
Using Linear Tests for Transient Faults in DRAMs

Zaid Al-Ars Said Hamdioui Georgi Gaydadjiev

Delft University of Technology, Faculty of EE, Mathematics and CS

Laboratory of Computer Engineering, Mekelweg 4, 2628 CD Delft, The Netherlands

E-mail: z.e.al-ars@ewi.tudelft.nl

Abstract: Recent developments in the theory of DRAM

fault modeling have identified the space of tests needed

to detect all DRAM faults. Tests developed to target tran-

sient DRAM faults are very time consuming, as they have

a quadratic dependence on the number of tested memory

cells. This paper presents techniques to reduce the com-

plexity of these tests. The paper also introduces a reduced

test, with linear dependency on the number of cells, that

detect all realistic transient faults in DRAMs.

1 Introduction

DRAM test development has commonly been an ad hoc

activity, where large numbers of tests are performed on a

representative sample and those tests are chosen that result

in the best fault coverage [10]. This approach results in a

long and costly test development time, and eventually leads

up with a non-optimal test flow [6]. Recently, a theoreti-

cal framework of DRAM tests was proposed [5], based on

Spice simulations of DRAM models, that is able to detect

all possible DRAM faults [4]. Some of the proposed tests,

however, are rather complex, such that they scale super-

linearly with the number of cells in the memory.

Transient faults are DRAM faults that get temporarily

sensitized, and subsequently correct themselves after a lim-

ited amount of time [2]. In order to detect these faults prop-

erly, the detecting operations should follow the sensitizing

operations directly without any delay, before the fault gets

corrected. This detection requirement results in a quadratic

O(n2) dependency of test complexity on the number of

memory cells. Such test complexity requires a rather long

test application time on current day high-density DRAMs,

that render them impractical for a high-volume manufac-

turing test environment.

This paper tackles the high complexity issue of DRAM

tests generated to detect transient faults. The paper sug-

gests a number of optimization techniques to reduce test

complexity and limit test application time. The concept

of physical locality of defects is used, which states that a

given defect can only cause a fault in a number of adjacent

cells, rather than cells located far apart. The used optimiza-

tion techniques reduce the test complexity from quadratic

to linear, making it suitable for industrial application.

This paper is organized as follows. Section 2 lists the

different fault primitives to be used in this paper, followed

by a description of the classes of DRAM faults in Sec-

tion 3. Section 4 derives the general tests needed to detect

all transient faults and identifies their complexity, while

Section 5 optimizes these tests to limit the needed test time.

Finally, Section 6 ends with the conclusions.

2 Fault primitives

In order to specify a certain memory fault, one has to rep-

resent it in the form of a fault primitive (FP), denoted as

<S/F/R>. S describes the operation sequence that sen-

sitizes the fault, F describes the logic level in the faulty

cell (F ∈ {0, 1}), and R describes the logic output level

of a read operation (R ∈ {0, 1, −}). R has a value of

0 or 1 when the fault is sensitized by a read operation,

while the “−” is used when a write operation sensitizes

the fault. For example, in the FP <0w1/0/−>, which is

the up-transition fault (TF1), S = 0w1 means that a w1 op-

eration is written to a cell initialized to 0. The fault effect

F = 0 indicates that after performing w1, the cell remains

in state 0. The output of the read operation (R = −) indi-

cates there is no expected output for the memory.

Functional fault models (FFMs) can be defined as a

non-empty set of FPs. The most important FFM classes

are single-cell static FFMs and two-cell static FFMs.

Single-cell static FFMs consist of FPs sensitized by per-

forming at most one operation on a faulty cell. Table 1 lists

all single-cell static FFMs and their corresponding FPs. In

total, there are 6 different types of FFMs: state fault (SF),

transition fault (TF), write destructive fault (WDF), read

destructive fault (RDF), incorrect read fault (IRF), decep-

tive read destructive fault (DRDF) [1].

Table 1. Single-cell static FFMs and their corresponding FPs.

Fault FP Name

1 SF <0/1/−>, <1/0/−> State fault

2 TF <0w1/0/−>, <1w0/1/−> Transition fault

3 WDF <0w0/1/−>, <1w1/0/−> Write destructive fault

4 RDF <0r0/1/1>, <1r1/0/0> Read destructive fault

5 IRF <0r0/0/1>, <1r1/1/0> Incorrect read fault

6 DRDF <0r0/1/0>, <1r1/0/1> Deceptive RDF

Two-cell static FFMs consist of FPs sensitized by per-

forming at most one operation while considering the faulty

effect of two cells. Such FPs can be represented as <Sa;
Sv/F/R>, where Sa is the sequence performed on the ag-

gressor (a) and Sv is the sequence performed on the vic-

tim (v). Table 2 lists all two-cell static FFMs and their

corresponding FPs. In total, there are 7 different types

of two-cell static FFMs: state coupling fault (CFst), dis-

turb coupling fault (CFds), transition coupling fault (CFtr),

write destructive coupling fault (CFwd), read destructive

coupling fault (CFrd), incorrect read coupling fault (CFir),

and deceptive read destructive coupling fault (CFdrd).

Table 2. Two-cell static FFMs and their FPs (x, y ∈ {0, 1}).

Fault FP Name

1 CFst <0; 0/1/−>, <0; 1/0/−> State coupling

<1; 1/0/−>, <1; 0/1/−> fault

2 CFds <xwy; 0/1/−>, <xwy; 1/0/−> Disturb coupling

<xrx; 0/1/−>, <xrx; 1/0/−> fault

3 CFtr <0; 0w1/0/−>, <0; 1w0/1/−> Transition coupling

<1; 0w1/0/−>, <1; 1w0/1/−> fault

4 CFwd <0; 0w0/1/−>, <0; 1w1/0/−> Write destructive

<1; 0w0/1/−>, <1; 1w1/0/−> coupling fault

5 CFrd <0; 0r0/1/1>, <0; 1r1/0/0> Read destructive

<1; 0r0/1/1>, <1; 1r1/0/0> coupling fault

6 CFir <0; 0r0/0/1>, <0; 1r1/1/0> Incorrect read

<1; 0r0/0/1>, <1; 1r1/1/0> coupling fault

7 CFdrd <0; 0r0/1/0>, <0; 1r1/0/1> Deceptive read

<1; 0r0/1/0>, <1; 1r1/0/1> destructive CF

3 DRAM-specific faults

DRAM faults can either be attributed to leakage currents

(resulting in time dependent faults), or to improperly set

voltages (resulting in voltage dependent faults) [4]. Fig-

ure 1 shows a summary of DRAM-specific faults.

Figure 1. Summary of the space of DRAM-specific faults.

3.1 Time dependent faults

Time dependent faults are caused by leakage currents in

faulty cells [8]. Time dependence divides all faults into

three classes: soft, transient and hard.

Soft faults—Soft faults (s) only become detectable after

some time from their sensitization. These faults can be

tested for by adding a delay within the test, as it is the case

for the data retention fault, for example [7]. Soft faults are

caused by writing weak voltages into memory cells, that

soon get depleted by naturally occurring leakage currents.

Soft faults are represented as sFP =<ST /F/R>, where S
has an added time parameter T to indicate that some time

should elapse before full sensitization. The open defect

in Figure 2(a) shows an open that may cause soft faults

in a DRAM cell. If the open defect has an intermediate

resistance value that is not too high (causing hard faults)

and not too low (not causing a fault at all), write operations

store a weak voltage into the cell. If leakage opposes the

weak voltage, the stored information gets lost over time.

To precharge
circuits

(b) Partial in A

Rbr

BL

WL WL

Rop

(a) Partial in I

BL

WL

Rop
BL

(c) Dirty faults

drivers
To write

and SAs

WL

Figure 2. Defects causing (a) pi, (b) pa, and (c) causing dirty faults.

Transient faults—Transient faults (t) are memory

faults that do not remain sensitized indefinitely, but tend to

correct themselves after a period of time. Transient faults

are tested for by performing all the operations in the fault

in back-to-back mode directly after each other, and directly

following them by a read. The DRAM open in Figure 2(a)

may cause transient faults. For a specific range of Rop val-

ues, write operations set a faulty voltage within the cell that

is not strong enough to qualify as a hard fault. If leakage

tends to correct the weak faulty voltage, the stored voltage

gets corrected over time. Transient faults are represented

as tFP =<S/FL/R>, where the underline below S means

that the operations in S should be performed in back-to-

back mode. Furthermore, F has an added time parameter

L (life time) to indicate that these faults are time limited.

An underline below operations implies that the operations

have to be performed after each other within one march

element. For example, if S = w1w0 then the detection

condition should be m(..., w1, w0, ...).
Hard faults—Identifying a fault as being hard (“h” or

“-”) indicates that it is neither soft nor transient (i.e., it is

insensitive to time). All the generic faults described in Sec-

tion 2 are hard faults.

3.2 Voltage dependent faults

Operations performed on a defective DRAM may set im-

proper voltage levels on memory nodes, thereby causing

two types of DRAM faults: partial faults and dirty faults.

Partial faults—Partial faults (p) are faults that can only

be sensitized when a specific memory operation is succes-

sively repeated a number of times, either to properly ini-

tialize the faulty cell (partial faults during initialization

pi), or to properly sensitize the fault in the cell (partial

faults during fault sensitization or activation pa). Fig-

ure 2(a) shows an example of an open (Rop) in the cell,

causing pi. Rop prevents fully initializing the cell to the re-

quired voltage with only one operation, which means that

full initialization requires repeating the operation a number

of times. Figure 2(b) shows an example of a bridge (Rbr)

between two cells, causing pa. These faults are modeled

by performing an operation Ox an h (or hammer) num-

ber of times. For example, if <xOy/F/R> becomes par-

tial during initialization pi, it should be modeled as piFP

=<xhOy/F/R>.

Dirty faults—Dirty faults (d) assume that after proper

initialization or sensitization, the state of the memory (volt-

ages on the BLs, the WLs, or in data buffers) is corrupted,

such that subsequent detection is prevented. In order to en-

sure detectability, additional operations (so called complet-

ing operations) must be performed to correct the corrupted

state of the memory. Figure 2(c) shows an example of an

open defect (Rop) on the BL that causes dirty faults. This

defect disconnects memory cells from the write drivers,

which prevents the memory from writing the cells. This

defect also prevents properly precharging the BL. As a re-

sult, a w0 operation that fails to write 0 in the cell ends up

preconditioning the BL to properly sense a 0, thereby caus-

ing a dirty fault. These fault are modeled by the introduc-

tion of completing operations to the FP. Detectability of all

known dirty faults can be ensured using a completing write

operation with data opposite to the data in the victim, per-

formed to a cell different from the victim but positioned on

the same BL pair (i.e., dFP =<xOvy[wby]/y/−>b,v∈BL).

3.3 Realistic space of DRAM faults

Any generic memory fault, described in Section 2, can rep-

resent a DRAM-specific fault by adding DRAM-specific

fault attributes to it. First, there are voltage dependent at-

tributes: partial (p), dirty (d), or neither (-). Second, there

are time dependent attributes: hard (h or -), soft (s) and

transient (t). Furthermore, the partial attribute can either

be initialization related (pi), or activation (or sensitization)

related (pa).

Based on a detailed analysis of the characteristics of

these faults, the full realistic space of DRAM faults can be

constructed for singe-cell faults, as well as two-cell faults

[3, 4].

Single-cell

fault
=















-

pi

d

pid





















h or -

s

t







FP (1)

Two-cell

fault
=

{

-

p

}







h or -

s

t







FP (2)

These expressions indicate that any generic single-cell

fault can either be regular (-), initialization partial (pi),

dirty (d) or partial dirty (pid), while being hard (h or -),

soft (s) or transient (t) at the same time. Two-cell faults

can regular (-) or partial (p), while being hard, soft or tran-

sient. Note that some faults classes are considered unreal-

istic, such as activation partial (pa) single-cell faults, and

therefore they are not included in the space.

For example, a transition 0 fault can be hard (hTF0),

which is the same as the generic TF0. It can also be partial

hard (pihTF0), dirty hard (dhTF0) and partial dirty hard

fault (pidhTF0) The same combinations apply for soft TF0

and transient TF0.

4 Tests for transient faults

Transient FPs mean that, after a fault is sensitized, leakage

results in correcting the fault before it gets detected. This

section derives the tests needed to detect single-cell and

two-cell transient faults.

Detection conditions

An FP has two components to describe a fault: F (the

value of the faulty cell) and R (the output on a read opera-

tion). Only F can be transient (get corrected by leakage),

whereas R cannot, since it gets sensitized and detected on

the output at the same time.

Table 3 lists all single-cell transient faults, along with

their detection conditions. For example, the (partial, dirty

and transient) transition 0 fault (pidt TF0), must first be

initialized a multiple number of times (w1h). Then, the

sensitizing write 0 operation can be performed (w0), be-

fore a completing operation with data 1 must be applied

to a different cell along the same BL as v ([O1b]). The

detection condition starts with multiple w1 operations to

initialize the cell to 1, directly followed by the sensitizing

w0, the completing O1b, and a detecting r0. Note that this

detection condition is not a regular one, since it requires

operations to be performed on two different cells (b and

Table 3. List of single-cell, transient FPs and their detection conditions.

The underlined operations must be performed back-to-back.

Fault <S/FL/R>, O ∈ {w, r} Detection cond., O ∈ {w, r}

1 dt SF0 <0v [O1
b
]/1L/−> m(..., w0, O1

b
, r0, ...)

2 dt SF1 <1v [O0
b
]/0L/−> m(..., w1, O0

b
, r1, ...)

3 pidt WDF0 <w0h
v
[O1

b
]/1L/−> m(..., w0h, O1

b
, r0, ...)

4 pidt WDF1 <w1h
v
[O0

b
]/0L/−> m(..., w1h, O0

b
, r1, ...)

5 pidt TF1 <w0h
v
w1

v
[O0

b
]/0L/−> m(..., w0h, w1, O0

b
, r1, ...)

6 pidt TF0 <w1h
v
w0

v
[O1

b
]/1L/−> m(..., w1h, w0, O1

b
, r0, ...)

7 pidt IRF0 <w0h
v
[O1

b
]r0

v
/0L/1> m(..., w0h, O1

b
, r0, ...)

8 pidt IRF1 <w1h
v
[O0

b
]r1

v
/1L/0> m(..., w1h, O0

b
, r1, ...)

9 pidt DRDF0 <w0h
v
r0

v
[O1

b
]/1L/0> m(..., w0h, r0, O1

b
, r0, ...)

10 pidt DRDF1 <w1h
v
r1

v
[O0

b
]/0L/1> m(..., w1h, r1, O0

b
, r1, ...)

11 pidt RDF0 <w0h
v
[O1

b
]r0

v
/1L/1> m(..., w0h, O1

b
, r0, ...)

12 pidt RDF1 <w1h
v
[O0

b
]r1

v
/0L/0> m(..., w1h, O0

b
, r1, ...)

v) within only one march element. The fact that the oper-

ations in these detection conditions need to be performed

back-to-back is indicated by the underline below the corre-

sponding operations.

In the same way, one may derive the detection condi-

tions corresponding to all two-cell, hard faults.

Test algorithms

Based on the detection conditions of single-cell and two-

cell transient faults, it is possible to derive memory tests

that detect all these faults. A march test that detects all

single-cell transient faults can be represented by March

T1C (for transient, 1-cell) below.

March T1C = {

m(w0h, w1b, r0); m(w1h, w0b, r1);

ME0 ME1

m(w0h, w1, w0b, r1); m(w1h, w0, w1b, r0);

ME2 ME3

m(w0h, r0, w1b, r0); m(w1h, r1, w0b, r1)}

ME4 ME5

This march test has six march elements (ME0 through

ME5), each of which begins with a hammer write operation

and ends with a detecting read operation. This test has a

complexity of (16 · n + 6 · h · n). The march elements

have special operations (such as w1b) to be performed on

a different cell along the same BL as the current cell of

the march element. The operations in each march element

must be performed back-to-back directly after each other

(hence the underline below the operations in the test).

A march test that detects all two-cell, transient faults

can be represented by March T2C below.

March T2C = {

mi(mj(w0i, w0h
j
, r0i, r0i)); mi(mj(w0i, w1h

j
, r0i, r0i));

ME0 ME1

mi(mj(w1i, w0h
j
, r1i, r1i)); mi(mj(w1i, w1h

j
, r1i, r1i));

ME2 ME3

mi(mj(w0i, w0j , w1h
j
, r0i)); mi(mj(w1i, w0j , w1h

j
, r1i));

ME4 ME5

mi(mj(w0i, w1j , w0h
j
, r0i)); mi(mj(w1i, w1j , w0h

j
, r1i));

ME6 ME7

mi(mj(w0i, w0j , r0h
j
, r0i)); mi(mj(w1i, w0j , r0h

j
, r1i));

ME8 ME9

mi(mj(w0i, w1j , r1h
j
, r0i)); mi(mj(w1i, w1j , r1h

j
, r1i));

ME10 ME11

mi(mj(w0i, w0h
j
, w0i, r0i)); mi(mj(w0i, w1h

j
, w0i, r0i));

ME12 ME13

mi(mj(w1i, w0h
j
, w1i, r1i)); mi(mj(w1i, w1h

j
, w1i, r1i));

ME14 ME15

mi(mj(w1h
i
, w0h

j
, w0i, r0i)); mi(mj(w1h

i
, w1h

j
, w0i, r0i));

ME16 ME17

mi(mj(w0h
i
, w1h

j
, w1i, r1i)); mi(mj(w0h

i
, w0h

j
, w1i, r1i))}

ME18 ME19

This test has 20 march elements (ME0 through ME19),

each of which contains a nested march element. This test

has a complexity of (56·n2+24·h·n2). The reason behind

the high computational complexity is the assumption that

an aggressor can cause a fault in any victim anywhere in

the memory. This assumption is, however, unrealistic. The

impact of an aggressor is almost always limited to the adja-

cent neighboring cells. This observation can significantly

simplify March T2C, by limiting the value of j to a limited

number of adjacent cells. This reduces the complexity of

the test from quadratic to linear with the number of cells,

as discussed below.

5 Optimizing transient tests

The high time complexity of the two-cell march test

(March T2C) for transient faults presented above stems

from the assumption that each cell can be coupled to all

other cells in the memory. This assumption is unnecessary,

since practically a cell can only be coupled to the closest

physically neighboring cells on the layout. Once the lay-

out of the memory is known, it is possible to significantly

reduce the time complexity of these tests.

The most widely used DRAM layout today is shown

in Figure 3 [9]. In this figure, the circles represent mem-

ory cells, the horizontal lines represent word lines (WLs),

while the vertical lines represent bit lines (BLs). BLs are

organized in pairs of true (BT) and complementary (BC)

bit lines. Note that the order of the WLs is scrambled (so-

called reflected WL organization), such that WL3 follows

WL1 instead of WL2.

BT0 BC0 BT1 BC1 BT2 BC2

WL0

WL1

WL4

WL3

WL2

WL0

WL1

WL4

WL3

WL2

BL pair 0 BL pair 1 BL pair 2

(a) Separated BLs (b) Combined BLs

Combine
BLs

C0,0

C1,0

C4,0

C0,1

C1,1

C4,1

C0,2

C1,2

C4,2

C2,0

C3,0

C2,1

C3,1

C2,2

C3,2

C0,0

C4,0

C0,1

C4,1

C0,2

C4,2

C2,0 C2,1 C2,2

C3,0

C1,0

C3,1

C1,1 C1,2

C3,2

Figure 3. Physically neighboring cells (a) on the layout, and (b) with combined BLs (i.e., by combining BT and BC into a single BL pair).

Each memory cell in the figure is indicated by the letter

C and a couple of numbers that refer to the WL and BL the

cell is connected to. For example, the cell C3,2 is the mem-

ory cell connected to WL3 and BL2. All even numbered

WLs (such as WL0, WL2, etc.) access cells connected to

BT, while all odd numbered WLs access cells connected

to BC. Considering C1,1, for example, the three closest

neighboring cells on the layout are C0,1, C0,2 and C3,1.

According to this layout, each cell has three closest

physical neighbors. This situation is shown in Figure 3(a),

where the closest neighbors are highlighted by arrows that

connect between them.

When march tests are applied to the memory under test,

memory cells are accessed in an increasing, or a decreasing

logical address order. In the memory shown in Figure 3(a),

an increasing logical cell address corresponds for exam-

ple to the following cell sequence C0,0, C1,0, C2,0, C3,0,

C4,0, (then the rest of WLs are accessed), then C1,0, C1,1,

etc. In this example, a march test accesses a cell on BT

first, then a cell on BC, then again on BT, then BC, etc.,

according to their logical address and not to their physical

position. From a march test point of view (i.e., using log-

ical addressing), there is no difference between a cell con-

nected to BT or to BC. Therefore, it is possible to combine

each BT and BC of a given BL pair to inspect the way cell

neighbors are organized from a march test point of view.

This is done in Figure 3(b), which combines each BTx and

BCx in Figure 3(a) into a single BL pair x line.

In order to identify all logically neighboring cells from

Figure 3(b), it is only necessary to swap WL2 and WL3,

so that a logically ordered WL sequence can be obtained.

This is done in Figure 4. This figure shows clearly each

cell and its closest neighbors, derived from the physical

cell proximity in Figure 3(a).

WL3

WL2

WL0

WL1

WL4

BL pair 0 BL pair 1 BL pair 2

C3,0 C3,1 C3,2

C2,0 C2,1 C2,2

C0,0

C4,0

C0,1

C4,1

C0,2

C4,2

C1,0 C1,1 C1,2

Figure 4. Logically neighboring cells.

Using this layout information, it is possible to reduce

the complexity of March T2C to a more optimized test

(called March T2Clayout), which has a linear complexity

rather than quadratic, by limiting the possible cells that

could act as aggressors to only the three cells connected

by an arrow in Figure 4. The localized version of the test

is given below.

March T2Clayout = {

mi(mj=∆i
(w0i, w0h

j
, r0

i
, r0

i
)); mi(mj=∆i

(w0i, w1h
j
, r0

i
, r0

i
));

ME0 ME1

mi(mj=∆i
(w1i, w0h

j
, r1

i
, r1

i
)); mi(mj=∆i

(w1i, w1h
j
, r1

i
, r1

i
));

ME2 ME3

mi(mj=∆i
(w0i, w0

j
, w1h

j
, r0

i
)); mi(mj=∆i

(w1i, w0
j
, w1h

j
, r1

i
));

ME4 ME5

mi(mj=∆i
(w0i, w1

j
, w0h

j
, r0

i
)); mi(mj=∆i

(w1i, w1
j
, w0h

j
, r1

i
));

ME6 ME7

mi(mj=∆i
(w0i, w0

j
, r0h

j
, r0

i
)); mi(mj=∆i

(w1i, w0
j
, r0h

j
, r1

i
));

ME8 ME9

mi(mj=∆i
(w0i, w1

j
, r1h

j
, r0

i
)); mi(mj=∆i

(w1i, w1
j
, r1h

j
, r1

i
));

ME10 ME11

mi(mj=∆i
(w0i, w0h

j
, w0

i
, r0

i
)); mi(mj=∆i

(w0i, w1h
j
, w0

i
, r0

i
));

ME12 ME13

mi(mj=∆i
(w1i, w0h

j
, w1

i
, r1

i
)); mi(mj=∆i

(w1i, w1h
j
, w1

i
, r1

i
));

ME14 ME15

mi(mj=∆i
(w1h

i
, w0h

j
, w0

i
, r0

i
)); mi(mj=∆i

(w1h
i
, w1h

j
, w0

i
, r0

i
));

ME16 ME17

mi(mj=∆i
(w0h

i
, w1h

j
, w1

i
, r1

i
)); mi(mj=∆i

(w0h
i
, w0h

j
, w1

i
, r1

i
))}

ME18 ME19

The ∆i in the test refers to the three cells in the neigh-

borhood of the cell i, as shown by the cells connected

with an arrow in Figure 3(a). This test is similar to March

T2C, with the exception that the parameter j does not run

through all memory cells, but only the neighboring cells to

i. As an example of the test, march element ME0 can be

understood as follows.

• For every the cell i in the memory start by initializing

the cell to 0.

• Directly afterwards, write 0 an h number of times into

every cell in the neighborhood of i.

• Directly afterwards, read 0 twice from cell i.

This test has 20 march elements, each of which has

a nested march element. This test has a complexity of

(168 · n + 72 · h · n), which is of the order O(n). As an

example, the complexity of ME0 can be calculated as fol-

lows: 3 · n(3 + h), or # of cells × # of neighbors per cell

× (# of single operations + # of h repeated operations).

Comparing this test with March T2C shows that the com-

plexity of the test was significantly reduced, which makes

much more suitable for industrial application.

6 Conclusions

This paper discussed the memory tests needed to detect

transient faults in DRAM devices. The operations in these

tests have to be performed back-to-back directly after each

other. The assumption that all memory cells can be cou-

pled to each, no matter where these cells are located, sig-

nificantly increases the complexity of the tests. The paper

showed how to use topological layout information to limit

the length of these tests, reducing their complexity from

quadratic O(n2) to linear O(n). This makes them more

practical candidates for implementation in the industry.

References

[1] R.D. Adams and E.S. Cooley, “Analysis of a Decep-

tive Destructive Read Memory Fault Model and Rec-

ommended Testing,” in Proc. IEEE North Atlantic

Test Workshop, 1996.

[2] Z. Al-Ars and A.J. van de Goor, “Transient Faults in

DRAMs: Concept, Analysis and Impact on Tests,” in

Proc. IEEE Int’l Workshop on Memory Technology,

Design and Testing, 2001, pp. 59–64.

[3] Z. Al-Ars, DRAM Fault Analysis and Test

Generation, PhD thesis, Delft University of

Technology, Delft, the Netherlands, 2005,

http://ce.et.tudelft.nl/˜zaid/

[4] Z. Al-Ars, A.J. van de Goor and S. Hamdioui, “Space

of DRAM Fault Models and Corresponding Test-

ing,” in Proc. Design, Automation and Test in Europe,

2006, pp. 1–6.

[5] Z. Al-Ars et al., “DRAM-Specific Space of Memory

Tests,” in Proc. IEEE Int’l Test Conference, 2006.

[6] G. Antonin, H.-D. Oberle and J. Kolzer, “Electri-

cal Characterization of Megabit DRAMs, 1. External

Testing,” in IEEE Design & Test of Computers, vol. 8

, no. 3, 1991, pp. 36–43.

[7] R. Dekker, F. Beenker and L. Thijssen, “A Realis-

tic Fault Model and Test Algorithms for Static Ran-

dom Access Memories,” in IEEE Trans. on CAD of

Integrated Circuits and Systems, vol. 9, no. 6, 1990,

pp. 567–572.

[8] A. Keshavarzi, K. Roy and C.F. Hawkins, “Intrinsic

Leakage in Low Power Deep Submicron CMOS ICs,”

in Proc. IEEE Int’l Test Conf., 1997, pp. 146–155.

[9] H.-D. Oberle and P. Muhmenthaler, “Test Pattern De-

velopment and Evaluation for DRAMs with Fault

Simulator RAMSIM,” in Proc. IEEE Int’l Test Conf.,

1991, pp. 548–555.

[10] A.J. van de Goor and A. Paalvast, “Industrial Evalua-

tion of DRAM SIMM Tests,” in Proc. IEEE Int’l Test

Conf., 2000, pp. 426–435.

