
Performance Impact of Misaligned Accesses
in SIMD Extensions

Asadollah Shahbahrami Ben Juurlink Stamatis Vassiliadis
Computer Engineering Laboratory

Faculty of Electrical Engineering, Mathematics, and Computer Science
Delft University of Technology, The Netherlands
Phone: +31 15 2787362. Fax: +31 15 2784898.

E-mail: {shahbahrami,benj,stamatis}@ce.et.tudelft.nl.

Abstract— In order to provide the best performance for
memory accesses in the multimedia extensions that load
or store consecutive subwords from/to memory, the mem-
ory access must be correctly aligned. That means that an
n-byte transfer must be set on an n-byte boundary. In
most SIMD architectures, unaligned memory accesses have
a large performance penalty or are even disallowed. For
example, our result shows that for addition of two arrays
of size 1024 × 1024, whose addresses are either aligned or
unaligned, aligned code is 1.47 times faster than unaligned
code using SSE instructions. Hence, in this paper we evalu-
ate the advantages and disadvantages of different techniques
to avoid misaligned memory accesses such as replication of
data in memory, padding of data structures, loop peeling,
and shift instructions. Our result shows that the MMX im-
plementation of the FIR filter using replication of data is up
to 2.20 times faster than the MMX implementation with mis-
aligned accesses. Furthermore, the MMX and SSE imple-
mentations using loop peeling technique are up to 1.45 and
1.66 faster than their implementation for addition of two ar-
rays with different sizes, respectively.

Keywords—Multimedia extensions, SIMD, Data alignment.

I. INTRODUCTION

The most common approach to consider the require-
ments of multimedia applications in the existing General-
Purpose Processors (GPPs) has been the extension of the
Instruction Set Architecture (ISA) with Single Instruction
Multiple Data (SIMD) instructions. These media exten-
sions such as MMX [21] and SSE [22] add a set of SIMD
instructions in order to exploit the data parallelism avail-
able in multimedia applications. A memory instruction in
these SIMD extensions is able to load or store multiple
data items. In order to provide the best performance for
memory accesses the memory addresses must be naturally
aligned.

Some media extensions do not provide any hardware
support for unaligned accesses. For example, AltiVec ex-
tension [5] is unable to operate on data that is not naturally
aligned. A load instruction loads 16-byte contiguous from

16-byte aligned memory. To provide this, hardware does
not consider the last 4-bit of the memory address. On the
other hand, some other media extentions provide instruc-
tions to access unaligned memory addresses but at the ex-
pense of a big performance penalty. For instance, the In-
tel’s SSE extension includes both hardware support and
unaligned exceptions [25]. The instructions movdqa and
movaps require that the effective addresses to be aligned.
While with instructions movdqu and movups the hard-
ware recognizes the unaligned references and returns the
desired memory data. As another example, some Digi-
tal Signal Processing (DSPs) for embedded system, like
the TigerSharc support accesses to misaligned by hardware
units such as data alignment buffer which performs the re-
quired aligned loads and shifts [7].

The data access patterns of many applications are inher-
ently misaligned. For example, only 14% of the dynamic
accesses in the SPEC95fp and MediaBench benchmark are
aligned [16]. As another example, the motion estimation
and motion compensation algorithms, which are used in
video coding and decoding operate on byte boundaries.

This alignment constraint can significantly impact the
effectiveness of SIMD vectorization. For example, our re-
sult shows that for addition of two arrays of size 1024 ×
1024, whose addresses are either aligned or unaligned,
aligned code is 1.47 times faster than unaligned code using
SSE instructions. If aligned access cannot be guaranteed,
the programmer should consider the alignment in software
using overhead instructions. This means that the data from
two consecutive aligned addresses must explicitly merge.

In this paper we evaluate the advantages and disadvan-
tages of different techniques to avoid misaligned memory
accesses. We study some techniques such as replication of
data in memory, padding of data structures, and loop peel-
ing. Our results show that the MMX implementation of the
Finite Impulse Response (FIR) filter using replication of
data is up to 2.20 times faster than the MMX implementa-
tion with misaligned accesses. Furthermore, the MMX and
SSE implementations using loop peeling technique are up

334

for (i = 0; i< N; i++)
a[i] = b[i] + c[i];

Fig. 1. A loop with aligned accesses.

for (i = 0; i< N; i++)
a[i+1] = b[i+2] + c[i+3];

Fig. 2. A loop with misaligned accesses.

to 1.45 and 1.66 faster than their implementation for addi-
tion of two arrays with misaligned accesses, respectively.

This paper is organized as follows. Section II describes
the alignment restriction placed on SIMD memory oper-
ations. In addition, this section discusses the behavior
of different multimedia extensions on the aligned and un-
aligned memory accesses. In Section III different tech-
niques to improve misaligned accesses are discussed. Sec-
tion IV explains about performance evaluation of MMX
and SSE codes that use replication of data in memory and
loop peeling techniques to improve misaligned memory
accesses. Some related work is indicated in Section V.
Finally, conclusions are drawn in Section VI.

II. BACKGROUND

In this section we describe the alignment problem in de-
tail, the behavior of multimedia extensions on the aligned
and unaligned memory accesses, and cache line split.

A. Address Alignment

A memory address A is aligned if A mod n = 0,
where n is the width of the accessed data in bytes. When a
memory address is misaligned, the value A mod n deter-
mines the offset from alignment. Figure 1 and Figure 2
show a loop with aligned and misaligned accesses with
consideration that their base addresses are aligned, respec-
tively.

Some architectures limit memory references to aligned
addresses only. In this case, it is the compiler’s responsi-
bility to explicitly merge data in two aligned addresses be-
fore and after the unaligned address. This leads to an over-
head, which can reduce performance in vectorized code
sequences. If the processor directly supports misaligned
references, these accesses still need extra cycle, resource
usage, or both. This is because to support misaligned ac-
cesses by hardware, the processor must implement a ro-
tation or merge operation between memory and registers,
potentially increasing the latency of an SIMD load instruc-
tion. For example, Figure 3 depicts SIMD vectorization
of the code in Figure 2. This figure illustrates that data
used in the same iteration can be misaligned when they are
loaded into registers. To provide correct alignment, these

16-byte aligned addresses

Array B

xmm0

load xmm0, [B] load xmm1, [B+16]

xmm1

shift left xmm0 and xmm1, by 8 bytes

xmm0 xmm1

Array C

xmm2

 load xmm2, [C] load xmm1, [C+16]

xmm3

shift left xmm2 and xmm3, by 12 bytes

xmm2 xmm3

b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 . . .

c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 . . .

16-byte aligned addresses

addps xmm0, xmm2

b2+c3 b3+c4 b4+c5 b5+c6

xmm0

shift right xmm0 by 4 bytes

0 b2+c3 b3+c4 b4+c5

store xmm0, A[i+1]

0 b2+c3 b3+c4 b4+c5 . . . Array A

b0 b1 b2 b3 b4 b5 b6 b7

b2 b3 b4 b5 b6 b7 0 0

c0 c1 c2 c3 c4 c5 c6 c7

c3 c4 c5 c6 c7 0 0 0

16-byte aligned addresses

xmm0

Fig. 3. SIMD vectorization of a[i + 1] = b[i + 2] + c[i + 3]
using data reorganizations instructions.

data must be rearranged using data reorganization instruc-
tions such as shifting right and left. This means that in
the realignment process first, we should read the aligned
memory address that is located before the unaligned posi-
tion. Second, load the aligned data that is placed after the
unaligned position. Finally, merge the two previous parts
and extract the necessary data. As a result, the processor
needs two memory accesses to make an unaligned memory
access. On the other hand, aligned accesses require only
one memory access.

B. Multimedia Extensions

Multimedia extensions such as MMX [21], SSE [22],
SSE2, and SSE3 [12] support misaligned accesses by
hardware and MAX-1/2 [18], VIS [26], 3DNow [1], and
VMX [10] support by software. The VMX ISA ignores
the low-order bits of an SIMD memory address, to force
access to aligned addresses. In contrast to VMX, Intel’s
IA-32 extensions provide direct hardware support for ac-
cessing misaligned data. For instance, SSE/SSE2 distin-
guishes between aligned and unaligned load instructions.
The aligned load instructions are more efficient than un-
aligned load instructions, but are valid only when the com-
piler can guarantee alignment addresses. This means that
VMX and SSE represent two different points in the de-

335

movq mm1, [b] ; load 8 bytes from b[]
paddw mm1, [c] ; add mm1 with 8 bytes of c[]
movq [a], mm1 ; store mm1 in a[]

Fig. 4. MMX implementation of the misaligned and aligned
loops.

movaps xmm0, [b] ; load 16 bytes from b[]
addps xmm0, [c] ; add xmm0 with c[]
movaps [a] , xmm0 ; store xmm0 in the a[]

Fig. 5. SSE implementation of a aligned loop.

sign of multimedia memory systems. The 64-bit MMX
ISA does not have different instructions for aligned and
unaligned load and stores, but still performance penalties
may arise for unaligned movq instruction.

In SIMD extensions like, AltiVec, MIPS-3D, and Alpha,
the hardware automatically clear the lower-bit of the effec-
tive address and returns an aligned address. In these ex-
tensions, it is necessary to access the neighboring aligned
locations just before and after the requested address and to
shift, rotates, or permute them in order to extract the un-
aligned data elements as previously discussed in Figure 3.

Table I depicts the misalignment support provided by
different multimedia extensions. Column “realign load”
shows a merge operation to extract the relevant data ele-
ments according to the misalignment of the address. For
example, in AltiVec the vperm instruction takes three ar-
guments, two aligned vectors and a vector mask generated
by the lvsl instruction, which is called realignment to-
ken by Nuzman and Henderson [20] and to produce the
desired unaligned data [5]. The realignment token can be
an address, a bit mask, a vector of indices, or any other
value that is a function of the unaligned address.

We have implemented both aligned and misaligned
loops as Figure 1 and Figure 2 for different data types us-
ing MMX and SSE instructions. The MMX implemen-
tation of both misaligned and aligned loops is almost the
same, as is depicted in Figure 4 for short data type.

The SSE implementation of the aligned loop is depicted
in Figure 5. In this program we have used movaps in-
struction. This instruction requires the effective address to
be aligned. If the data is not 16-byte aligned, a general
protection exception will be generated. This means that
the data must be 16-byte aligned for packed floating-point
operations. SSE provides the movdqu (move unaligned
double quadword) and movups instructions for loading
memory from addresses that are not aligned on 16-byte
boundaries. If we know that the data is not aligned, we use
these instructions to avoid the protection error exception.
The unaligned load has a bigger latency than the aligned

movups xmm0 , [b+2] ; load 16 bytes from b[]
movups xmm1 , [c+3] ; load 16 bytes from c[]
addps xmm0 , xmm1 ; xmm0 = xmm0 + xmm1
movups [a+1], xmm0 ; store xmm0 in the a[]

Fig. 6. SSE implementation of a misaligned loop.

one. The SSE implementation of the misaligned loop is
depicted in Figure 6.

Table II shows the speedup of MMX and SSE imple-
mentations of addition of two arrays with aligned accesses
over their implementation with misaligned accesses for
different data types and different array sizes on the Pen-
tium 3 and Pentium 4 processors. On the other words, we
have implemented the codes in Figure 1 and Figure 2 us-
ing MMX and SSE instructions set. This table illustrates
that implementation using aligned accesses are up to 2.26
and 2.72 times faster than implementation with misaligned
accesses for different data types on the Pentium 3 and Pen-
tium 4 processors, respectively.

The programs that use unaligned load instructions fre-
quently encounter situations where the source spans across
a cache line boundary. Loading from a memory address
that spans across a cache line boundary causes a hardware
stall and degrades program performance. Cache line split
is discussed in detail in next Section.

C. Cache Line Split

As previously discussed misaligned accesses can incur
significant performance penalties. One such case is cache
line splits. With existing of the cache line splits, instead
of reading all the requested data in one cache line, the pro-
cessor has to wait until it can access the next cache line
to get the remaining data. For example, we assume that
the cache line size is 64-byte. There are three possible
misaligned accesses that can occur after SIMD implemen-
tation of single-precision floating-point operations [3]. As
illustrated in Figure 7, every other iteration of the vector
loop will cause a cache line split of +4, +8, or +12 bytes
into the next cache line.

There is lddqu instruction, a 128-bit unaligned load to
avoid cache-line splits in Prescott processor [13]. If the ad-
dress of the load instruction is aligned on a 16-byte bound-
ary, lddqu instruction loads requested 16-byte. While if
the address of the load instruction is not aligned on a 16-
byte boundary, lddqu instruction loads a 32-byte starting
at the 16-byte aligned address before the address of the
requested load instruction. After that, it provides the re-
quested 16-byte. In addition, lddqu instruction is used
for integer data type [13].

336

Media Extension Unaligned Load Aligned Load Realign Load Realignment Token

AltiVec/VMX lvx vperm lvsl
AltiVec/VMX on PPE lvlx, lvrx
SSE/SSE3 movdqu, lddqu movdqa
MIPS-3D luxcl alnv.ps address
MIPS64 ldl, ldr
MVI ldq u extql, extqh address

TABLE I
UNALIGNED LOAD SUPPORT BY DIFFERENT MEDIA EXTENTIONS.

Array size Char Short Integer Float
Pen. 3 Pen. 4 Pen. 3 Pen. 4 Pen. 3 Pen. 4 Pen. 3 Pen. 4

256 1.46 1.64 1.58 1.8 1.05 1.71 3.37 4.73
512 1.58 1.78 1.66 2.01 1.1 1.91 3.72 5.46
1024 1.66 2.02 1.74 2.24 1.08 2.04 4 3.96
32768 1.13 2.7 1.12 2.1 1.1 1.91 1.41 2.47
64000 1.28 2.71 1.23 2.2 1.16 1.04 1.45 1.13
1048576 1.15 1.83 1.11 1.99 1.1 1.25 1.36 1.53
4194304 1.15 1.94 1.11 2 1.08 1.15 1.38 1.24
16777216 1.14 2.24 1.12 1.89 1.09 1.15 1.37 1.23

Average 1.32 2.11 1.33 2.03 1.09 1.52 2.26 2.72

TABLE II
SPEEDUP OF THE MMX AND SSE ALIGNED CODES OVER THE MMX AND SSE MISALIGNED CODES FOR ADDITION OF TWO

ARRAYS FOR DIFFERENT DATA TYPES ON THE PENTIUM 3 AND PENTIUM 4 PROCESSORS. PEN. 3 = PENTIUM 3 AND PEN. 4
= PENTIUM 4.

16-byte boundaries

64-byte cache line

Aligned

Cache line split of 4 bytes

Cache line split of 8 bytes

Cache line split of 12 bytes

Fig. 7. Cache line splits in vector access.

III. TECHNIQUES TO REMOVE MISALIGNMENTS

In this section, different techniques to reduce misalign-
ment overhead are explained.

A. Loop Peeling

Loop peeling is a technique that is used to execute a few
iterations of the misaligned loop until the memory address
within the loop reaches a known alignment. When the loop
reaches an aligned address, we can exit the pre-loop code
and start to execute the main loop. Figure 8 depicts one
example of this technique. As can be seen to execute one

iteration of the misaligned loop, an aligned loop is pro-
vided. This is compiler responsibility that statically peel
off one iteration to align all access patterns in the main
loop.

A misalignment address A can be resolved by (16 −
A)/n times loop peeling with considering to a 16-byte
boundary alignment and element size of n bytes. We as-
sume that arrays are aligned at least at an element size
boundary.

337

double a[N], b[N];
a[1] = b[1] * 3;

for (i=1; i<N ;i++) for (i=2; i<N; i++)
a[i] = b[i] * 3; a[i] = b[i] * 3;

(a) misaligned loop (b) providing a aligned
loop using loop peeling

Fig. 8. (a) A misaligned loop. (b) using loop peeling technique
to provide an aligned loop.

B. Dynamic Loop Peeling

Using pointers in some programming languages such
as C is usuall and a programmer can use them anywhere
and pass pointers to arbitrary locations in memory. Con-
sequently, alignment of pointers at compile time will be
difficult. In such cases, the compiler must be ready to deal
with each possible alignment. Some compilers such as In-
tel C++ use dynamic loop peeling technique to deal with
pointer alignment [3], [2], [17]. Figure 9 illustrates one
example of dynamic loop peeling. In this example, we as-
sumes that data types are aligned to their data width. As
can be seen in this figure the parameters of mult function
that is called from main function are not aligned to 16-byte
boundaries. The offsets of the arguments are different in
each call. A pre-loop code has been written in part (b),
which executes some iterations to align x[i] to a 16-byte
boundary.

C. Padding multidimensional arrays

Using multidimensional arrays in programming can
cause a misalignment. Misaligned addresses occur for
multidimensional arrays when the size of the low-order di-
mension is not a multiple of the vector length. Figure 10
shows an example. In part (a), the offset of a[i][j] depends
on the i loop iteration. For instance, reference a[0][0] is
16-byte aligned, but reference a[1][0] has an offset of 12
bytes. Part (b) shows the array’s layout in memory. In
some cases, the compiler can fix an array’s offset to its
column dimension by padding [17]. Adding an extra ele-
ment to the column dimension of the array in Figure 10 (a)
produces the layout in part (c), where all accesses a[i][0]
are aligned.

D. Multi-Version Code

One approach to uncover alignment information is to
use runtime tests to identify aligned addresses dynami-
cally [2], [15] as depicted in Figure 11. There are four
conditions in this code. Within each test, the compiler can
vectorize the loop for a specific set of conditions. Obtain-
ing the exact offset of a misaligned address is almost unim-

void mult(float *x,float *y,float *z,int M)
{

int i;
for (i=0; i<M; i++)

x[i] = y[i] * z[i];
}

void main()
{
float x[N], y[N], z[N];
...
mult(x+1, y+1, z+1, C);
...
mult(x+3, y+3, z+3, C+50);

}
(a)

void mult(float *x,float *y,float *z,int M)
{
...

//Pre-loop to align x[i] to 16-byte boun.
unsigned offset_x = (unsigned) &x[0] & 15;
peel = offset_x ? (16 - offset_x) / 4 : 0;
for (i=0; i < min(M, peel); i++) {

x[i] = y[i] * z[i];
}

// x[i] guaranteed to have offset 0
for (; i<M; i++) {

x[i] = y[i] * z[i];
}
(b)

Fig. 9. To enforce runtime alignment using dynamic loop peel-
ing. (a) The main and mult functions. (b) Using a pre-loop in
the mult function to enforce alignment for x[i].

portant. It will be sufficient to determine, which memory
references are aligned. For example, in VMX the instruc-
tion sequence for accessing misaligned data does not de-
pend on the offset. While for IA-32 processors, offset in-
formation is useful.

Two most likely offsets are x mod 16 = 0 and y
mod 16 = 8. In general, multi-version code that tests m
different offsets with respect to a certain base for n differ-
ent memory references gives rise to mn separate branches
as well as one else-branch that is required if not all possi-
ble offsets are covered.

E. Duplicating Constant Tables

Many multimedia kernels contain references to arrays of
constants. These constants ate often accessed in non uni-
form manner, to make their dynamic alignment difficult.
These tables of constants are almost small. This means
that we can duplicate them for each possible alignment that

338

int a[64][63]
for (i=0; i<64; i++) {
 for (j=0; j<63; j++)
 a[i][j] = i * 64 + j;
}

a[0][0] a[0][1] . . . a[0][62] a[1][0] a[1][1] a[1][2] . . . a[2][0] a[2][1] a[2][2] . . . a[63][62]

16-byte boundaries

a[0][0] a[0][1] . . . a[0][62] a[1][0] a[1][1] . . . a[1][62] a[2][0] . . . a[63][62]

16-byte boundaries

(a) (b)

(c)

Fig. 10. (a) Accessing a two-dimensional array, which has 63 4-byte elements in each row. (b) Data layout of the array in the
memory without padding technique. (c) Data layout after padding, all references a[i][0] are aligned to a 16-byte boundary.

void copy(double *x, double *y) {
...
// Offset of x and y relative to 16 bytes
unsigned offx = (unsigned) x & 15;
unsigned offy = (unsigned) y & 15;
if (offx == 0 && offy == 0)

// Both x and y aligned
for (i=0; i<N; i++) x[i] = y[i];

else if (offx == 0 && offy == 8)
// x aligned, y misaligned
for (i=0; i<N; i++) x[i] = y[i];

else if (offx == 8 && offy == 0)
// x misaligned, y aligned
for (i=0; i<N; i++) x[i] = y[i];

else // x and y misaligned
for (i=0; i<N; i++) x[i] = y[i];

}

Fig. 11. Multi-version code to detect alignment at runtime.

we want. For example, in the FIR filter, the relative align-
ment of the input and filter elements changes from one vec-
tor dot-product calculation to the next element. Figure 12
shows the relative alignment of the input and filter data.
The arrows show elements which are multiplied together.
The relative alignment changes by one element for each
vector dot-product calculation. This implies that in three
out of four vector dot-product calculations, all accesses to
one of the vectors will be misaligned (8-byte data accesses
which are not on 8-byte-aligned addresses).

To avoid misaligned data accesses we use different
copies of the filter data. That means that there are four
copies of the filter data, each one with a different align-

input(-4) input(-3) input(-2) input(-1) input(0) input(1) input(2) input(3) input(4)

input(-4) input(-3) input(-2) input(-1) input(0) input(1) input(2) input(3) input(4)

.... coef(4) coef(3) coef(2) coef(1) coef(0)

calculation for output(-1)

.

. . .

. . .

calculation for output(0)

. . .

calculation for output(1)

.... coef(4) coef(3) coef(2) coef(1) coef(0)

.... coef(4) coef(3) coef(2) coef(1) coef(0)

input(4) input(-3) input(-2) input(-1) input(0) input(1) input(2) input(3) input(4)

Fig. 12. Relative alignment of input and coefficients data for
FIR filter.

ment relative to an 8-byte boundary. Figure 13 shows this
structure. This method was implemented in [14], [11].

IV. PERFORMANCE EVALUATION

We have implemented two techniques, duplicating con-
stant values and loop peeling. We used the former method
for MMX implementation of the FIR filter and the later
technique for MMX and SSE implementations of the C
code in Figure 2. In the MMX implementation of the
FIR filter, input samples and coefficients are represented
as 16-bit values, using the short data type. For 16-bit
data, vector dot-product calculations are efficiently imple-

339

c12 c11 c10 c9 c8 c7 c6 c5 c4 c3 c2 c1 c0 0 0 0

 0 c12 c11 c10 c9 c8 c7 c6 c5 c4 c3 c2 c1 c0 0 0

0 0 0 c12 c11 c10 c9 c8 c7 c6 c5 c4 c3 c2 c1 c0

0 0 c12 c11 c10 c9 c8 c7 c6 c5 c4 c3 c2 c1 c0 0

Input[0]

Input[32]

Input[64]

Input[96]

MMX SSE

Input[0]

Input[64]

Input[128]

Input[192]

Fig. 13. Multiple copies of filter data for filter length of 13 (ci
= coef(i)).

mented using MMX instructions by loading and process-
ing four data elements at the same time. We have im-
plemented three different implementation of the FIR fil-
ter. First, vectorizing the inner loop (VIL), in which case
the inner loop calculates several terms of a single output
in parallel. Second, by vectorizing the inner and outer
loops (VIOL). Finally, vectorizing the inner and outer
loops without misaligned (VIOLWM) access using du-
plicating coefficients values [24]. They will be referred
to as MMX VIL, MMX VIOL, and MMX VIOLWM for
MMX programs.

We implemented C code in Figure 2 using MMX and
SSE instructions set. In both MMX and SSE implemen-
tations char and float data types were used, respectively.
In order to improve alignment in the C code we used loop
peeling technique for array a. After using this technique
we also implemented both MMX and SSE codes. This
means that we implemented both MMX and SSE codes
with misaligned accesses and MMX and SSE programs
with aligned accesses for array a.

Performance was measured using the cycle coun-
ters [12]. Cycle counters provide a very precise tool
for measuring the time that elapses between two differ-
ent points in the execution of a program [4]. The IA-
32 counter is accessed with the rdtsc (read time stamp
counter) assembly instruction. In order to eliminate the
effects of context switching and compulsory cache misses,
the K-best measurement scheme and a warmed up cache
have been used, as explained in [4].

Figure 14 shows the speedup of MMX VIOLWM pro-
gram over other MMX implementations. As this figure
shows, MMX implementation of the vectorizing the inner
loop as well as the outer loop and avoids misaligned mem-
ory accesses using duplicating coefficients values is up to
2.20 and 1.69 times faster than the MMX implementation
that only vectorizes the inner loop and the version that does
not avoid misaligned memory accesses, respectively.

Figure 15 depicts the speedup of the MMX and SSE
implementation that use loop peeling technique in the ar-

Fig. 14. Speedup of MMX implementation of the VIOLWM
algorithm over MMX implementations of the VIL and VIOL
methods.

Fig. 15. Speedup of MMX and SSE implementations using
loop peeling over the MMX and SSE implementations with mis-
aligned accesses in the array additions program.

ray addition program over their implementation with mis-
aligned accesses. As this figure shows loop peeling tech-
niques improve performance significantly up to 1.45 and
1.66 in the MMX and SSE codes, respectively.

V. RELATED WORK

Eichenberger et al. [6] have proposed a systematic
method to simdizing loops with misaligned stride one
memory references for SIMD architecture with alignment
constraints. In their method data reorganization instruc-
tions are automatically generated during the simdization
to align data in registers. These instructions are inserted
into the simdized code to satisfy the actual alignment con-
straints. They called vectorization for SIMD architectures
as simdization. They have introduced a new data reorgani-
zation operator, vshiftstream(c1, c2), which shifts all val-
ues of a register stream from offset c1 to offset c2. In gen-
eral, they focused on generating optimized SIMD codes in
the presence of misaligned references.

Eichenberger et al. have investigated several policies

340

to generate data reorganization instructions using vshift-
stream nodes such as zero-shift policy, eager-shift policy,
lazy-shift policy, and dominant-shift policy. The zero-shift
policy shifts each misaligned register to a stream offset of
0 immediately after it is loaded from memory. After that
it shifts each register to the alignment of the store address
just before it is stored to memory. While eager-shift pol-
icy shifts each misaligned load directly to the alignment
of the store instruction. Lazy-shift policy is almost based
on the eager-shift policy and dominant-shift policy reduces
the number of stream shifts by shifting registers to the most
dominant stream offset.

Larsen et al. [16] have concentrated on the detection of
memory alignments and with techniques to increase the
number of aligned references in a loop. They used loop
peeling to align accesses. The loop peeling method is
equivalent to the eager-shift policy with the restriction that
all memory references in the loop must have the same mis-
alignment.

Bik et al. [3] have described a code sequence of aligned
loads and shuffle to load memory references that cross
cache line boundaries. This scheme was implemented in
Intel’s compiler for SSE2.

Fridman [7] has explained three solutions for data align-
ment. First, maintaining multiple replication of coef-
ficients. This approach used by Intel for MMX and
SSE [14], [11] implementation of the FIR filter. Sec-
ond method depends on memory system support for mis-
aligned accesses, as for example, the MIPS [19] and
SSE [22] memory systems. Third, accessing the aligned
memory addresses before and after the misaligned mem-
ory address and providing misaligned subwords using re-
arrangement instructions. This approach is used in Mo-
torola AltiVec [5] using a permutation unit. These tech-
niques have some limitations. For example, the replication
of the coefficients has two drawbacks. First, It needs large
memory for replication of the N filter coefficients. Sec-
ond, This method cannot be applied to algorithms, which
use dynamic data, as in convolution and correlation [7].
In the memory system that support misaligned accesses,
however, a single misaligned access is significantly slower
than an aligned access. Finally, using a permutation unit
and shifter in the third method causes the extra execution
time and larger code size of the program.

A dedicated hardware resource called Data Alignment
Buffer (DAB) is used in TigerSHARC Digital Signal Pro-
cessing (DSP) [9], [8]. A DAF is provided between the
memory banks and the computation elements. The data
alignment buffer allows unaligned accesses to specified
operands that are stored in different memory rows. A DAF
is managed directly by software. It uses muxes as well as

temporary memory for a complete aligned memory word.
The VIS instructions set added instructions for partial

load and store as well as instructions for merging partial
loaded data [26]. This means that to provide data in a form
that the VIS instructions can operate, subword rearrange-
ment and alignment instructions should be used. This re-
sults in extra overhead that limits the performance benefits
from VIS instructions. For instance in [23], Ranghanathan
et. al. observe that for MPEG/JPEG codecs, on average,
41% of the executed VIS instructions are instructions as-
sociated with subword rearrangement and alignment oper-
ations.

VI. CONCLUSIONS

Our results showed that unaligned memory accesses
have a large performance penalty. For example, the MMX
and SSE aligned codes for addition of two arrays are up to
2.26 and 2.72 times faster than their implementations us-
ing misaligned accesses on the Pentium 3 and Pentium 4
processors, respectively. To improve the misaligned mem-
ory accesses several techniques have been discussed in
this paper. These techniques are following as, loop peel-
ing, padding multidimensional arrays, multi-version code,
and duplicating constant tables. We have implemented
loop peeling and duplicating constant tables techniques
using MMX and SSE instructions. Based on our results
MMX implementation using replication of data is up to
2.20 times faster than the MMX implementation with mis-
aligned accesses in the FIR implementation. Furthermore,
the MMX and SSE implementations using loop peeling
technique are up to 1.45 and 1.66 faster that their imple-
mentation for addition of two arrays with different sizes,
respectively.

ACKNOWLEDGMENT

This research was supported in part by the Netherlands
Organisation for Scientific Research (NWO).

REFERENCES

[1] 3DNow Technology Manual, 2000.
[2] A. J. C. Bik. The Software Vectorization Handbook: Applying

Multimedia Extensions for Maximum Performance. Intel Press,
Hillsboro, 2004.

[3] A. J. C. Bik, M. Girkar, P. M. Grey, and X. Tian. Automatic Intra-
Register Vectorization for the Intel Architecture. International
Journal of Parallel Programming, 30(2):65–98, 2002.

[4] R. E. Bryant and D. R. O’Hallaron. Computer Systems: A Pro-
grammer’s Perspective. Prentice Hall, 2003.

[5] K. Diefendorff, P. K. Dubey, R. Hochsprung, and H. Scales. Al-
tiVec Extension to PowerPC Accelerates Media Processing. IEEE
Micro, pages 85–95, March-April 2000.

[6] A. E. Eichenberger, P. Wu, and K. O’Brien. Vectorization for
SIMD Architectures with Alignment Constraints. In Proc. ACM

341

SIGPLAN Conf. on Programming Lnguage Design and Imple-
mentation, volume 39, pages 82–93, May 2004.

[7] J. Fridman. Data Alignment for Sub-Word Parallelism in DSP. In
Proc. IEEE Workshop on Signal Processing Systems, pages 251–
260, October 1999.

[8] J. Fridman. Sub-Word Parallelism in Digital Signal Processing.
IEEE Signal Processing Magazine, 17:27–35, March 2000.

[9] J. Fridman and Z. Greenfield. The TigerSHARC DSP Architec-
ture. IEEE Micro, 20:66–76, January-February 2000.

[10] IBM Corporation. PowerPC Microprocessor Family: Vec-
tor/SIMD Multimedia Extension Technology Programming Envi-
ronments, 2005.

[11] Intel Corporation. Real and Complex FIR Filter Using Streaming
SIMD Extensions, 1999. Order Number: 243643-002.

[12] Intel Corporation. The IA-32 Intel Architecture Software Devel-
oper’s Manual Volume 3 System Programming Guide, 2004. Or-
der Number: 253668.

[13] Intel Corporation. Prescott New Instructions Software Devel-
oper’s Guide, 2004. Order Number: 252490-004.

[14] Intel Corporation. Using MMX Technology Instructions to Com-
pute a 16-Bit FIR Filter, 2004. www.intel.com/IDS.

[15] A. Krall and S. Lelait. Compilation Techniques for Multime-
dia Processors. International Journal of Parallel Programming,
28(4):347–361, August 2000.

[16] S. Larsen, E. Witchel, and S. Amarasinghe. Techniques for In-
creasing and Detecting Memory Alignment. Technical Report
LCS-TM-621, MIT/LCS, November 2001.

[17] S. Larsen, E. Witchel, and S. Amarasinghe. Increasing and De-
tecting Memory Address Congruence. In Proc. 11th Int. Conf. on
Parallel Architectures and Compilation Techniques, pages 18–29,
September 2002.

[18] R. B. Lee. Subword Parallelism with MAX-2. IEEE Micro, pages
51–59, August 1996.

[19] Inc. MIPS Technologies. MIPS Extension for Digital Media with
3D. www.mips.com.

[20] D. Nuzman and R. Henderson. Multi-platform Auto-
vectorization. In Proc. IEEE Int. Conf. on Code Generation and
Optimization, 2006.

[21] A. Peleg, S. Wiljie, and U. Weiser. Intel MMX for Multimedia
PCs. Communications of the ACM, pages 25–38, January 1997.

[22] S. K. Raman, V. Pentkovski, and J. Keshava. Implementing
Streaming SIMD Extensions on the Pentium 3 Processor. IEEE
Micro, pages 47–57, July-August 2000.

[23] P. Ranganathan, S. Adve, and N. P. Jouppi. Performance of Image
and Video Processing with General Purpose Processors and Me-
dia ISA Extensions. In Proc. Int. Symp. on Computer Architecture
(ISCA 26), pages 124–135, 1999.

[24] A. Shahbahrami, B.H.H. Juurlink, and S. Vassiliadis. Efficient
Vectorization of the FIR Filter. In Proc. 16th Annual Workshop on
Circuits, Systems and Signal Processing (ProRISC), pages 432–
437, November 2005.

[25] S. Thakkar and T. Huff. The Internet Streaming SIMD Exten-
sions. Intel Technology Journal, pages 1–8, 1999.

[26] M. Tremblay, J. Michael 0’Connor, V. Narayanan, and L. He. VIS
Speeds New Media Processing. IEEE Micro, pages 10–20, Au-
gust 1996.

342

