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Abstract—This paper presents preliminary results of au-
tomated hardware generation from C code and discusses
specific challenges. The research is part of a bigger project
that aims to provide a semi-automatic tool platform for
hardware-software co-design in the context of the recon-
figurable computing systems. We present a case study in-
volving the AES encryption algorithm. The automatically
generated VHDL is compared to a manually crafted de-
sign. The generated design, as well as the manual one, are
synthesized in Xilinx ISE 6.3i and the reported results are
obtained from the actual execution on the MOLEN poly-
morphic processor. Even though the automatically gener-
ated VHDL does not contain any optimizations, speedup
of 7 is observed. However, compared to manually tuned
VHDL, there is still a difference of several orders of magni-
tude. This paper will explore the differences that explain
the performance gap and identify sources of improvement
and necessary optimizations that have to be implemented.
Some of the considered optimizations regard paralleliza-
tion of the execution, memory accesses and data location,
optimal utilization of the available hardware resources (on-
chip memories, multipliers, etc), as well as identification of
the most suitable computation model for a given algorithm.

Keywords—HW-SW co-design, high-level synthesis, re-
configurable computing, HLL, HDL

I. Introduction and Background

The main advantage of reconfigurable computing
(RC) is that it combines software flexibility with hard-
ware execution speed. However, RC systems have the
main disadvantage of a non-trivial application devel-
opment process, where both software and hardware
design skills and knowledge are necessary. Tools and
workbenches that bridge the gap between hardware
and software design are therefore necessary. Compo-
nents of such workbenches assist the designer through-
out the entire design flow starting with the initial par-
titioning of the application in software and hardware
segments up to the final implementation of the hybrid
executable code. Such platform is the Delft Work-
bench. It aims to provide a semi-automatic platform
for hardware-software co-design in the context of the
reconfigurable computing systems. The targeted over-
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Fig. 1. Delft Workbench

all design flow is presented in Fig 1. A C applica-
tion is processed by a profiler that is based on a cost
model and selects code segments that are promising
hardware-implementation candidates. Next, the can-
didates are futher examined by a C2C compiler and
the application is restructured in function of the re-
configurable platform. At this point the design flow
forks into the VHDL generation and backend com-
pilation. The backend compiler1 replaces the anno-
tated code segments with the necessary reconfigura-
tion and hardware execution instructions. In addition,
the compiler provides optimal scheduling of hardware
reconfiguration in order to hide the reconfiguration
latency.

The selected hardware segments are passed through
the VHDL generation branch. If a given design is
available in a hardware IP library, it is instantiated
from there. Otherwise, if the selected code is ex-
tremely critical and requires highly optimal hardware
implementation, manual HDL code should be written.

1An online prototype of the MOLEN compiler is available at
[1]



For the purposes of fast prototyping and fast perfor-
mance estimation during the design space exploration,
automated VHDL code is considered. This function-
ality, with the necessary optimizations, would allow
non-hardware designers to develop application for an
RC system.

The Delft Workbench targets the MOLEN machine
organization (Fig. 2) and the MOLEN programming
paradigm [2]. The MOLEN polymorphic processor [3]
couples a general purpose ”core” processor (GPP) with
a ”reconfigurable processor” (RP). The communica-
tion between the GPP and the RP is performed via
exchange registers (XREGs). The reconfigurable pro-
cessor consists of ρµ-code unit and custom configured
unit (CCU). The ρµ-code unit reconfigures the hard-
ware and initiates the execution on the CCU. The
CCU contains memory and reconfigurable hardware.

Fig. 2. MOLEN Machine Organization

The automated VHDL generation within Delft Work-
bench is performed by the tool set presented in this pa-
per. The input of the tool set is a pragma annotated C
code and the output is a VHDL design to be mapped
and executed on the CCU. The MOLEN backend com-
piler was used to generate the corresponding executable
for the GPP and the execution was performed on the
MOLEN prototype [4]. Although, the current state
of the VHDL generation does not offer rich set of
optimizations, a speedup of 7 times over a software
execution is observed. Moreover, it was estimated
that the attained speedup is approximately 90% of the
theoretically achievable speedup. Comparison with a
manually crafted design for the same application is
performed and some possible optimizations are dis-
cussed.

The rest of the paper is organized as follows. Sec-
tion II presents the current structure and functionality
implemented in the VHDL generation tool-set being
developed. Section III describes the case study ap-
plication and the experimental platform. Section IV

presents results from the actual execution of the auto-
matically generated VHDL code as well as comparison
with a manually crafted design. Section V discusses
some of the existing C-to-VHDL research projects and
Section VI outlines further research directions and
concludes the paper.

II. The VHDL Generator

The input of a VHDL generation tool in the general
case is C or another high-level language code. The
tool processes the input code and generates as out-
put a VHDL model. The processing includes several
phases of analysis, transformations, and optimizations
of the code in order to derive a suitable hardware
design. The performed optimizations and transfor-
mations can be roughly separated to high-level and
low-level ones. The high-level transformations aim
to expose and exploit the available parallelism. An-
other goal of these transformations is to transform the
sequential control-flow oriented algorithm to a con-
current and data-flow oriented form that is suitable
for hardware implementation. Derivation of the most
suitable computation model could also be added in
this group, although usually the algorithm is mapped
to a pre-determined model. The low-level optimiza-
tions target the optimal utilization of the available
resources. This optimal utilization is expressed in re-
serving the minimal amount of resources that would
guarantee a correct execution given a minimal execu-
tion time. Additionally, the number of the idle re-
sources and the time in which they are idle also has
to be minimized.

The preliminary version of the VHDL generation
tool-set, implemented within the Delft Workbench,
consists of two parts (see Fig. 3): a data flow graph
builder (DFG) and a VHDL generator. The DFG
Builder is implemented within the SUIF2 compiler
framework [5]. It accepts as input pragma annotated
C code. The pragma annotation is used to mark the
functions that have been selected for hardware imple-
mentation. The purpose of this tool is to perform the
necessary high level optimizations of the input code
and to transform it into a form, suitable for hardware
generation. The output of the tool is a function’s DFG
in a binary format.

Being in its early development stage, the VHDL
generation tool set offers limited functionality. The
limitations concern the supported C constructs and
the implemented optimizations. Currently, only if -
statements and arithmetic and logic operations over
a scalar or one-dimensional arrays of scalar data are
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Fig. 3. VHDL Generation Tool Set

supported. The applied optimizations are also lim-
ited. Nevertheless, scalar replacement and static sin-
gle assignment (SSA) transformations are performed.
The former aims minimization of the memory accesses,
while the latter simplifies the data-dependencies anal-
ysis and the DFG build. The SUIF framework and
more particularly the Machine SUIF framework, pro-
vides SSA analysis pass. Nevertheless, in order for this
pass to be triggered, the high-level structures in the
input code have to be dismantled to jumps and labels
which is not a suitable form for hardware generation.
Therefore, in the developed DFGBuilder a customized
and simplified SSA pass is implemented. In addition,
the tool also performs preliminary code processing to
restore some expressions (like the C conditional opera-
tion (? :) and the logic operations (&& and ||) that are
dismantled by the front-end to branches and labels.

The VHDL generator is implemented as a stand-
alone console application. It takes as input a DFG and
a configuration file. The configuration file specifies the
size of the memory word, the size of the memory ad-
dress, the starting address of the function parameters
(the XREGs starting address), the size of the different
data types, the memory access times, and the endian-
ness. The tool performs low-level optimizations and
operations scheduling, taking into account the infor-
mation from the configuration file, and generates a
corresponding VHDL model.

The currently selected computation model is a staged
execution in which the operations at each stage are
data-independent and produce results that are used
in the following stages. A finite state machine (FSM)
operates as a sequencer of the execution. The VHDL
generator divides the input DFG’s operations into the
necessary number of stages, taking into account the
required memory accesses. The currently used schedul-
ing strategy is As Soon As Possible (ASAP). Although
no resource reuse optimizations are currently imple-
mented, some straightforward optimizations like mem-

ory accesses pipelining are implemented.
An example of the implemented generation process

is presented in Fig. 4. Fig. 4a) contains a part of
a C code that is used as input of the DFG Builder.
This code is processed at three passes. First, scalar
replacement is performed (Fig. 4b). Next, the code
is transformed into SSA form (Fig. 4c) and finally,
the corresponding DFG is generated (Fig. 4d). The
generated DFG is used as input for the VHDL gen-
erator, that schedules it (Fig. 4e) and generates the
corresponding hardware design.

III. Experimental Setup

To evaluate the generated VHDL and to outline di-
rections for optimizations, a comparison between au-
tomatically generated and manually crafted VHDL
code is performed. This comparison is performed in
terms of both resource utilization2 and execution time.

AES Encryption The application, selected for the
case study, is the AES encryption/decryption algo-
rithm. The pseudo code for the AES encryption algo-
rithm is presented in Fig. 53. The structure of the
software test application is shown in Fig. 6. The
main function performs two tests: in Electronic Code-
Book (ECB) and Cipher-Block Chaining (CBC) mode
(Fig. 6b). The corresponding tests are run for 10,
12, and 14 rounds for encryption and decryption re-
spectively. The encryption and the decryption are
invoked through a dispatcher function (Fig. 6a) that
calls the corresponding kernel as many times as the
number of the blocks contained in the original data.
The kernel functions are loops with iteration count
equal to the number of the rounds. The loop bodies
(shaded blocks in Fig. 6a) implement the actual en-
cryption/decryption logic over a single block of data4.
These loop bodies were processed by the described in
the previous section tools and the generated VHDL
designs are used in the experiments.

The C code that implements the AES algorithm,
performs the operations, shown in Fig. 7. The shaded
parts correspond to the loop bodies, for which VHDL
designs are automatically generated. The loop con-
trol remains in the software. The bases addresses of
the of the four tables (T0 - T3) are passed as input
parameters. These tables contain precomputed byte
values. Additional parameters are the s and the t

2Resources, area, and slices are used interchangeably in the
paper.

3Taken from [6]
4A detailed description of the AES algorithm can be found in

[6]



tmp1[j] += block[0]*C11;
tmp2[j] += block[0]*C21;
tmp1[j] += block[1]*C12;
tmp2[j] += block[1]*C22;
tmp1[j] = tmp1[j] > limit_up ?

limit_up : tmp1[j];
if(tmp2[j] < limit_dn)

tmp2[j] = limit_dn;

t1 = tmp1[j];
t2 = tmp2[j];
b0 = block[0];
b1 = block[1];

tmp1[j] = t1;
tmp2[j] = t2;

t1 = t1 > limit_up ?
limit_up : t1;

if(t2 < limit_dn)
t2 = limit_dn;

t1 += b0*C11;
t2 += b0*C21;
t1 += b1*C12;
t2 += b1*C22;

t1_3 = t1_2 > limit_up ?
limit_up : t1_2;

if(t2_2 < limit_dn)
t2_3 = limit_dn;

t1_1 = t1 + b0*C11;
t2_1 = t2 + b0*C21;
t1_2 = t1_1 + b1*C12;
t2_2 = t2_1 + b1*C22;

t1 = tmp1[j];
t2 = tmp2[j];
b0 = block[0];
b1 = block[1];

else t2_3 = t2_2;
tmp1[j] = t1_3;
tmp2[j] = t2_3;

* *

LD

block 0

C11 C21

+ +

LD

tmp2 j

LD

block 1

* *

C12 C22

+ +

SEL

>

SEL

<

ST

LD

tmp1 j

ST

limit_up limit_dn

limit_up

limit_dn

tmp2 jjtmp1

if c1 then
  t1_2 <= limit_up;
else
  t1_2 <= t1_1;
end if;

RADDR <= block;

bt1 <= RDATA * C11;
bt2 <= RDATA * C21;

RADDR <= tmp1 + j*4;

RADDR <= tmp2 + j*4;

t1 <= RDATA + bt1;
RADDR <= block + 4;

t2 <= RDATA + bt2;

bt3 <= RDATA * C12;
bt4 <= RDATA * C22;

t1_1 <= t1 + bt3;
t2_1 <= t2 + bt4;

c1 <= t1_1 > limit_up;
c2 <= t2_1 < limit_up;

if c2 then
  t2_2 <= limit_dn;
else
  t2_2 <= t2_1;
end if;

WADDR <= tmp1 + j*4;
WDATA <= t1_2;

WADDR <= tmp2 + j*4;
WDATA <= t2_2;

S0

S1

S2

S3

S4

S5

S6

S7

S8

S9

a) b) c)

d)

e)

Fig. 4. VHDL generation process

State = in

AddRoundKey(State, key[0 to Nb−1])
for round= 1, round<Nr, round=round+1 do
SubBytes(State)
ShiftRows(State)
MixColumns(State)
AddRoundKey(State,key[round×Nb to (round+1)×Nb−1])
end for

SubBytes(State)
ShiftRows(State)
AddRoundKey(State,key[Nr×Nb to (Nr+1)×Nb−1])

out = State

Fig. 5. Pseudo Code for AES Encryption.

blocks, the current round number (r), and the round
key (rk). The updated value of the round number (r)
is returned as output parameter to the software.

The manual implementation of the AES algorithm,
described in [6], is based on the same C source, but it
includes the functionality up to the dispatcher func-
tion (Fig. 6a).

Synthesis Platform The generated VHDL designs
are synthesized in the Xilinx ISE 6.3i [7] design envi-

ronment. The hybrid software-hardware execution of
the application is performed on the MOLEN proto-
type [4], implemented using the Xilinx VirtexII Pro.
The synthesis of the generated VHDL and the execu-
tion is performed for/on XC2VP30 chip. The selected
clock frequency for the generated CCUs is 100MHz.
The tests are run with 128 bits input data.

IV. Results

The reported post-synthesis estimation for the de-
vice utilization and the clock frequency are presented
in Table I. The quoted numbers show that the speedup
of both the encryption and the decryption would re-
quire 42% of the available area. Nevertheless, the
manual implementation of both kernels, including also
control and dispatch functionality occupies only 515
slices([6]) or 2.7% of the available slices.

The recorded execution times are reported in Ta-
ble II and Table III. Table II contains hardware and
software execution cycles for one round of encryption
and decryption respectively. Table III shows the soft-



TABLE I
Resources and Clock Estimation

Implementation Slices Slice Flip Flops 4 Input LUTs Frequency (MHz)

Encryption 2969 (21%) 3566 (13%) 4349 (15%) 157.282

Decryption 2964 (21%) 3565 (13%) 4352 (15%) 157.282

Manual 515 (3.7%) not available not available 182

Device Capabilities 13696 27392 27392 N/Aa

aNot applicable

encrypt
block

R == NR

R++

B == NB

B++

mode

start

end

B == NB

R == NR

decrypt
block

R++

B++

start

NR=10

NR > 14

call kernel
mode = encrypt

call kernel
mode = decrypt

NR+=2

No

NR=10

NR > 14

call kernel
mode = encrypt

call kernel
mode = decrypt

NR+=2

No

end

Yes Yes

ECB CBC

a)

No

No

Yes

encrypt

Yes Yes

Yes

No

No

decrypt

NR − number of rounds

NB − number of blocks

b)

Fig. 6. AES application: a) encryption/decryption dis-
patcher and kernels; b) main function

ware execution cycles of the entire application as well
as the application cycles when either the encryption or
the decryption is implemented in the hardware. The
achieved speedup kernel wise is modest compared to
the reported speedup of the manual implementation
(kernel speedup of 43 times [6]). Nevertheless, related
to the entire application, the results are promising.
Although the manual implementation reports approx-
imately 7.5 times higher kernel speedup, the achieved

t[i] = T0[s[i−0] >> 24 & 0xff] ^ 

T1[s[i−1] >> 16 & 0xff] ^

T2[s[i−2] >>  8 & 0xff] ^

T3[s[i−3] >>  0 & 0xff] ^
rk[i+4];

s[i] = T0[t[i−0] >> 24 & 0xff] ^ 

T1[t[i−1] >> 16 & 0xff] ^

T2[t[i−2] >>  8 & 0xff] ^

T3[t[i−3] >>  0 & 0xff] ^
rk[i];

s[i] = in_block[i]^rk[i];
for each round

i = 0 to 3; if i == 0, i−1 = 3

rk += 8;

if not last round
i = 0 to 3; if i == 0, i−1 = 3

s[i] = T4[t[i−0] >> 24 & 0xff] ^ 

T4[t[i−1] >> 16 & 0xff] ^

T4[t[i−2] >>  8 & 0xff] ^

T4[t[i−3] >>  0 & 0xff] ^
rk[i];

out_block[i] = s[i];

Fig. 7. Particular AES Implementation

speedup by the automatically generated code, appli-
cation wise, is close to the theoretically achievable
speedup. Considering the part of the code, imple-
mented automatically in the hardware (fifth column
of Table III), and using Amdahl’s law, the theoreti-
cally achievable speedup is computed (sixth column
of Table III) and the achieved efficiency is reported in
the seventh column of Table III. In other words, the
achieved application speedup with the automatically
generated code is approximately 90% of the theoret-
ically possible application speedup for the given part
of the code.

The obtained results show that even the straight-
forward HDL generation with almost no optimizations



TABLE III
Performance Improvement - Application

Implementation Execution Cycles Speedup Invocation Count Application Part Theoretical Speedup Efficiency

Software only 819372 N/A N/A 100% N/A N/A

Encryption 565356 1.45 108 39% 1.65 88%

Decryption 621228 1.32 72 26% 1.35 98%

TABLE II
Performance Improvement - Single

Encryption/Decryption Round

Implementation Software
Cycles

Hardware
Cycles

Speedup

Encryption 2997 408 7.35

Decryption 2997 408 7.35

can provide performance gains. However, the differ-
ences with the manual implementation in terms of
both resource utilization and speedup are significant.

Resource Utilization In the selected application there
are three major reasons for the increased area usage
in the automatically generated code compared to the
manually written one. The first reason, is duplica-
tion of functional units for the encryption and the de-
cryption phase, even though the computations are the
same (see Fig. 7). Whether the data are encrypted or
decrypted is determined by the used tables T0-T4. In
the manual code, the encryption and the decryption is
performed by the same hardware module and the base
addresses of the necessary tables are selected based on
the mode. Such an implementation reduces by a fac-
tor of two the necessary area for the design. During
the automated code generation, however, such design
requires non trivial high-level analysis to discover the
existing graph isomorphism.

The second reason for the larger area is the number
of registers (or flip-flops, see Table I). In the current
computation model, each operation is executed in one
cycle and the result of the operation is stored in a
register to be used in the following stages. In order
not to increase the critical path (respectively the clock
period), the compound operations are separated into
series of simple ones. And since no optimizations are
performed in the current generator version, three 32
bit registers (96 flip-flops, see Fig. 8a) and Fig. 8b))
are used in the computation of each table index (see
Fig. 7), while only one register (32 flip-flops) is actu-

031

+

15

b31
31 15 0

031 15

0

sl_ind

sl_ind1

sl_ind2

SHIFT_RIGHT

AND

0

031

sl_T

+

031

sl_T

031 15

sl_ind

00

case sl_state is 
. . .

when "STi" =>
sl_ind1 <= SHIFT_RIGHT(sl_ind, 16);

when "STi+1" =>
sl_ind2 <= sl_ind1 AND x"000000FF";

when "STi+2" =>
RADDR <= sl_T + sl_ind2*4;

. . .
end case;

a)

b)

c)

Fig. 8. Index Computation: a) VHDL code b) Inferred
Hardware c) Sufficient Hardware

ally necessary (Fig. 8c)).
The third reason for the bigger area consumption is

the number of the look-up tables (LUTs) (see Table I).
The core computation during the encryption/ decryp-
tion process is the XOR sum over five operands. This
computation translates to the VHDL code, shown in
Fig. 9. The XOR operations usually are implemented
as LUTs. As the operands are 32-bit, 32 LUTs are
assigned to one XOR operation in the code. During
the synthesis process for each operation dedicated re-
sources are allocated. In the implemented code there
are 32 32-bit XOR operations. This translates to
1024 LUTs dedicated to perform the XOR operations.
However, one can notice that the different XOR op-
erations cannot be executed in parallel due to the
memory accesses (see Fig. 9). Moreover, each state
produces valid results only once during the execution.
Hence, the resources dedicated for the XOR opera-
tion in one state, can be reused for an XOR operation
performed in another state. Of course, such optimiza-
tion is not a ”sure win” as multiplexers have to be
dedicated to select the necessary inputs at each stage.

The above outlined optimizations are a small part
of the high-level and low-level optimizations that can



case sl_state is
. . .
when "STi" =>
    ADDR <= sl_td0_s0a;
when "STi+1" =>
    ADDR <= sl_td1_s3a;
when "STi+2" =>
    ADDR <= sl_td2_s2a;

sl_tmp1 <= RDATA;
when "STi+3" =>

sl_tmp2 <= RDATA XOR sl_tmp1;
    ADDR <= sl_td3_s1a;

when "STi+4" =>
    ADDR <= sl_rk_4a;

sl_tmp3 <= RDATA XOR sl_tmp3;
when "STi+5" =>

sl_tmp4 <= RDATA XOR sl_tmp3;
when "STi+6" =>

sl_t0 <= RDATA XOR sl_tmp4;
. . .

end case;

Fig. 9. t0 computation

be performed in order for the resource utilization to
be minimized. Some of these optimizations are triv-
ial and ”sure win”. However, other optimizations re-
quire more complex analysis (graph isomorphism, eg).
Moreover, the implementation of most of the opti-
mizations is at a certain price (eg, the reduction of the
XOR LUTs increases the number of the multiplexers,
that, at a certain point, could nullify the effect of the
decreased LUTs). Therefore, evaluation of the poten-
tial gains and penalties is necessary.

Execution Time Considering the execution time, re-
spectively the achieved speedup, two possible opti-
mizations can be noticed at a first glance in the stud-
ied application. In the automatically generated code,
the loop control and the mode selection are performed
by the software. In the manual design, this function-
ality is implemented in the hardware. This reduces
the execution time in several ways. First, the execu-
tion flow switches less between hardware and software.
Second, less parameters are transferred to the hard-
ware (eg, s, t, r become all local data), which reduces
the parameter fetch time. Another reason is that the
tables with the pre-computed values are local for the
design, while in the automatically generated designs
these tables reside in main memory. This fact im-
plies that the start addresses of the tables are not
transferred as parameters (reduced times for param-
eters fetch). Second, the memory access times are
shorter in the manual design. Moreover, in the auto-
mated design each array element is fetched separately
from the memory, while in the manual design the fact
that the BRAMs have 64-bit word is exploited. The

outlined two optimizations (implementing the control
and transferring the tables in the hardware) are not
that difficult to implement for the particular C code.
However, the implementation of only these two opti-
mizations within the current computation model, al-
though beneficial for the performance to some degree,
would not be enough to result in the speedup, re-
ported for the manual design. In order to close the
gap to the manual design, the semantic of the compu-
tation should be inferred and the most suitable com-
putation model should be selected.

V. Related Work

The automated HDL generation is in focus of multi-
ple research projects. The ROCCC project [8][9] aims
parallelization of the computation. Also off-chip mem-
ory accesses optimization is considered. The target
application domain of the ROCCC project is image
and signal processing. The DEFACTO project [10]
exploits the fine-grain parallelism, found within the
loop nests of the image processing applications. Con-
sidering multiple memory banks, customized data lay-
out is also applied ([11]). Another major focus in the
DEFACTO project is the design space exploration,
and more particular finding the optimal unroll factors
for the loop nests ([12]). The SPARK project [13],
[14] targets also the image processing and multimedia
domain. The emphasis in the project is speculative
code motion that aims to increase instruction level
parallelism.

To circumvent problems like data ambiguity and
automatic detection of task-level parallelism, various
projects develop derivates of the C language. The
SA-C language [15], [16] is developed to facilitate the
expression and the subsequent hardware implementa-
tion of image processing algorithms. The Streams-C
language [17] follows the Communication Sequential
Processes (CSP) model and implements it in the con-
text of the reconfigurable computing. The application
parallelization is performed by the designer. The con-
trollers are instantiated from libraries and the data
path generation is performed by the MARGE [18]
tool. The optimization emphasis is on loop scheduling
and pipelining.

While in ROCCC, SPARK, DEFACTO, SA-C, and
Streams-C projects, entire loop nests are mapped to
the hardware, in the Garp compiler [19], [20] hyper-
blocks from the most frequently executed paths in the
loop nests are formed and implemented in the hard-
ware. The Garp hardware is not based on off-the-shelf
reconfigurable hardware. Hence, there is no standard



synthesis tool to generate the final bitstream for the
Garp architecture. Therefore, the Garp compiler is
emphasizes on generation and optimization of low-
level modules (adders, multipliers, etc).

The projects listed above (as well as many other re-
search efforts) suggest various optimizations and trans-
formations to be applied during the automated HDL
generation. Those optimizations vary from high-level
parallelizing techniques to low-level scheduling and re-
source allocation strategies. Different hardware archi-
tectures and computational models are also suggested.
The low level optimizations would be beneficial ap-
plied to any algorithm mapped to the hardware as
they address the low-level hardware utilization. How-
ever, the high-level optimizations and the computa-
tion models are predominantly suggested within the
context of the image processing applications and would
not bring significant performance gains in other ap-
plication domains. For example, within the ROCCC
compiler a ”smart buffer” ([21]) is suggested to opti-
mize the memory accesses for ”sliding window” oper-
ations over an array. Such operations are typical for
the image processing applications - an array is tra-
versed with a constant stride and a regular process-
ing is performed. The gains offerred by the ”smart
buffer” rely mainly on full scalar replacement in the
loop body. However, the code studied in the previous
section does not allow full scalar replacement. More-
over, not all array data can be prefetched, as the index
of the array is computed in the same iteration. Hence,
applied on the studied application, the ”smart buffer”
would not bring a lot of performance gain.

The DEFACTO project also addresses the image
processing application and optimization of the mem-
ory accesses. Their strategy is distribution of the pro-
cessed data between multiple memory banks accord-
ing to the access pattern. However, the suggested
analysis and algorithm are oriented towards array in-
dexing with affine function, which is not the case in
the discussed example in the previous section.

The SPARK project emphasizes speculative execu-
tion over control structure boundaries in order to in-
crease the fine grain parallelism. This approach is
beneficial when the transformed code is control dom-
inated. In the considered AES implementation, the
control is minimized and the code is dominated by
memory accesses.

The SA-C compiler is the predecessor of the ROCCC
compiler and as such it targets the same application
domain and offers similar optimizations. Again, the
regular and sequential memory accesses are optimized,

but the access pattern in the AES application would
not benefit from this optimizations.

The Stream-C compiler targets applications that
are characterized by several distinguished phases of
stream data processing. The high-level optimizations
and the distribution of the processing are left to be
performed by the designer. The compiler optimiza-
tions emphasize loop pipelining. However, the loops in
the considered application cannot be pipelined due to
data-dependencies and memory bandwidth constraints.

The Garp compiler searches for ”hot” paths within
loop nests and forms hyperblocks to be implemented
in the hardware. This is beneficial for loop nests that
contain multiple paths. However, the considered ap-
plication has only one path in the kernel. The Garp
compiler does not address memory optimizations and
relies on the three pre-fetch queues, provided by the
Garp architecture. But again, data pre-fetch is bene-
ficial for access patterns, in which the next necessary
array element can be predicted. In the current AES
implementation, the next necessary array element be-
comes known just before initiation of the memory
read.

VI. Conclusion and Future Work

The naive straightforward translation from C to
VHDL is possible and brings performance gains as
it was shown by the experimental results. Without
any complex optimizations, a speedup of factor 7 was
achieved compared with the pure software execution.
Moreover, the achieved speedup application wise is
approximately 90% of the theoretically achievable
speedup considering the percentage of the code im-
plemented in the hardware. However, the applica-
tion speedup is still modest compared with a manually
crafted design, where bigger part of the code is imple-
mented in the hardware and additional optimizations
are applied. In order to increase the quality of the
automated designs, a C to VHDL compiler should be
able to infer the semantic of the high-level code. Based
on this semantic analysis, an appropriate computation
model and optimization set should be selected.
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