
FPGA accelerator for real-time skin segmentation

Bart de Ruijsscher, Georgi N. Gaydadjiev
Computer Engineering Laboratory

Electrical Engineering, Mathematics
and Computer Science Department

Delft University of Technology
Mekelweg 4, 2628CD, Delft

the Netherlands
bderuijsscher@gmail.com

g.n.gaydadjiev@ewi.tudelft.nl

Jeroen Lichtenauer, Emile Hendriks
Information and Communication Theory Group

Electrical Engineering, Mathematics
and Computer Science Department

Delft University of Technology
Mekelweg 4, 2628CD, Delft

the Netherlands
J.F.Lichtenauer@ewi.tudelft.nl
E.A.Hendriks@ewi.tudelft.nl

Abstract

Many real-time image processing applications are con-
fronted with performance limitations when implemented in
software. The skin segmentation algorithm utilized in hand
gesture recognition as developed by the ICT department of
Delft University of Technology presents an example of such
an application. This paper presents the design of an FPGA
based accelerator which alleviates the host PC’s computa-
tional effort required for real-time skin segmentation. We
show that our design utilizes no more than 88% of the re-
sources available within the targeted XC2VP30 device. In
addition, the proposed approach is highly portable and not
limited to the considered real-time image processing algo-
rithm only.

1 Introduction

The field programmable gate arrays (FPGAs) capability

to implement application-specific computations is widely

used to improve algorithm performance. Reconfigurable

computing is a new paradigm of the last fifteen years that

considers hybrid computing machines composed by a gen-

eral purpose processor and an FPGA [11,15,17]. Such cus-

tom computing machines have been shown very efficient for

steaming data applications such as multimedia [6, 14].

Skin segmentation is a multimedia operation commonly

utilized in applications such as hand gesture recognition and

behavior monitoring. It refers to the classification of image

areas which have a high probability of containing a skin

color. Several different classification methods exist, how-

ever these methods often rely on calibration of the camera in

order to provide for accurate results. The method proposed

in [9] comprises a novel approach to skin detection with-

out requiring camera calibration. The skin segmentation al-

gorithm applies an adaptive linear 2D projection of RGB

values to extract illumination invariant color information,

computes the mahalanobis distance to the skin color mean

and applies a strict threshold on this result. A more forgiv-

ing threshold is applied to pixels in the vicinity of groups

of the first detected skin pixels, by means of local count-

ing and binary dilation. Finally, a binary closing is applied

to cover missing skin pixels. Furthermore, in order to pro-

vide higher algorithm layers with a measure of motion esti-

mation, the skin segmentation algorithm also calculates the

absolute difference between two consecutive frames. The

software implementation of this method has proven to be

limited in performance when utilizing an input video reso-

lution of 320x240 or higher and a frame rate of 20 frames

per second. Software profiling indicated that the majority of

the CPU time is consumed by the pixel operations such as

color space conversions and morphological operations such

as erosion and dilation [13].

This paper focuses on the design of an FPGA acceler-

ator for real-time skin segmentation. It effectively imple-

ments all skin segmentation algorithm stages in hardware

and is organized in accordance to its software implemen-

tation. Our accelerator is designed to meet the require-

ments of real-time hand gesture recognition applications.

The main contributions of this paper are:

• true real-time acceleration of the skin segmentation al-

gorithm;

• highly portable design due to the used standard net-

work interface;

• generally applicable infrastructure suitable for acceler-

ation of other real-time image processing algorithms.

ESTIMedia 20060-7803-9783-5/06/$20.00  2006 IEEE 1

The remainder of this paper is organized as follows. Sec-

tion 2 provides a short overview of previously reported re-

lated work. Then section 3 discusses the general architec-

ture of the system. Section 4 presents the architecture of

the pixel processing pipeline (PPP). Evaluation of the sys-

tem will be discussed in section 5. Finally, the discussion is

concluded in section 6.

2 Related Work

Traditionally, application specific ICs have been em-

ployed for acceleration of image processing operations. The

main drawback of such systems is their inflexibility. Recon-

figurable hardware provides a good alternative for applica-

tion specific hardware without compromising on flexibility.

Several PCI based implementations of reconfigurable

hardware coprocessors implementing real-time image pro-

cessing operations have been reported. For example, [19]

proposes an architecture based on specialized image pro-

cessing modules which can be loaded in the FPGA con-

figuration. A different approach is presented in [16] and

proposes a coprocessor specifically designed to accelerate

the addressing of individual pixels within software applica-

tions.

Several authors have proposed a high-level approach to

the problem of implementing image processing operations

in reconfigurable hardware. For example, [12] proposes

a method of describing image processing operations using

single assignment C (SA-C). Such a description can be con-

verted in a dataflow graph by a specialized compiler and im-

plemented in reconfigurable hardware. Another high level

method was proposed in [4] and essentially comprises a

dedicated compiler that uses predefined FPGA configura-

tions.

Architectures designed for specific applications have

also been discussed in the literature. For example, an ar-

chitecture for vision based navigation based on log polar

transformation is proposed in [2]. An FPGA implemen-

tation of a pixel processor for object detection applications

is discussed in [10] and the implementation of 2-D feature

detection on an FPGA is presented in [1].

In respect to the above related work our design differs

in the following. Instead of a PCI interface we employ an

Ethernet communication channel between a host processor

and our accelerator. This allows our system to be used with

a wide range of host PC’s (both desktops and laptops). The

high-level approaches and the specific FPGA implementa-

tions as described above can be applied to the pixel process-

ing pipeline used in our proposal. Said this our approach

provides a more general scenario.

3 Proposed Architecture

Our system consists of a host PC and an external FPGA

accelerator. The communication link between both systems

is a 10/100 MBps direct ethernet connection. The input im-

ages are captured by a webcam connected to the PC and

split into pixel packets on the host PC. Then, the pixel pack-

ets are transferred to the accelerator which processes the

packets and returns the results.

Considering this connection type and the fact that very

high bandwidth utilization is essential for the overall sys-

tem performance, we adopted UDP for our communication

protocol. There are two packet types: data (also referred to

as pixel packets) that carry consecutive pixel- or accelera-

tor output information and control packets used for system

configuration at run-time. The pixel packets are 1358 bytes

long and contain a single image line with 4 bytes per pixel

(320*4 = 1280 pixel bytes). The remaining 78 bytes are

used for the following headers: accelerator (38), UDP (8),

IP (18) and MAC (14 bytes). The accelerator header con-

tains an image frame identification number, x and y coordi-

nates of the first pixel present in the packet and a camera

identification number. The camera identification number

can be used in a multiple camera system setup. The accel-

erator output consists of 4 bytes per pixel which contain the

absolute difference, grey value and skin segmented output.

The control packets have the same size as the pixel pack-

ets in order to simplify the protocol handling on the Pow-

erPC processor present in the FPGA. The meaningful part

of the payload is only 80 bytes. This is, however, not a se-

rious issue considering that control packets are usually not

intermingled with pixel data at run-time.

The architecture of the accelerator is depicted in figure

1 and consists of several distinct components which are in-

terconnected by the system bus. The following components

are present:

Ethernet media access layer component (EMAC): the

EMAC is responsible for receiving and sending of data

packets. When an incoming packet is received, it interrupts

the processor in order to transfer the packet to the data mem-

ory.

Processor: the processor is responsible for the overall co-

ordination of the components present. Furthermore, it must

ensure a timely data transfer between the different compo-

nents. The processor transfers incoming and outgoing pack-

ets from and to the EMAC, and it moves data to and from

the pixel processing pipeline (PPP) subsystem.

Data memory: this memory is used as an intermediate

buffer between the ethernet component, the processor and

the pixel processing pipeline subsystem.

Instruction memory: this memory contains the program

code (instructions) for the processor.

Pixel processing pipeline subsystem: the PPP is responsi-

2

PowerPC
405

processor Pr
oc

es
so

r L
oc

al
 B

us
 (P

LB
) 6

4
bi

t

PLB2OPB Bridge

O
n-

C
hi

p
P

er
ip

he
ra

l B
us

 (O
PB

)

UART

Ethernet MAC

Data Memory

Bus Interface
(IPIF)

BUS2IP
FIFO

IP2BUS
FIFO

Pixel Processing Pipeline
(PPP) Subsystem

RS232

status and debug
information

10/100 Ethernet

transfer of pixel
packets

Virtex 2 Pro FPGA

Instruction Memory

Interrupt controller

Figure 1. System architecture

ble for performing the skin segmentation algorithm as dis-

cussed in [9].

PPP Bus Interface (IPIF): provides bus protocol handling

in order to simplify the design of the PPP subsystem. It also

provides two additional FIFO’s for temporal storage.

The interrupt controller, UART, bus bridge and system

busses are standard building blocks provided by Xilinx.

The interaction of the different components directly in-

volved in processing pixel packets can be illustrated by the

following example of a receive packet event:

1. an incoming pixel packet arrives at the EMAC;

2. the EMAC receives the packet in an internal buffer and

generates a processor interrupt;

3. the processor starts an interrupt handling routine which

transfers the packet into the data memory and analyzes

the packet header;

4. the processor transfers the packet to the pixel process-

ing pipeline input buffer (BUS2IP);

5. the PPP processes the packet on a pixel by pixel ba-

sis and stores the results in the PPP output buffer

(IP2BUS), and generates an interrupt when a complete

pixel packet has been processed;

6. the processor starts the interrupt routine which trans-

fers the packet back into its data memory;

7. the processor transfers the packet to the EMAC and

orders the EMAC to transmit the packet to the host PC;

8. the EMAC transmits the packet to the host PC using

the direct Ethernet connection.

The responsibilities for the processor furthermore in-

clude initialization of the entire system and the network pro-

tocol handling required for the peer to peer connection with

the host PC. Furthermore, it allows run-time reconfiguration

of different algorithm parameters by using the configuration

packets.

Communication Bandwidth Evaluation: The available

network bandwidth in the proposed infrastructure is envi-

sioned to form a performance bottleneck and thus to have an

impact on the maximal image resolution that can be used.

The following bandwidth requirement estimation is consid-

ered:

BW = depthbits per pixel ∗ Iw ∗ Ih ∗ Rframe ∗ Foverhead

,where the depth indicates the amount of bits required to

represent a single pixel, Iw (width) and Ih (height) indi-

cate the image dimensions, R indicates the frame rate and

F represents the overhead factor caused by the additional

header data present in a pixel packet. In our system, the

pixel packets contain 1280 bytes of pixel data and 78 addi-

tional bytes required for the protocol headers. This results

in approximately 6% overhead.

Assuming a pixel depth of 32 bits, a frame rate of 20

frames per second and an overhead factor of 6%, the re-

sulting bandwidth requirements are 49,69 Mbps for im-

age dimensions of 320x240, 198,75 Mbps for 640x480 and

508,80 Mbps for 1024x768 pixels. Since our implemen-

tation utilizes a 10/100 MBps Ethernet MAC, it is limited

to image dimensions of 320x240 pixels, however a giga-

bit Ethernet MAC would allow for image dimensions of

640x480 or 1024x768.

4 Pixel Processing Pipeline

The pixel processing pipeline is responsible for the op-

erations performed on the incoming pixels. Since we re-

quire parallelism at the level of elementary algorithm oper-

ations, we decided to implement the PPP by utilizing a pixel

pipelined architecture.

The original software implementation of the skin seg-

mentation algorithm can be divided into several dependent

stages. Each stage contains a certain amount of different

independent operations which can be executed simultane-

ously. Figure 2 shows the architecture of the pixel process-

ing pipeline. The operations indicated correspond to those

mentioned in the discussion of the hardware implementa-

tion of the skin segmentation algorithm [5]. The dotted

lines between the pipeline stages represent pipeline regis-

ters which contain the temporary results from the preced-

ing stage. The pipeline controller is responsible for the co-

ordination of the entire processing pipeline. It determines

3

10

1

2

3

4

5

76

9

8

11

color
space

convert

color
space

convert

color
space

convert

dis-
similarity

division

squaring

thres-
holding

thres-
holding

local
count

thres-
holding

thres-
holding

closing

uniform
filter AND

dilation

1 2 3

4 5 6

11

13

14 15

10

12

Input pixel
[R,G,B, Grey T-1]

Pipeline Controller

9

Output
[Abs Diff, Grey T, Skin Segmentation]

mean
subtract

mean
subtract

squaring squaring

7 8

absolute
differ-
ence

16

17

18

19

20

Figure 2. Pixel processing pipeline

when all pipeline stages have finished processing in order

to initiate the next pipeline cycle. More precisely, we have

implemented and tested the following image processing op-

erations: color space conversion (vector-matrix multiplica-

tion), basic motion estimation (absolute difference calcula-

tion), 5x5 greyscale uniform smoothing filter, binary local

count filter and binary erosion, dilation and closing. The

remaining components presented in figure 2 (e.g. division

and squaring) have been implemented by simply utilizing

available mathematical components provided by the Xilinx

IP library.

5 Prototype Evaluation

For our evaluation study we used a stand alone worksta-

tion based on a 2,8 GHz Pentium 4 processor with 1024MB

memory running Windows XP Pro as our reference and

measurement system. The system setup additionally con-

sists of a Philips ToUCam Pro webcam.

The accelerator prototype has been implemented on

a Virtex 2 Pro FPGA using the XUPV2P development

board [21]. A summary of the resource utilization is shown

in table 1. The total utilization of the logic resources (slices)

is 88% while only 37% are required for the implementation

of the pixel processing pipeline. The remaining resources

are used by the accelerator architecture. The high utiliza-

tion of block RAM is due to the instruction and data mem-

Table 1. XC2VP30 utilization summary
used total ratio

Slices 12,141 13,696 88%

Slice registers 11,045 27,392 40%

4-input LUTs 17,459 27,392 63%

Block RAM 124 136 91%

0

20

40

60

80

100

120

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61

t (s)

%

0

5

10

15

20

25

30

fp
s CPU utilization in %

Framerate (frames per second)

Figure 3. Software algorithm performance

ory space needed for the PowerPC processor.

First, the performance of the algorithm software imple-

mentation was evaluated. Figure 3 shows both the CPU uti-

lization and the achieved frame rate. As can be observed

from the measurements, the software version running on

the host workstation is unable to achieve the real-time per-

formance criterion of 20 frames per second. A maximum

frame rate of 14 fps can be achieved at a CPU utilization

close to 100%.

Figure 4 shows the results of our system prototype uti-

lizing the proposed hardware accelerator. The CPU utiliza-

tion rate varies between 60% to 70% while the frame rate

remains steady around 20 fps. This is a considerable im-

provement compared to the software version since the CPU

utilization rate is significantly lower while achieving the re-

quired frame rate.

The frame rate speedup gained by our hardware acceler-

ated implementation is 20/14 ≈ 1.43x. Moreover, the CPU

utilization is 30% to 40% lower compared to the software

implementation. Thus it allows enough processor resources

for higher level applications such as hand gesture recogni-

tion.

6 Conclusions and future work

In this paper we have presented an FPGA based acceler-

ator for real-time skin segmentation of streaming 320x240,

20fps video data. We showed that the video stream dimen-

sions are limited only by the available bandwidth of the Eth-

4

0

20

40

60

80

100

120

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61

t(s)

%

0

5

10

15

20

25

30

fp
s

CPU utilization in %

Packet Loss in %

Framerate (frames per second)

Figure 4. Hardware implementation perfor-
mance

ernet link used to transfer the data between the workstation

and our accelerator. Considering the fact that all specific

operations are implemented solely in the pixel processing

pipeline, the same general architecture can be employed for

accelerating different pixel based image processing opera-

tions.

Future work on this accelerator should concentrate on

reducing the packet loss and the communication overhead.

Several optimizations related to network protocol handling

(as mentioned in amongst others [3], [7] and [8]) can

be considered to reduce the communication overhead cur-

rently present in our demonstrator. Furthermore, the design

could also be implemented using a gigabit ethernet enabled

platform [20] in order to support input video resolutions of

640x480 pixels and higher. In addition, implementation of

the proposed pixel processing pipeline as custom comput-

ing unit in MOLEN [18] will allow avoiding the data trans-

fer bandwidth bottleneck of the current system.

References

[1] A. Benedetti and P. Perona. Real-time 2-d feature detec-

tion on a reconfigurable computer. Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pat-
tern Recognition, 1998.

[2] J. Boluda, F. Pardo, F. Blasco, and J. Pelechano. A pipelined

reconfigurable architecture for visual-based navigation. Pro-
ceedings of the25th EUROMICRO Conference, 1999.

[3] J. Chase, A. Gallatin, and K. Yocum. End system optimiza-

tions for high-speed tcp. IEEE Communications Magazine,

39:68–74, 2001.
[4] D. Crookes, K. Benkrid, A. Bouridane, K. Alotaibi, and

A. Benkrid. Design and implementation of a high level

programming environmentfor fpga-based image process-

ing. IEE Proceedings Vision, Image and Signal Processing,

147:377–384, 2000.
[5] B. de Ruijsscher. Fpga based accelerator for real-time skin

segmentation. Msc. thesis, Delft University of Technology,

Mekelweg 4, June 2006. CE-MS-2006-08.

[6] S. Dutta and W. Wolf. A flexible parallel architecture

adapted to block-matching motion-estimation algorithms.

IEEE Transactions on Circuits and Systems for Video Tech-
nology, 6(1):74–86, February 1996.

[7] A. Foong, T. Huff, H. Hum, J. Patwardhan, and G. Reg-

nier. Tcp performance re-visited. Proceedings of the In-
ternational Symposium on Performance Analysis of Systems
and Software, 2003.

[8] J.-H. Huang and C.-W. Chen. On performance measure-

ments of tcp/ip and its device driver. Proceedings of the
17th Conference on Local Computer Networks, pages 586–

575, 1992.
[9] J. Lichtenauer, E. Hendriks, and M. Reinders. A calibra-

tionless skin color model. Proceedings of the Twelvth an-
nual conference of the Advanced School for Computing and
Imaging, June 14-16, 2006.

[10] P. Mc Curry, F. Morgan, and L. Kilmartin. Xilinx fpga im-

plementation of a pixel processor for object detection appli-

cations. Celoxica application note, 2001.
[11] M.Wazlowski, L.Agarwal, T.Lee, A.Smith, E.Lam,

H.Silverman, and S.Ghosh. PRISM-II Compiler and Ar-

chitecture. In Proc.IEEE Workshop on FPGAs for Custom
Computing Machines, pages 9–16, Napa Valley,CA, April

5-7, 1993.
[12] W. Najjar, B. Draper, A. Bhm, and R. Beveridge. The

cameron project: High-level programming of image pro-

cessing applications on reconfigurable computing machines.

Proceedings of the Workshop on Reconfigurable Computing
(PACT), Paris, 1998.

[13] Rafael C. Gonzales and Richard E. Woods. Digital Image
Processing. Prentice Hall, second edition, 2002.

[14] S.C.Goldstein, H. Schmit, M.Moe, M.Budiu, S.Cadambi,

R.R.Taylor, and R.Laufer. PipeRench: A coprocessor for

Streaming Multimedia Acceleration. In 26th International
Symposium on Computer Architecture, pages 28–39, At-

lanta, Georgia, May 1999.
[15] S.M.Trimberger. Reprogramable Instruction Set Accelera-

tor. U.S. Patent No. 5,737,631, April 1998.
[16] W. Stechele, L. Alvado Crcel, S. Herrmann, and

J. Lidn Simn. A coprocessor for accelerating visual infor-

mation processing. Proceedings of the Design, Automation
and Test in Europe Conference and Exhibition, 2005.

[17] S. Vassiliadis, S. Wong, and S. D. Cotofana. The molen

ρμ-coded processor. In in 11th International Confer-
ence on Field-Programmable Logic and Applications (FPL),
Springer-Verlag Lecture Notes in Computer Science (LNCS)
Vol. 2147, pages 275–285, August 2001.

[18] S. Vassiliadis, S. Wong, G. Gaydadjiev, K. Bertels, G. Kuz-

manov, and E. Panainte. The molen polymorphic processor.

IEEE Transactions on Computers, 53, 2004.
[19] M. A. Vega-Rodrguez, J. M. Snchez-Prez, and J. A. Gmez-

Pulido. Real time image processing with reconfigurable

hardware. Proceedings of the 8th IEEE International Con-
ference on Electronics, Circuits and Systems, 2001. ICECS
2001., pages 213–216, 2001.

[20] Xilinx System Engineering Group. Gigabit system reference

design. Xilinx Application Note XAPP536, 2004.
[21] Xilinx System Engineering Group. Xilinx University Pro-

gram Virtex-II Pro Development System, 2005.

5

	Welcome Page
	Hub Page
	Table of Contents Entry of this Manuscript
	Brief Author Index
	Detailed Author Index

	Next Manuscript
	Preceding Manuscript

	Previous View

	Search

	No Other Manuscripts by the Author
