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Abstract— The tremendous growth of the Internet cou-
pled with newly emerging applications has created a vital
need for multicast traffic support by backbone routers and
ATM switches. In this paper, we first introduce the multi-
cast traffic scheduling problem. We focus our study on the
multicast traffic scheduling in crossbar based input queued
(IQ) switches. Due to the centralized scheduling complex-
ity in IQ switches, growing interest is given to thebuffered
crossbar-based switching architecture, where a limited small
amount of memory is embedded in each crosspoint of the
crossbar fabric. In this paper, we show that a buffered
crossbar switch can efficiently support multicast traffic and
high throughput can be achieved with distributed and sim-
ple scheduling algorithms. Furthermore, we show that the
presence of internal buffers is of key importance in optimiz-
ing the scheduling and the cost of the switch. Simulation
results showed that the buffered crossbar based distributed
scheduling algorithms achieve high performance under a
wide range of realistic traffic patterns.
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I. I NTRODUCTION

The explosive growth of the Internet in number of users
and service variety is parallel to the growth in transmis-
sion links capacity due the advances in fiber optic band-
width that has created huge supply of wide-area network
bandwidth. As a result, switches/routers are becoming the
bottleneck of the network. Traditionally, network nodes
(IP routers, ATM switches, Ethernet switches) were de-
signed for point-to-point communication (unicast). How-
ever, the variety of services on the Internet nowadays
has resulted in the emergence of new applications such
as teleconferencing, distance learning, IPTV etc. These
new applications have lead to a high demand for high-
speed switches/routers capable of dealing with point-to-
multipoint communication (multicast). Numerous propos-
als for identifying suitable architectures for efficient mul-
ticast support have been investigated and implemented.
These architectures can be classified based on various at-
tributes such as queuing schemes, scheduling algorithms,
and/or switch fabric topology.

The crossbar-based architecture [14] is widely consid-
ered the most suitable switching architecture due to its low
cost, scalability and more importantly itsintrinsic multi-
cast capabilities[8]. Alongside the switching fabric ar-
chitecture and the traffic supported, the queuing structure
of a router is equally important. The Input Queued (IQ)
switching architecture is the mostly used because of its
low requirement in terms of internal speed up. When first-
in-first-out (FIFO) queueing discipline is used at the input
queues, the throughput of an IQ is limited to 58.6% due to
the Head-of-Line (HoL) blocking problem [5]. The HoL
blocking can be completely eliminated by adopting virtual
output queuing (VOQ) at each input of the switch [12]
which scales the achievable throughput of the switch to
100%. The VOQ structure requires, however, a schedul-
ing algorithm that manages the departure of cells from the
input ports. As a result, the switching performance essen-
tially depends on its scheduling algorithm.

Unlike unicast traffic, where a packet (cell) at an in-
put port is destined to only one output port, a multicast
cell queued at an input port can have 2 or more destina-
tion output ports known as its fanaout set. While differ-
ent architectures have been proposed for multicast traffic
handling [2] which are based on copy networks, in this
paper we consider the crossbar-based switching architec-
ture due to its architectural intrinsic multicast capabilities.
There has been a great deal of research work on multicast
scheduling in the literature. Most of them are based on
a multicast FIFO queue architecture [14]. However, be-
cause of a similar HoL blocking problem as for the uni-
cast traffic, the performance is low. Avoiding the HoL
problem in this case would require a FIFO queue for ev-
ery fanout set per input. This implies maintaining up to
2N − 1 separate FIFO queues per input, whereN is the
number of ports of the switch [7]. This is clearly imprac-
tical for even small sized switches. As a compromise, re-
searchers have proposed to use a small number of queues,
k (1 ≤ k ≪ 2N − 1) per input [3].

This article focuses on the multicast scheduling prob-
lem in crossbar-based IQ switches. The scheduling algo-
rithms for this architecture are centralized and have high
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Fig. 1. Multicast Traffic Support in Core Routers

computational complexity. We, therefore, study the multi-
cast problem in a slight alternative to the crossbar switch,
where small buffers are embedded within the crossbar fab-
ric chip. This architecture is known as the Combined In-
put and Crossbar Queued (CICQ) switch. The existence of
internal buffers avoids the need for centralized scheduler
and relies on simple and distributed scheduler over the in-
put and output ports. We show the superiority of the CICQ
architecture to its bufferless predecessor and its high capa-
bility to support multicast traffic flows.

The remainder of this article is organized as follows:
Section II presents background knowledge and related
work and introduces the multicast problem. We present
different multicast switching architectures, with a focus on
the crossbar-based fabric switches. Section III surveys the
existing scheduling algorithms proposed to handle multi-
cast traffic flows. Section IV presents and analyzes the
performance of the bufferless as well as the buffered cross-
bar switching architectures under multicast traffic arrivals.
Finally, Section V concludes the paper.

II. T HE MULTICASTING PROBLEM

Multicast traffic handling, in its simplest form, is the ca-
pability of a router to transfer a cell to multiple destination
output ports with the minimum cost in terms of data pro-
cessing and time. This is important because of the grow-
ing proportion of multicast traffic on the Internet (audio,
video, IPTV, etc.). If we consider the example in Figure 1,
and assume that the three hosts connected to router R2 are
receiving the same media content from the server. If the
Server sends the same message to hosts, H1, H2, and H3,
it either sends the same message three times (one per des-
tination) or it can send the message only once over routers
R1 and R2. Once reaching R2, the message gets split into
three copies, one copy per destination host. Obviously, the
latter case is a better choice as it optimizes the network

resources and the time taken for the hosts to receive the
data. In order to achieve this, routers R1 and R2 must be
designed to support multicast traffic.

The number of destination output ports of a multicast
cell is known as its fanout set. If we consider an anN ×M

router with multicast capabilities, a multicast cell arriving
at any of theN input ports can have any set of destinations
between 2 andM . In order to avoid the HoL problem, the
router must maintain up to2M − 1 separate FIFO queues
per input in order to cover all possible fanout set configu-
rations. This architecture is known as the multicast VOQ
(MC-VOQ) [7]. Because of the huge number of queues
maintained at each input and the extensive amount of in-
formation exchange in order to schedule the traffic, this ar-
chitecture is considered impractical. Instead, researchers
have used just one FIFO queue per input. While using just
one queue per input is practical, it has poor performance
due to the HoL problem. Another solution was to maintain
a small number,k, of queues per input for multicast traffic.
This was a good compromise to achieve good performance
while maintaining affordable hardware requirements. Be-
causek is much smaller than2M − 1, cells with different
fanout sets will have to be queued in the same input queue.
This mapping is known as the multicast cell placement pol-
icy.

A. The Multicast FIFO Architecture

If we consider that router R2 (in Figure 1) uses just one
FIFO queue per input for multicast traffic, its architecture
can be described as depicted in Figure 2. By considering
that the crossbar fabric operates at the same speed as the
external lines, at each time slot1 every input can send at
most one cell and every output can receive at most one
cell. Because of the intrinsic multicast capabilities of the
crossbar fabric, a cell can be sent to all its destinations at
the cost of one by simply closing those crosspoints cor-
responding to its output ports subject to their availability.

Subject to output availability and the scheduling algo-
rithm used a cell may not reach all its destinations, indi-
cated by its fanout set, during one time slot. There are
two known service disciplines used to deal with such sit-
uation [14]. The first is known asno fanout splittingand
the latter is known asfanout splitting. When no fanout
splitting discipline is used, a cell must traverse the cross-
bar fabric only once. Meaning that a cell gets switched to
its output destination ports if and only if all its destination
outputs are available at the same time. If one, or more, of

1A time slot is defined as the time between two cell consecutive ar-
rivals/departures to/from an input/output port of the router
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Fig. 2. a 2x4 Multicast Crossbar Switch

the output destinations is/are busy, the cell loses contention
and all of its copies remain in the input port. If we consider
no fanout splitting discipline in Figure 2, then either of the
two HoL cells of queuesMQ1 andMQ2 will be switched
out butnot both. The reason is because both cells have out-
put ports 1 and 2 in their fanout sets and knowing that an
output port can receive at most one cell and the no fanout
splitting discipline does not allow partial cell switching re-
sulting in only one cell of the two being eligible for trans-
fer. The no fanout splitting discipline is easy to implement,
however it results in low throughput because it is not work
conserving2. This can be seen from the example above as
either output 3 or output 4 will receive a cell but not both
depending on whichMQ has been selected.

When, however, fanout splitting discipline is used, a cell
can bepartially sent to its destination output ports over
many time slots. Copies of the cell that are not switched,
due to output contention, during one time slot continue
competing for transfer during the following time slot(s).
The flexibility of allowing partial cell transfer comes at
a little increase in implementation complexity, however
it provides higher throughput because it is work conserv-
ing [4]. In this paper, we consider fanout splitting. Con-
sider the example of Figure 2 again and assuming a fanout
splitting discipline is used, then both the HoL cells of
MQ1 andMQ2 can send copies to a subset of their out-
put ports. Output 3 and 4 are receiving one cell each and
therefore both copies destined to them, in the input queues,
are transferred with no contention. Additionally, both HoL
cells of MQ1 andMQ2 have cells destined to outputs 1
and 2. However, we know that each output can receive at
most one cell at a time. Therefore, at the end of the time
slot, we will have remaining cells for output ports 1 and 2.
These remaining cells are referred to as theresidue.

2A work conserving policy ensures that an output port is never idle
so long as there are cells destined to it in the input ports
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Fig. 3. AnN ×M Multicast k FIFO Queues Buffered Crossbar
Switch

Depending on the policy used, the residue can either be
concentratedon the input ports or it can bedistributedover
the input ports. As defined in [14], the residue is the num-
ber of cells left at the HoL of the input queues after losing
contention for the output ports at the end of each time slot.
In the example of Figure 2, the residue is{1, 2}. A con-
centrating policy is one that leaves the residue on the mini-
mum number of input ports. If we consider a concentrating
policy in Figure 2, the residue with be left (concentrated)
on eitherMQ1 or onMQ2 but not on both. On the other
hand, a distributing policy is one that leaves the residue on
the maximum number of input ports. Using a distributing
policy in Figure 2 would result in the residue being dis-
tributed overMQ1 andMQ2 but not on one queue only.

B. The Multicast k FIFO Queues Architecture

Due to the impracticality of the MC-VOQ switching ar-
chitecture [7] and to the low performance of the multicast
FIFO architecture, a good compromise is to use the multi-
cast k FIFO queues architecture. It is a queueing architec-
ture with a small number of input multicast FIFO queues
per input (1 ≤ k ≪ 2M − 1). This queueing architec-
ture has been studied in the context of bufferless crossbar
switches [1] [6]. Figure 3 depicts the multicast k FIFO ar-
chitecture for anN ×M buffered crossbar switch, a cross-
bar switch where small buffers are added inside the fabric
chip [10]. Because the number of multicast queues main-
tained at each input is much smaller than the cardinality of
the fanout set, a cell placement strategy is required in order
to enqueue each incoming cell into its correspondingMQ

by following certain criteria.
The cell placement has a significant impact on the

switch performance. Previous work [3] has defined the
criteria for designing a good cell placement policy:i) HoL



cells should contain diverse fanout sets that can span a
large part of the set of all outputs for which the input
holds packets. This ensures more scheduling opportunities
and work conservation.ii) Cells with the same or similar
fanout sets should be placed in the same multicast queue.
This would reduce the HoL problem and avoid the out of
sequence delivery problem. There have been many cell
placement schemes, such as majority [3] and minimum
distance queue (MDQ) [1]. While these schemes have met
most or all of the above mentioned criteria, their major dis-
advantage lies in their hardware implementation. A more
recent and practical scheme, named theModulo, has been
proposed by [11]. If a cell with fanout numberf arrives
at inputi, the Modulo scheme assigns the cell to the mul-
ticast queue:MQi,j where{j | j = f mod(k)}. Unless
otherwise stated, in this paper, we use the Modulo scheme.

III. SCHEDULING MULTICAST TRAFFIC

Similar to unicast traffic, the multicast traffic schedul-
ing problem has drawn considerable attention and many
scheduling algorithms have been proposed. This sec-
tion surveys some of these algorithms based on the input
queueing architecture for which they have been designed.

A. Algorithms For The Multicast FIFO Architecture

Several algorithms have been proposed for this archi-
tecture, mostly designed for the bufferless crossbar fabric
switches.
• The Concentrate Algorithm:As the name indicates, the
concentrate algorithm [14] always concentrates the residue
onto as few inputs as possible. The purpose of this algo-
rithm is to provide a basis for evaluating the performances
of other algorithms, since it achieves high throughput for
the FIFO queue structure. However, this algorithm doesn’t
meet the fairness requirement due to the starvation prob-
lem it creates. The Concentrate algorithm is not consid-
ered a practical algorithm. It requires up toM iterations
per cell time to complete, which makes it difficult to im-
plement at high speed.
• The mRRM Algorithm: The Multicast Round-Robin
Matching (mRRM) was proposed by [13]. A single round-
robin pointer is collectively maintained by all of the out-
puts. Each output selects the next input that requests it
at, or after, the pointer. At the end of the packet time,
the pointer is moved to one position beyond the first in-
put that is served. Designed to be simple to implement in
hardware, mRRM tends to concentrate the selection onto a
small number of inputs, yet maintains fairness.
• The TATRA Algorithm:The general multicast schedul-
ing problem can be mapped onto a variation of the popular
block-packing game Tetris. TATRA is based on the Tetris

model and was first introduced in [13]. TATRA has the
properties of guaranteeing at least one input packet is dis-
charged each packet time, and also residue concentration.
Designed to approximate the concentrate algorithm with
less complexity, unfortunately TATRA is a complex algo-
rithm since it cannot be parallelized. Moreover, TATRA
treats all inputs uniformly which is of no value when the
inputs are non-uniformly loaded or when some inputs re-
quest a higher priority.
• The MXRR Algorithm:The Multicast crosspoint Round
Robin (MXRR) algorithm is the first, and one the few algo-
rithms, proposed for the buffered crossbar (CICQ) switch-
ing architecture [9]. Due to the distributed and lower com-
putational complexity of the CICQ based scheduling al-
gorithms, MXRR has been shown to exhibit higher per-
formance than all other multicast FIFO queue based algo-
rithms while keeping simple hardware requirements.

B. Algorithms For The Multicast k FIFO Queues Archi-
tecture

The low performance and high complexity of the multi-
cast FIFO architecture have stressed the need for the mul-
ticast k FIFO queues architecture and many scheduling al-
gorithms have been proposed. These algorithms have been
designed for the bufferless as well as for the buffered cross-
bar switching architectures.
• Bufferless Crossbar Based Algorithms: Algorithms for
this architecture include the random scheduler (RS), the
Greedy Scheduler (GS) and the Greedy Min-Split Sched-
uler (GMSS) [1]. The first algorithm either makes deci-
sions randomly among the input and and output ports. In
addition to its costly hardware cost, this scheme has poor
performance as it leaves idle outputs due to the contention
effect. The second algorithm tries to overcome this and as-
signs weights to the queues such as queue length and then
makes its selection based on weight ordering. The third
algorithm is also weighted algorithm and tries to combine
the advantages of the previous. As it requires sorting, how-
ever, its implementation can prove difficult and prevents it
from running at high rates.
• Buffered Crossbar Based Algorithms:A group of
scheduling algorithms have recently been proposed for
the multicast k FIFO queues architecture designed for the
CICQ switching architecture [15]. These algorithms were
proposed along with a class of cell placement schemes.
The input arbitration was based on some policies such as
giving preference to HoL cells that would result in the min-
imum reside left. Another input scheduling was based on
selecting the cell with the maximum number of reachable
destinations first. A third policy is to give preference to
cells with the maximum service ratio, defined as the the
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Fig. 4. Average Cell Delay of8 × 8 Multicast FIFO Crossbar Switch

number of reachable destination outputs divided by the
fanout number of a cell. The output arbitration was based
on round robin and Longest Queue First (LQF).

IV. PERFORMANCESTUDY

This section studies and analyzes the performance of
different queueing and switching architectures. In particu-
lar this study is aimed at comparing the bufferless crossbar
switching architecture to the buffered CICQ switching ar-
chitecture when employing the multicast k FIFO queues.
The performance results presented in this section are done
for two different switch sizes (8 × 8 and16 × 16 respec-
tively). We carried out the performance under two input
traffic patterns: Bernoulli uniform and Bursty uniform. We
compared the TATRA algorithm and Multicast ISLIP [12]
bufferless crossbar switch and the MXRR algorithm for the
buffered crossbar architecture. This study is targeting the
multicast FIFO queueing architecture. We also compared
the performance of the multicast ISLIP algorithm with that
of MXRR for the multicast k FIFO queues architecture.

Figure 4 depicts the average delay performance of the
TATRA and multicast ISLIP for the an8 × 8 bufferless
crossbar switch compared to the MXRR algorithm running
an 8 × 8 buffered crossbar switch. As the figure shows,
MXRR has better delay performance than the other two.
This result holds for uniform Bernoulli arrival (left graph
on Figure 4) as well as for bursty uniform arrivals with a
burst length of 16 cells (right graph on Figure 4).

In order to better analyze the behavior of each algo-
rithm, we tested the algorithms under the same settings
as above but with a larger sized switch. This is important
because, as the switch sizes increases, the fanout sets of
the cells increases making it harder for the algorithm to
schedule the traffic due to increased contention. For this
end, Figure 5 depicts the average cell delay of each of the
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three algorithms for a16 × 16 switch. Again, the MXRR
algorithm keeps the shortest cell delay amongst the three
algorithms both under Bernoulli uniform and bursty uni-
form arrivals.

In the previous experiments, we tested three algorithm
for the multicast FIFO queueing architecture. In the fol-
lowing simulation, we compared the delay performance of
the mcastSLIP bufferless algorithm with the MXRR algo-
rithm because of their similarities, as non weighted algo-
rithms. Figure 6 depicts the average delay performance
for each of mcastSLIP and MXRR for the multicast k
FIFO queues architecture. We used 2 and 4MQs per in-
put for a16 × 16 switch under Bernoulli unform traffic
arrivals. We can see from Figure 6 that MXRR outper-
forms the bufferless mcastSLIP algorithm irrespective of
the numberMQs used per input. MXRR still achieves
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higher performance while using half the number ofMQs
that mcastSLIP does.

V. CONCLUSION

Building high speed switches and Internet routers with
multicast support is becoming important due to the grow-
ing proportion of multicast flows. This paper studies
the multicast traffic problem and surveys existing multi-
cast switching architecture as well as their scheduling al-
gorithms. The crossbar based switching architecture is
known to have good performance because of its intrinsic
multicast capabilities. A variation of the crossbar-based
architecture, the buffered crossbar switching (CICQ) ar-
chitecture is arguably the best candidate for handling mul-
ticast traffic. The CICQ is shown to exhibit good delay
performance in the presence of multicast flows. Addition-
ally, the distributed scheduling algorithms for the CICQ
are shown to be readily implementable allowing them to
run at high speed.
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