by the
associated control signals.
Control unit: Consists of logic for read/write requests gener-
ation to the DDR, chip select and read/write signals to the
DDR, and halt logic driving PPC. Read and write operation
are determined by OCM EN and OCM BW signals. During
the read operation the PPC has to be halt for the time until
DDR provides valid data.
Driver unit: Provides address conversion from DSOCM format
to format required by the DDR controller.
Input/Output Data Buffer: This buffer is responsible to convert
data between the 32 bits-OCM data bus format and 64 bits-
DDR data bus format and is managed by the Control unit.

The main function of the OCM2DDR controller is to pro-
vide data communication between the PowerPC Core (PPC)
and external DDR memory through DSOCM. In case of writ-
ing the data to the memory, PPC provides the data, the address
and a write request through DSOCM to the OCM2DDR
controller. The OCM2DDR controller generates all required
signals with the regarded timing, for writing the data to the
DDR memory. In case of memory read, PPC provides the
address and a read request through the DSOCM, generates
read request to the DDR.
Design considerations: The DSOCM's controller is imple-
mented in a setup with a single PPC. In our design, both the
data and the instruction side are used: the instruction side is

used to store the instruction segment of the program and the
data side is connected to the OCM2DDR controller.
Clock Architecture: There are two clock schemes that are
recommended by Xilinx application notes for Virtex II Pro
DDR[5],[6]. In our design implementation, DCM circuits with
local inversion [7] are used as illustrated in Figure 2.

The �rst DCM starts automatically at power on. When the
�rst DCM is initialized, the second DCM starts. Additional
DCM cores are linked together in this fashion to ensure that
all clock signals are stable before the system boots up. By
inserting the OCM2DDR controller into this chain, the system
boot can be delayed until the DDR has been initialized.
Signal Translation: The OCM2DDR controller has to translate
the signals provided by the OCM controller into the corre-
sponding Intellectual Properties Interconnect Format (IPIF)
signals (supported by the Xilinx DDR controller) [8] and vice
versa. This leads to the signal translation diagram as shown
in Figure 3. The IPIF has an address width of 32 bits, the
DSOCM has only 22 bits address bus. Since the IPIF addresses
are byte aligned and the DSOCM is 32-bit aligned, the two
least signi�cant bits of the IPIF address will be set to zero
and the 22 bits of DSOCM address will be placed behind
that. The remaining 8 bits will be constantly set to zero. More
precisely, this means that every address of the DSOCM address
space is mapped to a respective address of the DDR controller.
The IPIF protocol uses a scheme called �Byte Steering�. This
means that the peripheral can address the memory space byte
aligned, but the data must be provided, in compliance with
the base bit alignment of the bus. This means that the address
is given as a byte address, but the byte mask and data are
aligned to the width of the data bus (64 bits). The address
generated from the DSOCM is always aligned to 32 bits. This
conversion holds for both the incoming, and outgoing data,
and the data mask has to be shifted accordingly. Both masks
of the IPIF and of the DSOCM hide the data on a byte level.
The byte mask of the IPIF speci�es the bytes that contain valid
data. The DSOCM mask determines the bytes to be written
to the BRAM. For write operations, this means that the byte
mask can be simply copied. However, for read operations, the
DSOCM byte mask is kept empty, while all the data bits on
the bus are expected to be valid. The IPIF bus has separate
read/write indicator signals, and the byte mask validates the
data for both, read and write operations. This means that in the
case of a read operation, the DSOCM byte mask is empty, but
the translated IPIF byte mask should be completely asserted.

Because of read/write timing differences between the
DSOCM and DDR, it is necessary to halt the processor during
the read operation for the time, required for DDR memory
to provide valid data. A special logic circuit is developed to
implement this feature.

IV. VIRTEX II PRO MAPPING

The proposed design has been implemented using Xilinx
Platform Studio 7.1i [9]. Initially, the design has been sim-
ulated with ModelSim 6.0 SE using a reference functional

Fig. 3. Signal translation conception

timing model of Micron DDR 256 MB memory, provided by
the vendor.

Implementation results of OCM2DDR controller, presented
in Table I suggest that the hardware costs are trivial with
respect to the available recon�gurable resources (8%). The
reported delays suggest a maximum speed of 159,9 MHz.
After implementing in XC2VP30-7 (Digilent's XUP V2Pro
board)[3], the design was tested at 100 MHz with two syntectic
applications that write and read into the DSOCM address
space. One of them consists of single word (32 bits) write
and read operations and the second one consists of loops of
memory initializations and linear write/read operations for 20
32 bits words. Figure 4 and Figure 5 depict the simulation
results of the OCM2DDR with the DSOCM in a single cycle
mode. Position 1 on both �gures clearly indicates that the
DDR access is completed within the OCM bus assertion. The
DDR memory used and its simulation timing model have a
CAS latency of two clock cycles. Because of the necessity to
keep DDR CS signal for longer time than the DSOCM Enable
signal, an internal counter was used, indicated by position
2 on Figure 5. Because of the difference between the times
required for read/write operations by the PPC and the DDR,
it is necessary to halt PPC during the read operation. The halt
lasts for the time required by the DDR memory to provide
the data, depicted by position 3 on Figure 4. This feature is
implemented using simple logic based on a clock multiplexor
primitive (BUFGMUX) [10]. The proposed solution follows
recommended technics for clock synchronization given by Xil-
inx [11]. A severe concern is the fact that the DDR access time
can vary greatly. To solve this problem, a run time adjustable
circuit for read and write operations was developed. The
execution time for both operation is calculate with generation
of acknowledge by the internal DDR controller. Its behavior
is indicated by position 4 on Figure 4

For debugging purpose, an Input/Output interface based on
the Xilinx OPB UART Light IP core [12] is designed. Its
parameters are the following: 115200 kbits/s, 8 bits data, no
parity check and no hardware/software corrections. In this
implementation the CPU and the OCM2DDR controller are
running at 100 Mhz with additional �xed phase shifting of
60 degrees in the second DCM. It is done to compensated

00000000 FF00AB00 FF00AB01

0000

1000000000000000000011 1000000000000000000000 1000000000000000000011

81

0000000000000000 FF00AB00FF00AB01

11111111 11110000 11111111

212960 ns 213 us 213040 ns

sys_clk_pin

docm_bramdsocmrddbus 00000000 FF00AB00 FF00AB01

docm_dsocmbramen

docm_dsocmbrambytewrite 0000

docm_dsocmbramabus 1000000000000000000011 1000000000000000000000 1000000000000000000011

docm_dscntlvalue 81

dsocm_clk
isaligned

pulse

pulsgen_t

pulsgen

bus2ip_rdreq

ip2bus_rdack

ip2bus_data 0000000000000000 FF00AB00FF00AB01

bus2ip_be 11111111 11110000 11111111

bus2ip_rnw

1

3

4

Fig. 4. Read data from DDR

FF00AB00 FF00AB01

0000 1111 0000

1000000000000000000000 1000000000000000000001

81

0000000000000000

11111111 00001111 11111111

FF00AB00FF00AB00 FF00AB01FF00AB01

00800000 00800004

211920 ns 211960 ns 212 us 212040 ns 212080 ns

sys_clk_pin

docm_dsocmbramwrdbus
docm_dsocmbramen

docm_dsocmbrambytewrite

docm_dsocmbramabus

docm_dscntlvalue

dsocm_clk

isaligned

pulse
pulsgen_t

pulsgen

ip2bus_data 0000000000000000

bus2ip_wrreq

ip2bus_wrack

bus2ip_be 11111111 11111111

bus2ip_data FF00AB00FF00AB00

bus2ip_rnw

bus2ip_addr 00800000

1

2

Fig. 5. Write data to DDR

the external wire's delay of the clock path. More details about
technics on how to calculate the proper phase shifting are given
in [13].

Table I presents the synthesis results for the proposed
memory controller and provides comparison to the Xilinx PLB
DDR controller. Synthesis results indicate substantial savings
of design resources in the range of 17%-30%. The reason of
that is lower complexity of OCM interface vs. PLB. The last
row of Table I suggest that our design exhibits 30% shorter
critical path, therefore it can be run at approximately 1.6 times
higher frequency, then the PLB.

Regarding performance, experimental results suggest that
our OCM DDR controller takes 4 clock cycles for the single
write operation and 9 clock cycles for single read operation.
In comparison, the PLB DDR controller takes 17 clock cycles
for a write operation and 22 clock cycles for a read operation.
Compared timing results between both implementations are
reported in Table II. Note that we consider the worst case
scenario, when no bus arbitration takes place and only one
PLB DDR controller is attached to the PLB bus. If bus
arbitration is considered, the PLB latencies are expected to
increase dramatically.

TABLE I
IMPLEMENTATION RESULTS

Used resources OCM2DDR PLB DDR Differences
Number of Slices 1063 1246 17 % less

Number of Slice Flip Flops 1052 1367 30 % less
Number of 4 input LUTs 803 971 21 % less
Minimum clock period 6,254 ns 9.968 ns 60 % faster

TABLE II
TIMING RESULTS AFTER SYNTHESIS

Timing parameters OCM2DDR PLB DDR Speed up
Duration of write operation 4 Cycles 17 Cycles 4.25
Duration of read operation 9 Cycles 22 Cycles 2.44

V. CONCLUSION AND FUTURE WORK

In this paper we proposed a design of a controller, which
provides a dedicated interface to external DDR memory con-
nected to the PowerPC cores of the Xilinx Virtex II Pro
FPGAs. More speci�cally, we proposed a high speed access to
large external storage capacity trough the dedicated DSOCM
bus of Virtex2Pro. Compared to the traditional shared-bus
approach (provided by the chip vendor) for connecting external
memories our dedicated controller performs in the worst case
2.44 times faster for read and 4.25 times faster for write
operations. Synthesis results suggest trivial hardware cost,
measured with 8 % of XC2VP30. The proposed solution can
be extended in future with a cache module implementation,
running as L2 caching subsystem of recon�gurable processors
such as MOLEN [14], [15]. The performance can be improved
further by implementing a burst access to the external memory
and ECC functionality also. The OCM2DDR controller can
be also considered as a universal solution to connect IPIF
compatible external memories (static and dynamic).

ACKNOWLEDGMENT

This research has been partially supported by the National
Science Fund, Bulgarian Ministry of Education and Science.
Project MU-X-02/29.07.2005.

REFERENCES

[1] �Virtex II Pro and virtex II Pro X platform FPGAs: Introduction and
overview,� Xilinx Corporation, DS083, Oct. 2005.

[2] �PLB Double Data Rate (DDR) Synchronous DRAM (SDRAM) Con-
troller,� in Product Speci�cation, Xilinx Corporation, DS425, Aug. 2004.

[3] �Xilinx University Program Virtex-II Pro Development System,� Hard-
ware Reference Manual, UG069, Mar. 2005.

[4] K. Lund, �PLB vs. OCM Comparison Using the Packet Processor
Software,� Xilinx Corporation, XAPP644, Oct. 2004.

[5] H. Winkler, �Clocking Strategy for a Virtex II Pro DDR SDRAM
Controller,� in Array Electronics, http://www.array-electronics.de/doc.

[6] C. Cain, �Reference system: Mch opb ddr sdram with opb central dma,�
Xilinx Corporation,XAPP912, Nov. 2005.

[7] �High-Speed Clock Architecture for DDR Designs Using Local Inver-
sion,� Xilinx Corporation, XAPP685, Apr. 2004.

[8] �PLB IPIF (v2.02a),� Xilinx Corporation, DS448, Apr. 2005.
[9] �Embedded system tools reference manual,� Xilinx Corporation, UG111,

Feb. 2005.
[10] �Libraries guide,� Xilinx Corporation, ISE 6.3, Sept. 2005.
[11] �Powerpc 405 processor block reference guide,� Xilinx Corpora-

tion,UG018, July 2005.
[12] �Opb uart lite (v1.00b),� Xilinx Corporation, DS422, May 2005.
[13] �Determining the Optimal DCM Phase Shift for the DDR Feedback

Clock,� Xilinx Corporation,XAPP806, May 2005.
[14] S. Vassiliadis, S. Wong, G. N. Gaydadjiev, K. Bertels, G. Kuzmanov, and

E. M. Panainte, �The Molen Polymorphic Processor,� IEEE Transactions
on Computers, vol. 53, no. 11, pp. 1363�1375, Nov 2004.

[15] S. Vassiliadis, S. Wong, and S. D. Cotofana, �The molen ρµ-coded
processor,� in in 11th International Conference on Field-Programmable
Logic and Applications (FPL), Springer-Verlag Lecture Notes in Com-
puter Science (LNCS) Vol. 2147, August 2001, pp. 275�285.

