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The TM3270 Media-processor
Jan-Willem van de Waerdt

Abstract

I
n this thesis, we present the TM3270 VLIW media-processor, the latest of
TriMedia processors, and describe the innovations with respect to its prede-

cessor: the TM3260. We describe enhancements to the load/store unit design,
such as a new data prefetching technique, and architectural enhancements, such
as additions to the TriMedia Instruction Set Architecture (ISA). Examples of ISA
enhancements include collapsed load operations, two-slot operations and H.264
specific CABAC decoding operations. All of the TM3270 innovations contribute
to a common goal: a balanced processor design in terms of silicon area and power
consumption, which enables audio and standard resolution video processing for
both the connected and portable markets. To measure the speedup of the indi-
vidual innovations of the TM3270 design, we evaluate processor performance on
a set of complete video applications: motion estimation, MPEG2 encoding and
temporal upconversion. Each of these applications have been optimized to take
advantage of the TM3270 enhancements, and the associated speedups have been
measured to evaluate the impact of e.g. load/store unit improvements and new
operations. We show that load/store unit improvements, such as data prefetch-
ing, may improve the dynamic performance complexity (processor cycle count) by
more than a factor two, for larger off-chip memory latencies. The speedup of indi-
vidual ISA enhancements are measured in terms of both static (VLIW instruction
count) and dynamic (processor cycle count) performance complexity, and both at
the level of individual kernels and complete applications. Combined, the TM3270
enhancements result in speedups of more than a factor two, for the evaluated video
applications.
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Chapter 1

Introduction

P
rocessor design has made considerable progress in the last half century. In-
creased circuit density allows for both higher performance integrated circuits

and cheaper computers built from fewer components (as indicated by by G. Moore
in [40, 41]). Furthermore, the use of CMOS process technology allows for low
power implementations of these components [25].

In the cost-driven embedded consumer market, audio and video processing were
initially addressed with dedicated hardware. Dedicated hardware could deliver the
required performance at a lower price point than programmable processors. How-
ever, the increased complexity of audio and video standards made programmability
attractive, and the increased performance of application domain specific proces-
sors made programmability a possibility. E.g., whereas video standards such as
MPEG2 were initially performed by dedicated hardware, today’s video standards
such as H.264/AVC are performed by application (domain) specific processors
[66, 20, 19]. As a result, today’s consumer devices have more programmable
processing capabilities than the mainframes of the 1960s. Low power processor
implementations enable the application in the portable, battery-operated domain,
e.g. mobile phones.

This thesis describes the design of the TM3270 media-processor, the latest pro-
cessor of Philips Semiconductors’ TriMedia architecture family. The TM3270 is an
application domain specific processor, targeting both video and audio processing.
It is intended as a programmable media-processing platform for the embedded
consumer market.

The remainder of this chapter is organized as follows. Section 1.1 gives an
overview of related work and provides a taxonomy of media processing platforms.
Section 1.2 lists the main contribution of the thesis to the field of programmable
media-processors. Section 1.3 completes this chapter with an overview of the thesis

1



2 Chapter 1. Introduction

and a description of the performance evaluation environment as used in the later
chapters.

1.1 Background and related work

A wide range of media processing platforms exists on which to implement video
and audio processing. In this section we give an overview of these platforms,
discuss their relative strengths and weaknesses and position media-processors in
general and the TM3270 in particular.

1.1.1 Overview of media processing platforms

Figure 1.1 gives an overview of media processing platforms. General-Purpose Pro-
cessors (GPPs), originally designed to accomodate generic program execution, have
been extended with SIMD-style instructions to the instruction set architecture
(ISA), to exploit intra-word parallelism (GPP+SIMD). E.g., Intel’s x86 architec-
ture family has been extended with MMX instructions [2] and IBM/Motorola’s
PowerPC architecture family has been extended with AltiVec instructions [12].
The SIMD-style extensions are typically generic media processing domain instruc-
tions, rather than application specific instructions targeting specific media kernels.
These processors provide GPP functionality, e.g. a virtual memory management
unit and user/protected modes for operating system support. However, media
processing data movement support, such as non-aligned memory access and the
streaming nature of media data types, is typically poorly addressed.

Multiple, mostly academic, approaches have been proposed to address the inef-
ficient media processing data movement capabilities of the GPP+SIMD approach.
These approaches extend a GPP with streaming vector capabilities (GPP+vector).
The extension is tightly connected to the GPP: a single (vector) instruction se-
quence controls both the GPP and the vector unit. Typically, the vector unit has
its own (vector) register-file, datapath and access path to data memory. The use of
vector instructions, to exploit inter-word parallelism, and the support for strided
memory access limits instruction fetch pressure, as many data movement instruc-
tions have become unnecessary. Examples of this approach are Motorola’s recon-
figurable streaming vector processor (RSVP) [7], the complex streamed instruction
(CSI) set architecture from TU Delft [6] and the MediaBreeze architecture from
Texas university [56]. The matrix oriented multimedia (MOM) approach from
UPC in Barcelona [8] merges SIMD-style with vector-style extensions to create
matrix-style instructions.

The efficiency of the GPP+vector approaches relies on a large amount of data
level parallelism, regularity in memory accesses that can be expressed with stride



1.1. Background and related work 3

General Purpose

Processor (GPP)


+ SIMD-style

extensions


General Purpose

Processor (GPP)


+ vector-style

extensions


Design-time

reconfigurable


processors


Run-time

reconfigurable


processors


Media-processors

Fixed-function


dedicated

hardware


- Xtensa LX


- FPGA augmented

processors


- x86-MMX

- PowerPC-AltiVec


- RSVP

- CSI

- MediaBreeze

- MOM


- VelociTI

- MAP

- TriMedia


GPP based
 Configurable

base processor


Figure 1.1: Media processing platforms for video and audio processing.

values and a stream-based processing of multimedia data. Whereas this may have
been typical for older video codec standards, this assumption is less true for newer
standards. As an example, consider the granularity at which video codecs use
motion vector data. For MPEG2, a single motion vector is present for every
16x16 block of image pixels. For MPEG4, a motion vector may be present for
every 8x8 block, and for H.264, a motion vector may be present for every 4x4
block. In general we can observe a decrease in block size and an increase in control
overhead. Furthermore, the dependency between blocks is increasing, which limits
the parallel processing of multiple blocks. E.g. for H.264, processing a 4x4 block
may require that the blocks to its left and above it have already been processed. It
could be stated that video codecs are getting more control intensive and offer less
data level parallelism. As a result, approaches that solely rely on stream-based
processing on large vectors of independent data elements become less efficient.

Rather than extending an established GPP architecture with fixed SIMD- or
vector-style capabilities, processors can be extended with reconfigurable capabil-
ities. The instruction set extensions of the GPP+SIMD and GPP+vector ap-
proaches are typically a common denominator of what is useful in the media
processing domain, rather than application specific. Through reconfigurability,
the extensions can be made a better fit in terms of cost and performance for a
specific application. We distinguish two types of reconfigurability: design-time
reconfigurability and run-time reconfigurability.

Design-time reconfigurable processors allow the user (in this case the recon-
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figurable processor designer) to add application (domain) specific extensions to a
base processor. An example of this approach is Tensilica’s Xtensa LX configurable
processor. A standard definition video decoder based on Tensilica’s technology is
described in [20]. To enable the required functionality, over 200 instructions were
added to the ISA of the base processor. These new instructions are specific to
the task of video decoding and as a result the processor’s functionality is limited
(additional operations need to be added to enable video encoding functionality).

Run-time reconfigurable processors allow the user (in this case the application
designer) to add application (domain) specific extensions to a base processor. As
opposed to design-time reconfigurability, these additions can be made after the
processor has been created. In [51], a Philips Semiconductors’ TriMedia processor
is extended with a FPGA fabric, on which the user can implement specific instruc-
tions. In [70], the organization of a processor-FPGA hybrid design is described,
including a description of the often neglected programming paradigm and compiler
technology to address such a design. Other approaches limit the flexibility to a
coarse grained reconfigurability, which may improve the cost efficiency of the ap-
proach. Run-time reconfigurable processors are like chameleons in the sense that
they adapt their behavior to the application at hand. However, the cost of recon-
figurability in terms of silicon area is likely to be higher than that of design-time
reconfigurable processors.

In the 1990s, the need for an efficient programmable platform for video and
audio processing led to the design of media-processors. These processors typi-
cally have a very long instruction word (VLIW) architecture to exploit instruction
level parallelism [15], combined with SIMD-style instructions to exploit intra-word
parallelism. Aggressive compiler technology combined with guarded execution of
individual operations allows VLIW processors to extract more instruction level
parallelism than traditional superscalar approaches [24, 21]. In [15], J.A. Fisher
argues that through compiler techniques, such as trace scheduling, parallelism can
be extracted from 100% of the code base for VLIW processors, whereas vector pro-
cessing is typically applicable to only a fraction of the code base and requires hand
optimization. Media-processors typically have a unified register-file for integer,
floating point and SIMD-style operands, whereas GPPs typically have separate
register-files. Furthermore, media-processor register-files tend to be larger than
GPP register-files, such that a large data working set can be kept in registers,
preventing the generation of load and store operations as a result of spilling due
to register pressure. Media-processors typically support non-aligned memory ac-
cess and the streaming nature of media data types through either data prefetching
techniques or direct memory access (DMA) techniques [29]. Examples of media-
processors are Texas Instruments’ VelociTI architecture family [47], Equator’s
MAP architecture family [1] and Philips Semiconductors’ TriMedia architecture
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family [43].
The last approach to be discussed in this overview is a fixed function dedicated

hardware platform. This approach provides an application specific solution, with-
out any flexibility in terms of programmability1, potentially at a lower price point
than programmable approaches in terms of silicon area and power consumption.
Dedicated hardware may be attractive to implement a well-defined video or audio
processing task that has no need for flexibility.

One might argue that our partitioning of media processing platforms into five
distinct approaches is somewhat artificial and indeed the best solution for a specific
application (domain) may be a combination of approaches.

1.1.2 Strengths and weaknesses

Whereas the previous section listed media processing platforms on which to im-
plement video and audio processing, this section compares these platforms along
the following axes:

• Application domain. This axis represents the width of the application domain
that can be addressed with the platform.

• Cost. Cost is an important factor in the cost-driven embedded consumer
market, and is a multi-facetted axis. We distinguish the development cost
of the solution, the silicon area of the solution and the power consumption
of the solution. Especially in the portable battery-operated market, power
consumption is an important factor.

• Infrastructure. This axis takes on different forms for the different platforms.
For the GPP-based and media-processor approaches it includes aspects such
as the availability of toolchains (compiler, debugger), operating systems,
off-the-shelf video codecs, etc. For reconfigurable processors it includes the
processor development environment as offered by the reconfigurable proces-
sor company. For a dedicated hardware platform it includes the computer
aided development environment.

• Performance. This axis represents the performance level that can be achieved
with the approach. Performance level is measured in context of the target
application. As an example, for video decoding the performance level can be
expressed in terms of image resolution (e.g. CIF, standard definition, high
definition).

1The dedicated hardware may have control/status registers to direct/observe its behavior from
an external processor.
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• Time-to-market. This axis expresses the speed with which an application
can be introduced to the market place.

A comparison along these axes is by no means complete, but does give us the
opportunity to highlight the relative strengths and weaknesses of the platforms. A
choice for a specific platform will depend on the importance of the different axes
for the application (domain) at hand; it is unlikely that a single approach is the
best fit for all applications. The answer to the question ”What is the best approach
for a certain application (domain)?” is in the end defined by the success of the
approach in the market place. Table 1.1 gives a summary of our perspective on the
relative strengths and weaknesses, on which we elaborate in the following. Similar
evaluations of media processing platforms can be found in [9, 48].
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Application domain ++ ++ - + + −−
Cost - development ++ ? - - + −−
Cost - silicon area −− - + - -/+ ++
Cost - power consumption −− −− + -/+ -/+ ++
Infrastructure ++ ? - - + −−
Performance −−/+ −−/+ + + -/+ ++
Time-to-market ++ + - + ++ −−

Table 1.1: Relative strengths and weaknesses of media processing platforms. ’/’
Indicates a range and ’?’ indicates a lack of data, as the solution has not yet been
applied in the market.

Application domain. As GGPs were originally designed for general-purpose
processing, it should come as no surprise that the GPP based approaches cover
the widest application domain. Dedicated hardware typically offers an application
specific solution. Similarly, design-time reconfigurable solutions are typically ap-
plication (domain) specific (the instruction set extensions are limited to a certain
application (domain)). Run-time reconfigurable solutions allow for customization
of the instruction set, to adapt to new applications. Media-processors typically
target the full range of video and audio processing, but are fixed after design, just
like design-time reconfigurable solutions. However, their high instruction issue rate
may offer enough raw computational performance to address new applications,
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whereas design-time reconfigurable solutions typically have limited computational
performance in application domains that are outside their original design scope.

Cost. In terms of development costs, the GPP+SIMD approach is attractive as
a result of its wide application domain. Because of the market success of GPPs, it
is highly likely that the required platform, including application software, exists for
the target application (domain). This argument holds true, but to a lesser degree,
for the media-processor approach. In terms of silicon area, dedicated hardware
is to be preferred over the other approaches; unnecessary area overhead related
to processor design can be eliminated for a fixed-function implementation. The
GPP+SIMD approach tends to be larger than the other programmable approaches
at a similar performance level, as the ISA is less specialized to a specific application
domain and their media processing data movement support is limited. In terms of
power consumption, the smaller approaches (in terms of silicon area) that perform
the target application at a low operating frequency are preferable.

Infrastructure. Standardization is partly responsible for the market success
of GPPs and media-processors. As a result, a wide range of compilers, operat-
ing systems and off-the-shelf codecs are available for these platforms, either from
the processor provider or from third-party software providers. For reconfigurable
processors, the user depends on the infrastructure of the reconfigurable processor
provider. As these providers are not charitable institutions, the quality of their
infrastructure most likely depends on the success of their solution in the market
place; a reconfigurable processor company with a high-quality (costly) infrastruc-
ture but with a limited customer base is not a sustainable business in the long
run. The dedicated hardware approach typically requires a ”do it yourself” way
of working.

Performance. Performance should be adequate to address the application (do-
main) at hand. Currently, this excludes some approaches for certain applications.
E.g., it is unlikely that any of the programmable approaches can address the per-
formance requirements of a high definition H.264 video encoder2. The GPP based
approaches cover a relatively wide performance range: low cost solutions with
limited performance and high cost solutions with more performance.

Time-to-market. The ideal solution in terms of silicon area and power con-
sumption may be useless when it is late to the market. New markets may be
best addressed with an acceptable solution that is readily available; to be later
replaced by an area and power optimized solution. Time-to-market is heavily re-
lated to the width of the application domain and the quality of the infrastructure

2Advances in processor design continuously improve performance levels, however, whenever a
certain application becomes within reach, it is likely that a new application with higher perfor-
mance requirements is introduced.
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of the approach.
The relative strengths and weaknesses of the different approaches suggest that

the best solution for a specific application (domain) may be a combination of
approaches. As an example, consider a high definition H.264 video encoder ap-
plication. Performance complexity may prohibit a programmable approach, but
the standard’s functional complexity may prohibit the development of a bug-free
dedicated hardware implementation in a reasonable time frame. In this particular
example, a combination of a programmable approach with dedicated hardware co-
processors may be a viable solution. The programmable component addresses the
standard’s functional complexity and the co-processors address the performance
complexity of the standard’s media kernels.

1.1.3 Positioning media-processors and the TM3270

The TriMedia TM3270 processor is a media-processor targeting video and au-
dio processing. Its positioning is a result of the strengths and weaknesses of the
media-processor approach, as repeated in Table 1.2. The width of its applica-
tion domain allows for the implementation of video, audio and general-purpose
processing tasks. Its power consumption is acceptable to allow for application in
the portable battery-operated market. This combination of a wide application
domain and the ability to address both connected and portable markets positions
the TM3270 as a standard media-processor that can rely on both Philips Semi-
conductors internal and external software suppliers.

Axis Rationale

Application domain + Covers full range of video and audio processing.
Cost - development + Hardware platform readily available, software potentially

available from provider or third-party software suppliers.
Cost - silicon area -/+ Specialization for media processing (in terms of generic

media operations and data movement).
Cost - power cons. -/+ Specialization for media processing makes it more efficient

than a GPP+SIMD approach, but less efficient than more
application specific approaches.

Infrastructure + Standardization resulted in support in terms of compilers,
operating systems, codecs, etc.

Performance -/+ Acceptable for audio and standard definition video
processing. High definition video processing may be out
of reach.

Time-to-market ++ Hardware platform and potentially software available.

Table 1.2: Relative strengths and weaknesses of the TM3270 media-processor.

Figure 1.2 illustrates the advantage of a wide application domain. In 3G mobile
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phones, the TM3270 may be used implement video telephony, performing both
the video and audio processing. In the decoding chain, the TM3270 is used to
demultiplex an incoming bitstream and to decode video and audio. The video
decoding path starts with a H.264 decode (e.g. QCIF or CIF resolution at 15
frames/sec.). Next, a motion estimation algorithm is performed to identify object
movement in the video stream. This motion information is used by a motion-
compensated temporal up-converter, which adapts the frame rate of the incoming
video (15 frames/sec.) to that of the phone display (e.g. 60 frames/sec.). In a last
step, a spatial up-converter and image enhancement algorithm are performed to
adapt the resolution of the incoming stream (QCIF or CIF) to that of the display
(e.g. 640x400). The audio decoding path consists of an audio decode, which may
be extended with a post-processing algorithm to enhance the sound quality. At
the same time, the TM3270 is used to perform similar functionality in the encoding
chain.
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Figure 1.2: A possible use of the TM3270 in a 3G mobile phone.

The previous example gives an impression of the possibilities of the TM3270
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media-processor. Other mobile phone design constraints such as the use of an
established GPP (such as the ARM processor), power consumption and compar-
tilization of functionality will most likely result in a partitioning of tasks over
multiple processors. When considered in isolation, each of the tasks performed
by the TM3270 is most likely more efficiently performed by dedicated hardware
or application specific processors. However, the ability to time-share the TM3270
processor for multiple tasks make it an interesting platform in terms of silicon area
and offers flexibility to address future standards [50].

1.2 Main contributions

As will be described in the remainder of this section, the TM3270 media-processor
design has a series of innovations that distinguish it from other media-processors.
These innovations are driven by the need to address both the connected and
portable markets, the need for a balanced design in terms of silicon area and
performance level and the requirements of the latest video processing algorithms.

The TM3270 design provides enough performance to address the requirements
of standard and some high definition video processing algorithms in the connected
market, such as high-end TV sets. At the same time, its low power consumption
enables successful application in portable battery-operated markets. The proces-
sor’s pipeline partitioning and the design of individual units, such as the instruction
fetch unit and the load/store unit, are a result of a trade-off between performance,
power and silicon area.

The instruction fetch unit implements a sequential instruction cache design to
limit power consumption and supports a cache line replacement policy that prevents
cache trashing as a result of code sequences with limited temporal locality.

The load/store unit design provides high performance through a semi multi-
ported cache, providing high data bandwidth to the data cache, at a limited area
penalty when compared to a single-ported cache. The cache sustains a high store
bandwidth by allowing two operations per VLIW instruction and a high load band-
width by sustaining a single load operation per VLIW instruction with a band-
width of twice the datapath size. All load and store operations support non-aligned
memory access, without incurring any processor stall cycles. To our knowledge,
the particular implementation of the data cache is unprecedented. Furthermore,
a new data prefetching technique is introduced. From an architectural perspective
the technique provides limited overhead to the programmer and from an imple-
mentation perspective it adds limited overhead to the design in terms of silicon
area.

The TM3270 extends the TriMedia ISA with a series of new operations. Col-
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lapsed load operations combine the functionality of a traditional load operation
with that of a 2-taps filter function. These operations are particular useful to
perform horizontal fractional pixel calculations in video processing algorithms.
The TM3270 is the first processor in the market to support two-slot operations,
which were introduced in [68]. These operations are executed by functional units
that are situated in two neighboring VLIW issue slots, and as a result have twice
the register-file bandwidth: two-slot operations may consume up to four 32-bit
sources, and produce up to two 32-bit results. CABAC decoding operations address
the specific requirements of the H.264 standard’s Context-based Adaptive Binary
Arithmetic Coding (CABAC) decoding process. These new operations allow the
TM3270 to decode a standard definition H.264 video bitstream in real-time.

The individual innovations all contribute to a common goal: a balanced proces-
sor design in terms of silicon area and power consumption, which enables audio and
standard resolution video processing for both the connected and portable markets.

1.3 Overview of the thesis

The thesis can be roughly divided in three parts. The first part covers Chapters 2,
3 and 4, and describes the TM3270 media-processor design. The second part covers
Chapters 5, 6 and 7, each of these chapters presents the performance evaluation
of a different video application. The third part is Appendix A, which defines
some of the new TM3270 operations. Section 1.3.1 briefly discusses the content
of the individual chapters. Section 1.3.2 describes the performance evaluation
environment that is used in Chapters 5, 6 and 7.

1.3.1 Structure of the thesis

In Chapter 2 we describe the architecture of the TM3270 TriMedia media-processor.
We start with the main design targets of the TM3270 and give an overview of its
predecessor: the TM3260. Next, we describe those architectural functions that
the TM3270 processor adds with respect to the TM3260. These additions include
ISA extensions, a new cache line replacement algorithm for the instruction cache
and a new data prefetching technique for the load/store unit.

Chapter 3 describes the implementation of the TM3270. Again, the focus is on
those aspects of processor design that distinguish the TM3270 from its predecessor.
We describe the processor pipeline and give an overview of the units that make up
the processor implementation. The instruction fetch unit and load/store unit are
discussed in greater detail.

Chapter 4 describes the realization of the TM3270 in a low power CMOS pro-
cess technology, with a 90 nm feature size. In particular, we describe the physical
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realization (with floorplan and area data) and power consumption. Furthermore,
we present performance data that compares the TM3270 to the TM3260 on a se-
ries of video processing algorithms and kernels. We also present performance data
of a standard definition H.264 video decoder, and quantify the speedup of the new
CABAC decoding operations (as described in Chapter 2).

Chapter 5 evaluates the TM3270 performance on a motion estimator. Motion
estimation has multiple applications; e.g. it is part of video encoders such as the
MPEG2 encoder (as described in Chapter 6) and it is a prerequisite of motion-
compensated temporal upconverter algorithms (as described in Chapter 7). We
describe different implementations of a motion estimation algorithm that take
advantage of TM3270 enhancements to the TriMedia architecture, such as new
operations and non-aligned memory access. We evaluate the static performance
complexity of these implementations to determine the speedup of the individual
enhancements. Furthermore, we measure the dynamic performance complexity of
these implementations to determine the effect of the new data prefetching tech-
nique and the sensitivity of processor performance to off-chip memory latency.

Chapter 6 evaluates the TM3270 performance on a MPEG2 video encoder. We
describe how new TM3270 operations are used to speedup the individual kernels
of the MPEG2 encoder texture pipeline. Furthermore, we discuss the dynamic
performance complexity of the complete MPEG2 encoder, including an analysis of
the sensitivity of processor performance to off-chip memory latency.

Chapter 7 evaluates the TM3270 performance on a motion-compensated tem-
poral upconverter. We describe different implementations of the algorithm that
take advantage of TM3270 enhancements to the TriMedia architecture, such as new
operations and non-aligned memory access. We evaluate the static performance
complexity of these implementations to determine the speedup of the individual
enhancements. Furthermore, we measure the dynamic performance complexity of
these implementations to determine the effect of the new data prefetching tech-
nique, data cache write miss policy and the sensitivity of processor performance
to off-chip memory latency.

Finally, Chapter 8 concludes the thesis, summarizing our main contributions
and findings, and proposing areas for further research.

Appendix A describes in detail the new TM3270 operations.

1.3.2 Performance evaluation environment

To evaluate the dynamic performance complexity (including processor stall cycles
as a result of cache misses) of the video applications in Chapters 5, 6 and 7,
a performance evaluation environment is used that represents realistic System-
on-Chip processor behavior. Most of today’s SoCs in the embedded consumer
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market have a unified memory architecture; i.e. the off-chip SDRAM memory
is shared between the TM3270 and other on-chip devices to reduce cost. The
environment consists of the TM3270 media-processor operating at 450 MHz, a
32-bit DDR SDRAM controller operating at 200 MHz and a delay block in the
on-chip interconnect structure (Figure 1.3).
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Figure 1.3: Performance evaluation environment.

The TM3270 Verilog HDL model is used for simulation to guarantee a 100%
accurate representation of processor and cache behavior. The processor has an
asynchronous clock domain transfer, which allows for independent processor and
memory clock frequencies (the performance evaluations use a 450 MHz processor
clock and a 200 MHz memory clock). The on-chip memory interconnect has a dat-
apath width of 64-bit and the off-chip DDR SDRAM interconnect has a datapath
width of 32-bit3. Typically, the off-chip SDRAM bandwidth is a critical resource
(if it is not, cost reduction is possible by limiting the amount of SDRAM data pins
or by using lower frequency (lower cost) SDRAM memories). As other on-chip
devices consume more SDRAM bandwidth, the SDRAM latency as observed by
the processor increases and so does the processor cache miss penalty. To mimic
this behavior, a delay block is used to artificially delay memory traffic between
the TM3270 and the off-chip SDRAM. By changing the delay, we can measure

3The off-chip SDRAM interconnect operates at a double data rate, effectively doubling the
32-bit data transmission frequency to 400 MHz.
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the dependency of processor performance on off-chip SDRAM latency. The delay
block is located in the 200 MHz memory clock domain: one delay cycle represents
2.25 processor delay cycles.



Chapter 2

Architecture

T he TM3270 is a member of the Philips Semiconductors’ TriMedia architec-
ture family of media-processors [43, 46]. The architecture finds its origin in

the LIFE research project, which was executed at Philips Research in Palo Alto
[32, 31]. To avoid misunderstandings in this thesis, we assume the terminology
and definitions of [3] as related to computer architecture, implementation and
realization:

Architecture concerns the specification of the function that is pro-
vided to the programmer, such as addressing, addition, interruption,
and input/output (I/O). Implementation concerns the method that is
used to achieve this function, such as parallel datapath and micropro-
grammed control. Realization concerns the means used to materialize
this method, such as electrical, magnetic, mechanical and optical de-
vices and the powering and packaging for them. (G.A. Blaauw and
F.P. Brooks jr., ”Computer Architecture, Concepts and Evolution”).

In this chapter, we describe the TM3270 architecture. Obviously, an architec-
ture can have multiple implementations, and an implementation can have multiple
realizations. Besides, processor architectures change over time, e.g. their most
prominent function, the Instruction Set Architecture (ISA), evolves to include new
instructions that were deemed necessary by the architect to better address the
processor application domain. Typically, architectural changes are incremental to
ensure backward compatibility; i.e. programs that run on an older architecture
will also run on a newer architecture of the same processor family. In the case of
the TriMedia architecture family, compatibility is defined at program source-level,
rather than binary-level. The transformation of program source code into binary
code is assumed to be performed by a compiler/scheduler, rather than by the pro-

15
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grammer directly. This provides us with additional freedom when implementing
the processor architecture. In the spirit of Blaauw’s definition of architecture, this
excludes the set of compiler writers from the set of programmers; programmers
work with the architecture, whereas the VLIW compiler writer requires knowledge
of the architecture’s implementation. The evolution of the TriMedia architecture
family is illustrated in Figure 2.1. Four separate architecture levels and their
processor members are identified; with each level a super-set of a lower level.
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Figure 2.1: Evolution of the TriMedia architecture family.

In general, the TriMedia architecture family targets the multimedia application
domain. Originally, this domain included the 3D graphics processing subdomain
[14]. However, the increased computational demands of this domain has led to the
design of specific graphics processors [39]. Therefore, TriMedia processors have
focused on the video and audio processing subdomains. In particular, the TM3270
media-processor was designed with the following main targets (all of which impact
processor architecture, implementation and realization):

• Application domain. In line with the TriMedia architecture family, the
TM3270 targets video and audio processing. With video processing being
the most computationally demanding, most of the design choices are made
to address video processing requirements. A specific video requirement is
the ability to perform main profile H.264 decoding at main level [44] at a
sustained bitrate of 2.5 Mbits/s with a maximum dynamic performance com-
plexity of 300 MHz. This performance requirement sets a lower bound on
the processor’s acceptable performance level.

• Area. Consumer markets, such as the portable battery-operated, set-top box
and television markets, require a low-cost realization in terms of silicon area.
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• Power. The portable battery-operated market requires low power consump-
tion to allow for longer ”playing time”. Indirectly, power consumption is
related to cost, e.g. high power consumption may require more expensive IC
packages or active cooling techniques.

• Synthesizable. To allow for cheap and fast migration of a processor imple-
mentation from one CMOS process technology to another, a synthesizable
processor design is preferred.

This chapter describes the architecture of the TM3270. We found that a clean
separation between architectural function and implementation method is hard to
maintain. For embedded processors, implementation aspects related to perfor-
mance efficiency and cache design are sometimes found to be exposed to the pro-
grammer at the architectural level. As a result, the description of some architec-
tural functions will be related to the specific implementation method. We focus on
those architectural functions that the TM3270 processor adds with respect to its
predecessor: the TM3260. Section 2.1 gives an overview of the TM3260 architec-
ture. For a complete description of the TM3260 architecture, the reader is referred
to [46]. An overview of the TM3270 architecture, implementation and realization
was earlier published as [66]. Section 2.2 gives an overview of the TM3270 archi-
tecture. Section 2.3 describes TM3270 ISA additions to the TriMedia architecture.
Section 2.4 describes the new cache line replacement algorithm for the instruction
cache. Section 2.5 describes the new data prefetching approach. Finally, Section
2.6 presents a summary and some conclusions.

2.1 TM3260 overview

The TM3260 processor is the first TriMedia processor that has a fully synthesizable
design. It is binary-level backward compatible with its predecessor, the TM1000,
and adds 13 new operations to the ISA. Like all other TriMedia processors it is
a five-issue very long instruction word (VLIW) processor. It supports a 32-bit
address space (4 Gbyte of addressable memory), and has a 32-bit datapath. The
processor has 128 32-bit general-purpose registers, r0, ..., r127, organized in a
unified register-file structure. Register r0 always contains the integer value 0,
register r1 always contains the integer value 1. The TM3260 issues one VLIW
instruction every cycle. Each instruction may contain up to five operations and
each of the operations may be guarded; i.e. their execution can be made conditional
based on the value of the least significant bit of the operation’s guard register. This
allows the compiler/scheduler to perform aggressive speculation/predication to
exploit parallelism in the source code [24], to achieve high processor performance.
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All of the general-purpose registers can be used as guard register. The following
gives an example of a VLIW instruction with five operations (operations in issue
slots 1, 3, and 4 are guarded):
IF r7 IADD r4 r5 -> r8, // issue slot 1

UIMM 0x12345678 -> r13, // issue slot 2

IF r10 FMUL r21 r22 -> r23, // issue slot 3

IF r30 STD32D(0) r31 r32, // issue slot 4

LD32D(0) r41 -> r43; // issue slot 5

Each operation has a fixed latency in terms of VLIW instructions, which is
known by the compiler/scheduler at compile time. For example, the IADD oper-
ation has a latency of 1 instruction, thus the result of the IADD operation may
be used as a source operand to an operation in the next VLIW instruction. In
general, the result of an operation with latency i issued in VLIW instruction j may
be used as a source operand to an operation in VLIW instruction j+i. Conditional
and unconditional jump operations have 3 delay slots; i.e. when a jump is taken in
VLIW instruction j, the operations in the next three sequential VLIW instructions
j+1, j+2 and j+3 are executed.

Operations are executed by functional units and certain restrictions exist in
how operations can be packed into a VLIW instruction. For example, load oper-
ations are executed by the load/store unit, which is only available in issue slots
4 and 5. An overview of the available functional units, their latency, and exam-
ple operations is given in Table 2.1. Furthermore, no more than five results (of
previously issued operations) can be written to the register-file in the same cycle.
Typically, the packing of operations into VLIW instructions is not done by the
programmer, but by the scheduler, which takes care of the mentioned operation
restrictions.

Unlike traditional processor architectures, the TriMedia architecture only al-
lows for special event handling (such as interrupts and exceptions) during inter-
ruptible jump operations, e.g. IJMPI. To support this event handling model, most
operations either do not generate exception conditions, e.g. IADD, or set silent
exception flags, e.g. FMUL or FADD. Silent exception flags and pending interrupt
flags are only considered during interruptible jump operations. The limitation of
special event handling to specific points in the scheduled code has several advan-
tages. Firstly, the compiler/scheduler limits the use of general-purpose registers
at these points, such that less architectural state needs to be saved before spe-
cial event handling can commence. Secondly, the compiler/scheduler may perform
more aggressive speculative scheduling, by ignoring the silent exception flags re-
lated to wrongly speculated operations [36].

In addition to the general-purpose registers, there are special purpose registers:
PC (Program Counter), PCSW (Program Control and Status Word), DPC (Des-
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Name Latency Issue slots Example operations

CONST 1 1 2 3 4 5 IIMM, ...
ALU 1 1 2 3 4 5 IADD, ISUB, ...
SHIFTER 1 1 2 3 4 5 ASL, ASR, ROL, ...
JUMP 3 2 3 4 JMPI, JMPT, IJMPI, IJMPT, ...
DSPALU 2 1 3 5 DSPIDUALADD, ...
IMUL 3 2 3 UMUL, UMULM, DUALIMUL, ...
FALU 3 1 4 FADD, FSUB, ...
FMUL 3 2 3 FMUL, ...
FCMP 1 2 3 FGTR, FGEQ, FEQL, ...
FTOUGH 17 2 FDIV, FSQRT, ...
LS 3 4 5 ST32D, LD32D, ...
LS SPECIAL - 5 DINVALID, PREF, DCB, ...

Table 2.1: TM3260 functional units. All functional units, except for the
FTOUGH unit, are fully pipelined. The floating-point units FALU, FMUL, FCMP
and FTOUGH are single precision IEEE-754 compliant.

tination Program Counter), SPC (Source Program Counter) and CCCOUNT
(Clock Cycle Counter). The PC register gives the program counter of the VLIW
instruction that is currently issued by the processor. The PCSW register is a
selection of control fields (e.g. endianness and floating point rounding) and status
fields (e.g. silent exception flags). The DPC and SPC registers are related to spe-
cial event handling. The DPC register is updated during every taken interruptible
jump, with the target address of the jump operation. The SPC register is updated
during every taken interruptible jump that is not interrupted by a special event
handler. The handler uses SPC to determine the start of a VLIW instruction
sequence in which the special event occurred and uses DPC as return address to
resume the program, after the special event has been taken care of by the han-
dler. Special event handling is supported by a dedicated exception vector address
EXCV EC and 64 separate interrupt vector addresses INTV ECn (n = 0, 1, ...,
63). The CCCOUNT register is a 64-bit counter, which can be set to increment
on either every issued VLIW instruction or every processor cycle. Furthermore,
the TM3260 processor includes a series of peripherals, most notably the four 32-bit
timers. An overview of the TM3260 architectural state is given in Figure 2.2.

The TM3260 has a 64 Kbyte instruction cache (8-way set-associativity, 64
byte line size and a hierarchical least-recently used replacement algorithm) and a
16 Kbyte data cache (8-way set-associativity, 64 byte line size and a hierarchical
least-recently used replacement algorithm). The data cache is dual-ported; a single
VLIW instruction may contain two load operations, two store operations, or one
load and one store operation. The TM3260 does not support non-aligned memory
access. The TM3260 does not support hardware memory coherency. It is the
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Figure 2.2: Architectural state overview of the TM3260.

responsibility of the programmer to use dedicated cache coherency operations, e.g.
DINVALID (invalidate a cache line), DCB (victimize a dirty cache line), etc., to
ensure SoC level coherency.

2.2 TM3270 overview

The TM3270 processor is the most recent TriMedia processor. It has a fully
synthesizable design and is source-level backward compatible with its predecessors.
It adds several architectural features to the TriMedia architecture. This section
gives an overview of the TM3270 functional units and their latencies. The following
sections describe other differences and additions in greater detail. To accomodate
the need for speed, the TM3270 is deeper pipelined than the TM3260. This is
reflected by the longer latencies of some of the functional units and the increased
jump latency (Table 2.2). E.g., multiplication and load operations have a four
cycle latency, whereas the TM3260 performed these operations with a three cycle
latency. Although deeper pipelining has a negative impact on the cycles / VLIW
instructions ratio (CPI), it allows for a higher frequency design.

The TM3270 has a 64 Kbyte instruction cache (8-way set-associativity, 128 byte
line size and a LRU replacement algorithm). To improve the instruction cache hit
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Name Latency Issue slots Example operations

CONST 1 1 2 3 4 5 IIMM, ...
ALU 1 1 2 3 4 5 IADD, ISUB, ...
SHIFTER 1 1 2 3 4 5 ASL, ASR, ROL, ...
JUMP 5 2 4 JMPI, JMPT, IJMPI, IJMPT, ...
DSPALU 2 1 3 4 DSPIDUALADD, ...
IMUL 4 2 3 UMUL, UMULM, DUALIMUL, ...
FALU 4 1 4 FADD, FSUB, ...
FMUL 4 2 3 FMUL, ...
FCMP 2 2 3 FGTR, FGEQ, FEQL, ...
FTOUGH 17 2 FDIV, FSQRT, ...
LS ST - 4 5 ST32D, ...
LS LD 3 5 LD32D, ...
LS SPECIAL - 5 DINVALID, PREF, DCB, ...
LS FRAC 6 5 LD FRAC8, ...
SUPER ALU 1 1 + 2 3 + 4 SUPER PACKMSBYTES, ...
SUPER DSPALU 2 1 + 2 3 + 4 SUPER DUALIMEDIAN, ...
SUPER IMUL 4 2 + 3 SUPER IFIR16, ...
SUPER CABAC 4 2 + 3 SUPER CABAC STR, ...
SUPER LS LD 4 4 + 5 SUPER LD32D, ...

Table 2.2: TM3270 functional units.

rate, the TM3270 has a full LRU replacement scheme, rather than the TM3260
hierarchical LRU scheme. The TM3270 has a 128 Kbyte data cache (4-way set-
associativity, 128 byte line size and a LRU replacement algorithm). The data cache
is pseudo dual-ported, a single VLIW instruction may contain one load operations,
two store operations, or one load and one store operation. The TM3270 supports
non-aligned memory access. The data cache size is increased from 16 Kbyte for
the TM3260 to 128 Kbyte for the TM3270. The increased capacity is able to
capture the data working set of most video algorithms operating at a standard
definition (SD) resolution (NTSC: 720*480, PAL: 720*576). To limit the area
impact associated with the increased cache size, the TM3270 data cache is pseudo
dual-ported, rather than the TM3260 fully dual-ported data cache, which allows
for a more area efficient implementation.

2.3 ISA enhancements

The TM3270 targets video and audio processing. Given the higher computational
requirements of video processing, most new operations find application in this
domain. Although we investigated new operations addressing the video application
domain, we do not want to end up with an ISA that is application specific; i.e.
we do not intend to build an application specific processor. While identifying
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potentially interesting operations, we applied certain selection rules:

• Fits the processor architecture. It is probably subjective to assign a precise
meaning to the word ”fits”. However, this rule reflects our intention to
keep the architecture as clean as possible. The ISA should have a certain
consistency. We identified the following restrictions to ensure consistency:

– No operations with architectural state. This excludes e.g. the use of
multipliers with accumulator values that are not transferred through
operation operands.

– Operations are limited to up to two issue slots.
– Operations should support guarding.
– For SIMD operations, the operands are partitioned into sub-operand

fields. The sub-operand sizes and semantics should preferably be the
same.

• Reuse of available processor resources. New operations typically add func-
tionality to the existing datapath. It is the intent to restrict the additional
silicon area to a minimum, to allow for a low-cost implementation of the
architecture.

• Applicability in multiple domains. This reduces the risk that one ends up
with operations that provide a solution within the scope of a specific kernel,
but have no applicability outside this scope.

• Significant performance enhancement. New operations should improve per-
formance. Performance improvement should be measured at the application
level, rather than the kernel level; i.e. the contribution of a kernel to the
application should be taken into account.

It is the interplay of the selection rules that decides whether a new operation is
useful or not; i.e. an operation that adds a significant amount of silicon area may be
justified due to wide applicability and significant performance enhancement of the
operation. An expert in the areas of processor architecture and video processing
should preferably judge the ISA enhancement as obvious. Having set the stage
for the selection of operations, some of the new operations are described in the
following sections.

2.3.1 Non-aligned memory access

The TM3270 supports non-aligned memory access for load and store operations
that target the processor’s memory aperture. The TM3260 does not support this
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feature: least significant bits of a memory access address A[31:0] (bits 1 and 0
for 32-bit accesses, and bit 0 for 16-bit accesses) are discarded and the memory
access is performed as if these bits were ’0’. In case of address miss-alignment
(A[1:0] 6= ”00” for 32-bit accesses, and A[0] 6= ’0’ for 16-bit accesses) a silent
exception status bit is set. Traditional control processor architectures, such as the
MIPS architecture [28, 54], typically generate an address miss-alignment exception
under this condition.

The MIPS architecture supports non-aligned memory access in software with
dedicated operation, such as the LWL and LWR operations to retrieve 32-bit data
elements. A non-aligned 32-bit data element is retrieved by a pair of these op-
erations, LWL retrieves the byte elements left of the 32-bit address boundary,
and LWR retrieves the byte elements right of the 32-bit address and merges these
bytes with the LWL retrieved bytes. Texas Instruments’ VelociTI media-processor
architecture [47] supports non-aligned memory access in hardware. Normal load
and store operations are used to access miss-aligned data elements. This approach
eliminates the need for dedicated operations and when compared to the MIPS
approach eliminates an operation to access a miss-aligned data element. However,
a miss-aligned memory access may incur a stall cycle, which has a negative im-
pact on processor performance. Similar to the VelociTI architecture, the TM3270
supports non-aligned memory access in hardware with normal load and store op-
erations. The TM3270 does not incur any stall cycles for a miss-aligned memory
access.

SIMD processing partitions operation operands into multiple sub-operands that
are operated upon in a similar manner. Non-aligned memory access efficiently
extends traditional SIMD computational processing, e.g. QUADADD or DUAL-
MUL, to the memory access domain. Without non-aligned memory access, the po-
tential gain of SIMD computational processing may be lost when the sub-operands
that are operated upon cannot be efficiently accessed in memory. Consider a four-
way 8-bit SIMD addition QUADADD of two operands, one located in processor
register r2 and the other located in memory at address A. Without non-aligned
memory access support, the code sequence looks like:
alignment = A & 3;

A &= 0xffff:fffc; // force alignment

temp1 = Mem[A]; // aligned memory access

temp2 = Mem[A+4]; // aligned memory access

temp = (temp1 << (alignment * 8)) // merge byte elements

| (temp2 >> (32 - (alignment * 8)));

result = QUADADD (r2, temp);

Whereas, with non-aligned memory access support, the code sequence looks
like:
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result = QUADADD (r2, Mem[A]); // possible miss-aligned memory access

Non-aligned memory access has the obvious advantage of using fewer opera-
tions, which improves processor performance. As a result of using less operations,
non-aligned memory access reduces the code size and when code size is at the
boundary of instruction cache capacity, a small reduction may result in a signifi-
cant performance gain due to the elimination of instruction fetch unit stall cycles
as a result of cache misses. Another side effect of using fewer operations is a
potential reduction in register-file pressure. For code with a large amount of par-
allelism, high register-file pressure may result in spilling of register operands. Spill
code adds additional operations to move operands between the register-file and
memory, potentially degrading processor performance [73].

2.3.2 Multiplication with rounding

The TriMedia architecture multiplication operations have no architectural state
(such as the accumulator register employed by the MIPS architecture). Stateless
multiplication simplifies the exploitation of instruction level parallelism in multi-
issue processors, especially when multiple multiplications can be issued simulta-
neously [52]. Furthermore, limitation of architectural state simplifies context save
and restore in the case of interrupt or exception handling.

Multiplications promote the data type of the source operands, e.g. when mul-
tiplying two 16-bit sources, a 32-bit result is produced. In case of two-way 16-bit
SIMD multiplication, the two 32-bit results cannot be represented within a sin-
gle 32-bit destination register. Multiple approaches exist to address this problem.
Saturation clips the results of an arithmetic operation to a range that can be rep-
resented within the operation destination, e.g. the result of a 16x16 bit signed
multiplication may be clipped to the two-complement 16-bit signed integer range
of [0x8000, 0x7fff]. Truncation throws away some of the lower bits of the opera-
tion, e.g. the lower 16 bits of the result of a 16x16 bit signed multiplication may be
thrown away, at a loss of precision (truncation is similar to post-normalization as
employed by floating point operations). Rather than simply throwing away least
significant bits from a certain ”cut-off” bit position, rounding may be performed.
E.g., a 16x16 bit signed multiplication with a 32-bit result of 0x1234:8765 may be
truncated with rounding to a 16-bit result of 0x1235 (assuming a rounding to the
nearest representable integer), rather than truncated to a 16-bit result of 0x1234.
Especially for code sequences with multiplications in which the truncation error ac-
cumulates, rounding may provide the additional precision to guarantee algorithm
compliancy (e.g. MPEG2 8x8 DCT/IDCT kernels).

The TM3270 adds several multiplication operations to the TriMedia ISA that
support saturation, truncation and rounding. To illustrate the functionality, we
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describe the DUALISCALEUI RNINT operation. This two-way 16-bit SIMD mul-
tiplication calculates two 16-bit signed results, each a product of a 16-bit unsigned
and 16-bit signed value:
DUALISCALEUI_RNINT src1 src2 -> dst

temp = src1[31:16]*src2[31:16];

rounding = (temp < 0) ? 0x1fff : 0x2000; // round to nearest integer

temp = (temp + rounding) >> 14;

dst[31:16] = IMIN (IMAX (0x8000, temp), 0x7fff);

temp = src1[15:0]*src2[15:0];

rounding = (temp < 0) ? 0x1fff : 0x2000; // round to nearest integer

temp = (temp + rounding) >> 14;

dst[15:0] = IMIN (IMAX (0x8000, temp), 0x7fff);

The first source operand src1 holds two unsigned 16-bit values, for which we
assume a 2.14 fractional representation (2 integer bit positions and 14 fractional
bit positions). The second source operand src2 holds two signed 16-bit values,
for which we assume a s1.14 fractional representation (1 sign bit, 1 integer bit
position and 14 fractional bit positions). The multiplication has a s3.28 fractional
representation (1 sign bit, 3 integer bit positions and 28 fractional bit positions).
After multiplication, a rounding factor is added to the in-between result to achieve
”rounding to the nearest integer, away from zero”. Truncation throws away the
14 lower significant bits of the rounded in-between result. Finally, the truncation
result is saturated to the 16-bit signed integer range of [0x8000, 0x7fff]. Together,
truncation and saturation normalize the rounded in-between result to the same
s1.14 fractional representation as the second source operand src2. The 2.14 and
s1.14 fractional representations of the sources and the truncation by 14 bit positions
of the rounded in-between result allow for gain factors greater than 1 (with a
maximum unsigned gain factor of 0b11.11111111111111 (binary representation)).

2.3.3 Two-slot operations

Two-slot or super operations were first proposed in [68], but only find first em-
ployment in the TM3270. Two-slot operations are executed by functional units
that are situated in two neighboring issue slots. As a result, these functional units
have twice the register-file bandwidth: operations may consume up to four 32-bit
sources and produce up to two 32-bit results. To illustrate the ability of two-slot
operations, we describe the SUPER DUALIMEDIAN and SUPER LD32R opera-
tions.

The SUPER DUALIMEDIAN operation has three sources and a single desti-
nation. This two-way 16-bit SIMD operation calculates a 3-taps median filter on
two-way 16-bit signed inputs:
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SUPER_DUALIMEDIAN src1 src2 src3 -> dst

dst[31:16] = IMIN (IMAX (IMIN (src1[31:16], src2[31:16]), src3[31:16]),

IMAX (src1[31:16], src2[31:16]));

dst[15:0] = IMIN (IMAX (IMIN (src1[15:0], src2[15:0]), src3[15:0]),

IMAX (src1[15:0], src2[15:0]));

Without the new operation, two DUALIMIN and two DUALIMAX operations
are required to implement the same functionality (both operations are available
in the TriMedia ISA). This implementation occupies four issue slots, whereas the
two-slot operation occupies only two issue slots, a reduction of a factor two. Fur-
thermore, the SUPER DUALIMEDIAN, DUALIMIN and DUALIMAX operations
all have a latency of two cycles. The DUALIMIN and DUALIMAX implementa-
tion has a compound latency of six cycles, whereas the two-slot operation has
a latency of two cycles, a reduction of a factor three. As the 3-taps median
filter is a basic building block of many video algorithms, e.g. the temporal up-
conversion algorithm (Chapter 7), performance is significantly improved when the
SUPER DUALIMEDIAN operation is used.

The SUPER LD32R operation has two sources and two destinations. The
operation retrieves two consecutive 32-bit values from memory:
SUPER_LD32R src3 src4 -> dst1 dst2

A = src3+src4; // calculate the memory address

dst1[31:24] = Mem[A]; // big endian mode assumed

dst1[23:16] = Mem[A+1];

dst1[15:8] = Mem[A+2];

dst1[7:0] = Mem[A+3];

dst2[31:24] = Mem[A+4];

dst2[23:16] = Mem[A+5];

dst2[15:8] = Mem[A+6];

dst2[7:0] = Mem[A+7];

The source operands are taken from the second operation in the operation
pair, which explains why sources src3 and src4, rather than sources src1 and
src2 are used, to calculate the memory address1. The new operation doubles
the load bandwidth, when compared to a traditional LD32R operation. The re-
striction to consecutive memory address locations limits the applicability of the
new operation, when compared to two separate LD32R operations. However, the
SUPER LD32R is efficiently supported by the TM3270 data cache organization,
whereas the support for two separate LD32R operations would be more expensive
or would produce more unpredictable execution behavior [45]. Texas Instruments’
VelociTI architecture includes a similar load operation: LDDW, it also loads two
32-bit values from consecutive memory addresses [49]. However, its destination

1The rationale for this decision is given in Section 3.3.1
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registers are restricted to a neighboring register pair, which limits the freedom of
the scheduler’s register allocator.

2.3.4 Collapsed load operations

Collapsed load operations with interpolation combine the functionality of a load
operation, with that of a 2-taps filter function. Collapsed load operations [59] are
a new type of operations that involves memory collapsing rather than the ALU
collapsing presented in [69]. To illustrate the ability of collapsed load operations,
we describe the LD FRAC8 operation:

LD_FRAC8 src1 src2 -> dst

A = src1;

weight = src2[3:0];

dst1[31:24] = ((16-weight)*Mem[A] + weight*Mem[A+1] + 8) / 16;

dst1[23:16] = ((16-weight)*Mem[A+1] + weight*Mem[A+2] + 8) / 16;

dst1[15:8] = ((16-weight)*Mem[A+2] + weight*Mem[A+3] + 8) / 16;

dst1[7:0] = ((16-weight)*Mem[A+3] + weight*Mem[A+4] + 8) / 16;

The operation retrieves five bytes from consecutive memory addresses, and
performs a 2-taps filter function on neighboring bytes to produce a four-way 8-
bit SIMD result. Note that a more traditional 32-bit architecture requires two
loads to retrieve the five bytes and potentially multiple operations to perform the
filter function. The LD FRAC8 operation allows for efficient implementation of
horizontal fractional 8-bit pixel calculation. This function is a basic building block
of motion estimation (Chapter 5), which constitutes a significant computational
part of video encoders, such as MPEG2 (Chapter 6) and H.264/AVC [44].

2.3.5 CABAC operations

Context-based Adaptive Binary Arithmetic Coding (CABAC) [38, 23] constitutes
a significant part of a H.264/AVC video decoder [44, 72]. The intrinsic sequential
behavior of the CABAC decoding process prohibits an efficient implementation on
a multi-issue processor. Performance evaluations of a decoder indicated that as
much as 50% of the overall decoding time may be spent in the CABAC process,
when no specific operation support for CABAC decoding is provided (Section
4.3.2). The TM3270 adds specific CABAC operations to the TriMedia ISA to
reduce these computational requirements [62, 66]. The following code sequence
gives the definition of biari decode symbol function, which decodes a single binary
value bit from a CABAC coded bitstream:
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LpsRangeTable[64][4] // range table for least probable symbol (LPS)

MpsNextStateTable[64] // MPS state transition table

LpsNextStateTable[64] // LPS state transition table

biari_decode_symbol ( // decodes a single binary value "bit" from the CABAC coded stream

inout value, // coding value, 10-bit value

inout range, // coding range, 9-bit value

inout state, // modeling context state, 6-bit

inout mps, // modeling context MPS, 1-bit

in stream_data, // bitstream data

inout stream_bit_position, // bit position in "stream_data"

out bit) // decoded binary value

{

stream_data_aligned = stream_data << stream_bit_position;

range_lps = LpsRangeTable[state][(range >> 6) & 3)];

temp_range = range - range_lps

if (value < temp_range) { // MPS: most probable symbol

value = value; range = temp_range;

bit = mps;

mps = mps; state = MpsNextStateTable[state];

} else { // LPS: least probable symbol

value = value - temp_range; range = range_lps;

bit = !mps;

mps = mps ^ (state != 0); state = LpsNextStateTable[state];

}

while (range < 256) { // renormalization, at most 8 bits can be consumed

value = (value << 1)

| ((stream_data_aligned >> 31) & 1);

range <<= 1;

stream_data_aligned <<= 1;

stream_bit_position += 1;

}

}

The biari decode symbol function constitutes a significant part of the compu-
tational complexity of the CABAC decoding process. The conditional constructs,
table lookups, and limited parallelism result in a relative long VLIW schedule
length. The use of TM3270 operations (such as the CLSAME operation to effi-
ciently implement the renormalization) shortens the VLIW schedule length, but
does not bring it down to an acceptable level.

Despite its complexity, the biari decode symbol function does not maintain
state across function calls; i.e. it functionality is fully determined by its input
arguments. This opens up the possibility to implement the functionality with
new, CABAC decoding specific operations. Ideally, we would like to implement
the biari decode symbol functionality with a single new operation. However, the
amount of input and output function arguments exceeds the capability of a single
two-slot operation. Closer investigation of the function shows that an implemen-
tation with two new two-slot operations is possible, by grouping of semantically
related arguments as 16-bit sub-operands of a 32-bit operand. The value (10-bit
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value) and range (9-bit value) arguments are both related to a context, and are
grouped in a two-way 16-bit representation. The state (6-bit value) and mps (1-
bit value) arguments define the state of a probability model for a context, and are
grouped in a two-way 16-bit representation. The other arguments are represented
by dedicated operands. We introduce two new operations: SUPER CABAC CTX
and SUPER CABAC STR. The SUPER CABAC CTX operation calculates the
new values of the context modeling: dst1 contains (value, range) and dst2 (state,
mps). Note that for this calculation, all function input arguments are required:
src1 contains (value, range), src2 contains stream bit position, src3 contains
stream data and src4 contains (state,mps). The SUPER CABAC STR opera-
tion calculates the new values related to the bitstream processing: dst1 contains
stream bit position and dst2 contains bit. Note that for this calculation, only a
subset of the function input arguments are required (stream data is not required):
src1 contains (value, range), src2 contains stream bit position, src3 is not used
and src4 contains (state,mps). With the definition of the biari decode symbol
function and the grouping of function arguments in register operands, the inter-
faces of the two-slot SUPER CABAC CTX and SUPER CABAC STR operations
are as follows:
SUPER_CABAC_CTX src1 src2 src3 src4 -> dst1 dst2

src1 = (value, range)

src2 = stream_bit_position

src3 = stream_data

src4 = (state, mps)

dst1 = (value, range) \\ function defined by "biari_decode_symbol"

dst2 = (state, mps)

SUPER_CABAC_STR src1 src2 src4 -> dst1 dst2

src1 = (value, range)

src2 = stream_bit_position

src4 = (state, mps)

dst1 = stream_bit_position \\ function defined by "biari_decode_symbol"

dst2 = bit

Clearly, the new CABAC operations violate our original intend that operations
should have ”applicability in multiple domains”. However, the benefit in terms of
”performance enhancement” is so significant that we decided upon these specific
operations.

2.3.6 Potpourri

In this section we describe a selection of new operations that are not captured by
the new operation-types as described in the previous sections. In [30] some miss-
ing operations in terms of ISA orthogonality were identified. E.g., the TriMedia
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architecture level 2 includes the two-way 16-bit DUALASR operation, which per-
forms two 16-bit arithmetic right shifts. However, its counterpart, the DUALASL,
was not accounted for. Several of these examples exist, and the identified missing
operations were added to TriMedia architecture level 4.

When decoding a media bitstream, efficient calculation of the amount of leading
’0’ or ’1’ bits of a 32-bit operand is a useful functionality. To this end, the CLSAME
operation was added to the TriMedia architecture:
CLSAME src1 src2 -> dst

temp = src1 ^ src2;

clz = 0;

while ( (clz < 32)

&& (temp & (1 << (31-clz)) == 0))

clz++;

dst = clz;

This new operation performs an ”exclusive or” on its source operands, and
calculates the amount of leading ’0’ bits of the in-between result. When source
src1 contains the value 0, the amount of leading ’0’ bits of source src2 is calculated,
when source src1 contains the value 0xffff:ffff, the amount of leading ’1’ bits of
source src2 is calculated.

The ALLOC SET data cache operation was added to set a data cache line (128
bytes) to a pre-defined 32-bit data value:
ALLOC_SET src1 src2

address = src2 & 0xffff:ff80; // start of 128 byte line

for (i = 0; i < 32; i++) {

Mem[address++] = src1[31:24]; // big endian mode assumed

Mem[address++] = src1[23:16];

Mem[address++] = src1[15:8];

Mem[address++] = src1[7:0];

}

This new operation is useful to pre-set a sparsely encoded data structure with
a pre-defined value as contained within src2. Furthermore, it is used to efficiently
implement the memset standard C-library function.

2.4 Instruction cache LRU update

Both the TM3270 and its predecessor, the TM3260, support instruction and data
cache locking on a cache line granularity. Instruction cache locking is used to
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guarantee that certain pieces of code are kept in the instruction cache; i.e. the
associated cache lines are not victimized by the LRU replacement algorithm. Lock-
ing is especially useful for infrequently executed code sequences that require pre-
dictable/timely execution behavior. The locked region of the overal cache capacity
cannot be used for other code. This is acceptable as long as the locked region is
small. However, as the locked region increases the limited cache capacity for other
code may degrade overall processor performance. Therefore, it is not advisable to
lock large, infrequently executed code sequences.

The TM3270 is used as an embedded processor and responsible for interrupt
driven control of other SoC devices. Interrupt handlers are examples of code
sequences that may be executed infrequently. The interrupt frequency of each
interrupt source may be low, however, the amount of interrupt sources may be
significant. Although ”good” program practices advise to use small handler code,
real-world handler code may measure multiple Kbytes in size. Locking multiple
large interrupt handlers in the instruction cache will most likely degrade over-
all processor performance. Therefore, we intend to limit the impact of handler
code on other code with respect to cache utilization, rather than optimize the
predictable/timely execution behavior of handler code.

Typical handler code is characterized by a control processing like execution
behaviour with if-constructs, but without too many loop-constructs. As a result,
code is typically executed once, rather than multiple times. This does not match
well with the temporal locality as offered by the instruction cache, as is illustrated
by the following example. The TM3270 has a 8-way set associative instruction
cache, a LRU replacement algorithm and 128 byte cache lines (each way contains
64 cache lines or 0x2000 bytes). For the sake of simplicity, we assume the LRU
is in its default state (way 0 is least-recently used and way 7 is most-recently
used). Furthermore, we assume that the cache is filled with media-processing
code: Figure 2.3, a. We assume that the media processing code in the cache covers
the memory region from address 0x0:0000 to 0x1:0000. Assume a first interrupt
handler executes a fully sequential code sequence, starting at address 0x1:0000 and
with a size of 0x1800. After the handler is executed the cache utilization is given
by Figure 2.3, b. Next, a second interrupt handler executes a fully sequential code
sequence, starting at address 0x1:1800 and with a size of 0x4000. After the handler
is executed the cache utilization is given by Figure 2.3, c. Next, a third interrupt
handler executes a fully sequential code sequence, starting at address 0x1:5800
and with a size of 0x2800. After the handler is executed the cache utilization
is given by Figure 2.3, d. At this point, half of the cache capacity (ways 0, 1,
2 and 3, or 0x8000 bytes) is utilized by interrupt handler code that is unlikely
to be used in the near future (low interrupt frequency). Furthermore, half of
the original media-processing code has been removed from the cache. When the
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processor continues with the media-processing code at address 0x0:2000 it finds it
removed from the cache and will reload the code starting at way 4, overwriting
other media processing code still present in the cache. After executing a fully
sequential sequence, starting at address 0x0:2000 and with a size of 0x6000, the
cache utilization is given by Figure 2.3, e.
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Figure 2.3: Instruction cache utilization, with LRU status update turned on.

The previous example illustrates that code with non-existent temporal locality
may utilize a large cache capacity due to the continuous update of the LRU status
of the cache sets. To address this over-utilization of cache capacity by code with
low temporal locality, we made the LRU status update programmable [71]. When
the LRU update is turned on, the cache functions as described above, when the
LRU update is turned off, cache line updates are restricted to the LRU line of each
of the cache sets. When we turn off the LRU update for handler code, a rerun
of the example scenario results in instruction cache utilization as given by Figure
2.4. Handler code associated cache line updates are restricted to way 0: the LRU
way for each of the cache sets. Initially, handler code removes media processing
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code from way 0, however, handler code does not proceed to way 1 but removes
previously retrieved handler code in way 0 instead. Since handler code is executed
infrequently and without too many loop-constructs, removing previous retrieved
and executed handler code from the cache should have no or limited performance
impact. Note that when the processor continues with the media-processing code
at address 0x0:2000 it finds the code still present in the cache.
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Figure 2.4: Instruction cache utilization, with LRU status update turned off.

2.5 Data prefetching

Data prefetching anticipates the use of data by the processor: it retrieves data
from the off-chip memory into the processor data cache before the actual use
of the data by the processor. Successful prefetching improves processor perfor-
mance by eliminating compulsory misses and the associated stall cycles. Multiple
prefetching approaches exist, ranging from fully software based approaches [4] to
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fully hardware based approaches [27, 61, 22].
Both the TM3270 and its predecessor, the TM3260, support software based

prefetching through dedicated PREFETCH operations. These operations may be
added by the programmer to the source code, or by the compiler/scheduler to the
binary code. Although the use of PREFETCH operations may improve processor
performance, the process of adding the operations is cumbersome. Furthermore,
the PREFETCH operations may consume valuable issue slots, which may have a
negative performance impact. To address these drawbacks, the TM3270 adds a
new prefetch approach to the TriMedia architecture that does not require the use
of explicit PREFETCH operations in the instruction stream.

The new prefetch approach is a combined software/hardware based approach.
It is based on memory regions, and allows for a prefetching pattern that reflects the
access pattern of a data structure mapped onto a certain address space [57]. The
TM3270 supports four separate prefetch memory regions. The identification of
these memory regions and the required prefetch pattern is under software control,
and defined by the following parameters (n = 0, 1, 2, 3): PFn START ADDR,
PFn END ADDR and PFn STRIDE. The reason for the decision to rely on soft-
ware rather than hardware to identify the memory regions is two fold. Firstly,
the programmer is likely to have the knowledge of a data structure access pattern,
whereas a hardware mechanism needs to dynamically detect the access pattern.
Secondly, no memory structures, such as stride prediction tables [16], associated
with hardware prefetch pattern detection mechanisms are required, which allows
for a low cost implementation in terms of silicon area. Note that prefetching of
unused data may degrade processor and SoC performance, due to an increase of
memory bandwidth. The up-front programmer’s knowledge about a data structure
access pattern is more likely to prevent unnecessary prefetching, than a hardware
detection mechanism.

The first two prefetch parameters, PFn START ADDR and PFn END ADDR,
are used to identify a memory region, the third prefetch parameter, PFn STRIDE,
is used to specify the prefetch pattern for the associated region. When the pro-
cessor hardware detects a load from an address A within a prefetch region x, a
prefetch request for address A+PFx STRIDE is sent to the prefetch unit. When
the prefetch address is not yet present in the data cache it is retrieved from the
off-chip memory and put into the cache. The large data cache capacity of 128
Kbyte and the 4 way set associativity make it unlikely that useful data is victim-
ized. Furthermore, no dedicated prefetch storage structures such as stream buffers
or stream caches are required [27, 13], which allows for a low cost implementation
in terms of silicon area.

Traditional next-sequential cache line or one-block-ahead [53] prefetching is re-
alized by setting the prefetch pattern to the cache line size of 128 bytes. At reset,
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prefetch memory region 3 is set to perform next-sequential cache line prefetch-
ing for the complete 32-bit address space of 4 Gbyte (PF3 START ADDR = 0,
PF3 END ADDR = 0xffff:ffff and PF3 STRIDE = 128).
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Figure 2.5: Memory region based prefetching, an architecture perspective.
Prefetch memory region settings to prefetch a row of blocks in advance.

The effectiveness of memory region based prefetching becomes apparent when
we consider e.g. the block-based processing of an image (Figure 2.5). Assume
an image of byte element in memory. The image is processed at 8x8 block-size
granularity. Starting with the upper-left block, the blocks are processed in a
left-to-right, and top-down order. The memory region (PFx START ADDR and
PFx END ADDR) is set to include the image, and the associated prefetch pattern
(PFx STRIDE) is set to the image width times the block height of 8. While
processing a certain row of blocks, the lower row of blocks is prefetched into the
data cache. If the time to process a row of blocks exceeds the time to prefetch the
lower row of block, the processor will not incur any stall cycles due to compulsory
misses.

2.6 Conclusions

In this chapter we gave an overview of the TM3270 architecture and described
in more detail those architectural functions that distinguish the TM3270 from its



36 Chapter 2. Architecture

predecessor: the TM3260. In terms of extensions to the TriMedia ISA, we de-
scribed two-slot operations, collapsed load operations, multiplication operations
with rounding and clipping support and CABAC decoding operations. Besides
these ISA extensions, we described an instruction cache replacement policy that
prevents cache trashing for code with low temporal locality. Furthermore, we
described memory region based prefetching: a combined software/hardware tech-
nique that prefetches data into the data cache with limited overhead to the pro-
grammer.



Chapter 3

Implementation

I
n the previous chapter we described the TM3270 architecture. This chapter
describes the TM3270 implementation: the methods used to achieve the archi-

tectural functions. As in the previous chapter, we focus on those aspects of the
TM3270 design that distinguish it from its predecessor: the TM3260. Section 3.1
describes the processor pipeline and gives an overview of the units that make up
the processor implementation. Section 3.2 describes the instruction fetch unit and
Section 3.3 describes the load/store unit. Section 3.4 presents a summary and
some conclusions.

3.1 Processor pipeline

This section gives an overview of the TM3270 pipeline partitioning (Figure 3.1).
The pipeline depth depends on operation latency: single-cycle latency operations
have a pipeline depth of 7 stages (stages I1, I2, I3, P, D, X1 and W), multiple-cycle
latency operations have additional execute stages Xi (i ≥ 2). Stages I1 through
I3 implement the sequential instruction cache: the cache tags (stage I1) and the
instruction storage (stage I3). Every cycle, a 32-byte chunk of instruction in-
formation can be retrieved from the instruction storage. Chunks of instruction
information are stored in a 4-entry instruction buffer in stage P. The instruction
buffer decouples the front-end of the pipeline (stages I1, I2, I3 and P) from the
back-end of the pipeline (stages D, X1, X2, ..., W). In stage P, a VLIW instruction
is retrieved from the instruction buffer through proper alignment of the instruction
information based on the program counter (PC). Next, the individual operations
are extracted from the VLIW instruction and the guard and source registers are
identified. Stage D decodes the individual operations and determines the opera-
tions’ operands: immediate operand fields in the operation words are extracted, the

37
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register-file is accessed with the guard and source register identifiers and register
operand bypassing is performed. The TriMedia architecture uses a unified register-
file structure. To sustain the issue rate of five operations per VLIW instruction, 5
guard register read ports and 10 source register read ports are available. Note that
the five guard register read ports are only 1-bit wide, as guarding only depends
on the least significant bit of an operation’s guard register. Stages X1 through X6
are the execute stages; the amount of execute stages is determined by the opera-
tion latency. The load/store unit is implemented in stages X1 through X6 and is
connected to issue slots 4 and 5. Two-slot operations are executed by functional
units that are situated in two neighboring issue slots. Note that these functional
units have twice the register-file bandwidth.

Conditional and unconditional jump operations are performed in stage X1.
The outcome of jump operations may affect the address that is used to access the
instruction cache tags in stage I1. The cache tags (in stage I1) and the jump exe-
cution (in stage X1) are separated by 5 pipeline stages, which matches the amount
of architectural visible jump delay slots. Matching architectural and pipeline de-
lay, allows for stall cycle free control flow changes without jump/branch-prediction
support [33]. The elimination of jump-prediction support allows for a low-cost im-
plementation and avoids unexpected stall cycles due to miss-predictions. However,
the task of the compiler/scheduler is complicated: the 25 issue slot of the 5 jump
delay slot VLIW instructions need to be filled with useful operations. The Tri-
Media compiler/scheduler [21] exploits guarded execution to perform aggressive
speculation [24] to fill the jump delay issue slots with useful operations.

Stage W gathers the operation results from the functional units and allows for
up to 5 writes to the register-file.

3.2 Instruction fetch unit

This section describes the instruction fetch unit (IFU), which includes the 64 Kbyte
instruction cache (8-way set-associative, 128 byte line). The IFU design decisions
depend on the VLIW instruction encoding, as described in Section 3.2.1. Section
3.2.2 describes the pipeline paritioning of the sequential instruction cache.

3.2.1 VLIW instruction encoding

A VLIW instruction may contain up to five operations, which are template-based
encoded in a compressed format to limit code size. Every VLIW instruction starts
with a 10-bit template field, which specifies the compression of the operations in
the next VLIW instruction. The 10-bit template field has five 2-bit compression
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sub-fields, which are related to the processor’s issue slots 1 through 5. An issue
slot’s 2-bit compression sub-field specifies the size of the operation encoding.

11
 10
 10
 11
 00


Template sub-field


00:    26 bits

01:    34 bits

10:    42 bits

11:    not used/encoded


previous VLIW  instruction

(5 operations)


VLIW  instruction

(3 operations)


slot 2

operation


slot 3

operation


slot 5

oper.


15 bytes (10 + 42 + 42 + 26 bits  = 120 bits)


Issue slot
 Operation


1:
         NOP,

2:                     IF r34 MUL r87 r54 -> r123,

3:                     IF r45 QUADUMIN r3 r67 -> r23,

4:                     NOP,

5:                     LD32D (4) r22 -> r14;


10 bit template

field


Figure 3.2: VLIW instruction encoding.

Figure 3.2 gives an example of a VLIW instruction containing three operations
in slots 2, 3, and 5. Issue slots 1 and 4 are not used, as specified by the ”11”
encoding of the related compression sub-fields. Since issue slot 1 is not used,
the first encoded operation is for issue slot 2. A VLIW instruction without any
operations is efficiently encoded in 2 bytes, with a ”11:11:11:11:11” template field.
A VLIW instruction with all operations of the maximum size of 42 bits is encoded
in 28 bytes, with a ”10:10:10:10:10” template field and 5 * 42 bits for the operation
encoding. This compression scheme allows for an efficient encoding of code with
low instruction level parallelism: A NOP operation is encoded by a 2-bit ”11”
compression sub-field.

A VLIW instruction’s template field is encoded as part of the previous VLIW
instruction. As a result, an instruction’s compression template is available one cy-
cle before the instruction’s compressed encoding, which relaxes the timing require-
ments of the VLIW instruction decoding process. However, this design decision
introduces complications for conditional and register-indirect control flow changes.
Consider the following VLIW instruction sequence with a conditional control flow
change:
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i: NOP, IF r2 JMPT target_address, NOP, NOP, NOP;

i+1: NOP, NOP, NOP, NOP, NOP; // delay slot 1

i+2: NOP, NOP, NOP, NOP, NOP; // delay slot 2

i+3: NOP, NOP, NOP, NOP, NOP; // delay slot 3

i+4: NOP, NOP, NOP, NOP, NOP; // delay slot 4

i+5: NOP, NOP, NOP, NOP, NOP; // delay slot 5

// next VLIW instruction: "i+6" or "j"?

i+6: NOP, NOP, NOP, NOP, NOP;

target_address j:

NOP, NOP, NOP, NOP, NOP;

The conditional jump operation in VLIW instruction i may be either taken
or not-taken, dependent on the value of register r2 (the operation guard). As a
result, VLIW instruction i + 5 precedes either VLIW instruction i + 6 or VLIW
instruction j. However, the encoding of VLIW instruction i + 5 can only include
the template field of one of its successors. Register-indirect control flow changes
result in further complications1:
r13 may contain j, k, l, etc.

i: NOP, IF r12 JMPT r13, NOP, NOP, NOP;

i+1: NOP, NOP, NOP, NOP, NOP; // delay slot 1

i+2: NOP, NOP, NOP, NOP, NOP; // delay slot 2

i+3: NOP, NOP, NOP, NOP, NOP; // delay slot 3

i+4: NOP, NOP, NOP, NOP, NOP; // delay slot 4

i+5: NOP, NOP, NOP, NOP, NOP; // delay slot 5

// next VLIW instruction: "i+6", "j", or "k", or "l"?

i+6: NOP, NOP, NOP, NOP, NOP;

target_address j:

NOP, NOP, NOP, NOP, NOP;

target_address k:

NOP, NOP, NOP, NOP, NOP;

target_address l:

NOP, NOP, NOP, NOP, NOP;

The indirect jump operation in VLIW instruction i jumps to a target address
kept in register r13, which is known at execution time, but is unknown at com-
pile time. As a result, the compiler has no way of knowing which target VLIW
instruction template field to include as part of the VLIW instruction i+5 encoding.

To overcome the complications as encountered by conditional and register-
indirect control flow changes, the decision was made to encode jump target VLIW

1Register-indirect control flow changes are typically used to implement return from subroutine
constructs or switch statements.
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instructions uncompressed, they have a ”10:10:10:10:10” template field which is
implied by it being a jump target (rather than an explicitly encoded format field
in the previous VLIW instruction). Since jump targets do not require the use of
the format field of the previous VLIW instruction, this field can be used to encode
the format field of the not-taken execution path; in the previous code sequences
the format field of VLIW instruction i + 5 is used to encode the format of VLIW
instruction i + 6.

3.2.2 Instruction fetch unit pipeline

The main reason for a sequential, rather than parallel, instruction cache design is
power consumption. Figure 3.3 illustrates the sequential and parallel cache design
alternatives. The relatively large 8-way set-associativity and instruction cache
bandwidth requirements would make a parallel cache design expensive: to sustain
the required instruction bandwidth of 28 bytes per cycle (the maximum VLIW
instruction length), 8 * 28 bytes would need to be retrieved. In our sequential
cache design, we retrieve only a single 32-byte chunk of instruction information
every cycle2. As a result, the SRAM power consumption of the instruction memory
structure is significantly reduced. However, the sequential cache design adds a
jump delay cycle.
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Figure 3.3: Sequential (left) and parallel (right) instruction cache design.

Due to the variable length VLIW instruction encoding as discussed in the
previous section, a VLIW instruction’s size is only known after the format field of

2Fetching 32 bytes, rather than the required 28 bytes, simplifies the organization of the in-
struction information in the instruction cache SRAM memories.
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its predecessor is extracted. As a result, a VLIW instruction’s program counter
(PC) is only available in stage P, and not available in instruction fetch stages I0,
I1, I2 and I3. The instruction fetch control unit determines the stage I0 address to
control the fetching of 32-byte chunks of instruction information from the cache.
Note that due to the pipeline delay from the I0-stage instruction fetch to the P-
stage instruction extraction (4 stages), the calculation of the I0 fetch address needs
to run at least 4 instructions ahead, to guarantee non-stalling execution behavior3.
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Figure 3.4: TM3270 instruction fetch unit (IFU) pipeline.

The instruction fetch control unit contains a prioritized list of instruction ad-
dresses; one of these addresses is used as the I0 ”look-ahead” fetch address (Figure
3.4). The highest priority entry always contains the known P-stage VLIW PC,
the second highest priority entry contains VLIW PC + 32. These top two entries
are both related to the P-stage VLIW instruction. The other entries are related to
successive VLIW instructions, and their addresses are dependent on the execution
flow. In the case of sequential instruction flow, the addresses are calculated as
32-byte increments of VLIW PC. Note that the PC’s of successive instructions are
not yet known; therefore, the calculated addresses are look-ahead addresses. In

3Non-stalling execution behavior is only guaranteed when no instruction cache misses occur.
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the case of non-sequential instruction flow (taken jump operations), the addresses
of jump target instructions are known and used as look-ahead addresses. To deter-
mine the I0 ”look-ahead” fetch address, all of the IFU instruction fetch addresses
(I1, I2, I3 addresses, and the four instruction buffer addresses) are taken into ac-
count. The I0 fetch address is determined as follows: the highest priority address
that is not being fetched (present in stages I1, I2 or I3) or has been fetched (present
in one of the four instruction buffer entries) is used as the next I0 ”look-ahead”
fetch address. Instruction cache misses are detected in stage I2, and the refill unit
resolves these misses. The instruction buffer accepts a fetched 32-byte chunk in
the P-stage. The buffer accepts the 32-byte chunks in the priority ordering as
dictated by the entries in the instruction fetch control unit.

Assume an instruction flow with a P-stage VLIW PC of 0x0000:0092 and a
size of 0x14 bytes. The required instruction information crosses a 32-byte chunk
boundary. Two chunks (0x0000:0080 and 0x0000:00a0) are required to extract the
complete instruction, and therefore both chunks need to be fetched and available in
the instruction buffer. Although an instruction’s size is known when it is retrieved
from the instruction buffer in the P-stage, the size is not yet known when its
instruction information is accessed in the instruction cache in the I0 stage. With
a chunk size of 32 bytes and a maximum instruction size of 28 bytes, it is likely
that instruction information frequently crosses a 32-byte chunk boundary. To
ensure that the instruction buffer always contains enough instruction information
to extract a VLIW instruction in the P-stage, both of the top two entries of the
instruction fetch control unit are related to the P-stage VLIW instruction.

In the case of sequential instruction flow and a VLIW PC of 0x0000:0092 (with
a size of 0x14 bytes), the instruction fetch control unit addresses are as follows:
0x0000:0092, 0x0000:00b2, 0x0000:00d2, 0x0000:00f2, 0x0000:0112 (in decreasing
priority). The first two entries are related to the P-stage VLIW instruction; the
last three entries are related to the three successive instructions. When the P-
stage instruction is retrieved from the instruction buffer, the P-stage instruction
size (0x14) is used to calculate the new P-stage VLIW PC: 0x0000:00a6, and to cal-
culate the new instruction fetch control unit addresses: 0x0000:00a6, 0x0000:00c6,
0x0000:00e6, 0x0000:0106, 0x0000:0126. Figure 3.5 illustrates the change of in-
struction fetch control unit entries for the sequential instruction flow.

In the case of non-sequential instruction flow (taken jump operations), the in-
struction fetch control unit receives jump target addresses from stage X1 (Figure
3.1). The TM3270 has 5 jump delay slots; i.e. the 5 VLIW instructions following
the VLIW instruction containing the taken jump operations are executed before
the instruction flow changes to the VLIW instruction at the jump target address.
When the VLIW instruction with the taken jump operation is in stage X1, the first
jump delay instruction is in stage D and the second jump delay instruction is in
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Figure 3.5: Change of instruction fetch control unit entries for sequential in-
struction flow.

stage P (the first two entries of the instruction control unit). The last three entries
of the instruction control unit are related to the third, fourth and fifth jump delay
instructions. When the P-stage instruction is retrieved from the instruction buffer,
the new instruction fetch control unit addresses are calculated and the last entry
is used to hold the address of the jump target instruction, as provided by the jump
operation. Assume a VLIW PC of 0x0000:0092 (with a size of 0x14 bytes), the
instruction fetch control unit addresses are as follows: 0x0000:0092, 0x0000:00b2,
0x0000:00d2, 0x0000:00f2, 0x0000:0112. Furthermore, assume a taken jump oper-
ation in stage X1, with a target address of 0x0001:0000. When the P-stage instruc-
tion is retrieved from the instruction buffer, the P-stage instruction size (0x14) is
used to calculate the new instruction fetch control unit addresses: 0x0000:00a6,
0x0000:00c6, 0x0000:00e6, 0x0000:0106, 0x0001:0000. The last entry holds the ad-
dress of the jump target instruction. Figure 3.6 illustrates the change of instruction
fetch control unit entries for the non-sequential instruction flow.

Note that it takes 4 instructions for the jump target instruction j, to reach the
top entry of the instruction fetch control unit, which is the same number as the 4
cycles the instruction fetch pipeline takes to retrieve the instruction’s 0x0001:0000
chunk of instruction information from the cache (stages I0, I1, I2 and I3). As a
result, non-stalling execution behavior is guaranteed when the jump target instruc-
tion is completely contained within the 0x0001:0000 chunk. In our example, this
condition is met: the 28-byte target instruction is encoded by instruction informa-
tion bytes 0x0001:0000 through 0x0001:001b, inclusive4. However, for jump target
addresses with a chunk address offset greater than 0x4, the instruction informa-

4Jump target instructions are uncompressed and are therefore always encoded by 28 bytes.
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Figure 3.6: Change of instruction fetch control unit entries for non-sequential
instruction flow.

tion crosses a 32-byte chunk boundary. The fetch for the next-sequential chunk
(0x0001:0020) results in a stall cycle. The linker can prevent these stall cycles
through proper alignment of jump target instructions; jump target addresses have
chunk address offsets in the range of 0x0 through 0x4, to ensure that a 28-byte
jump target is contained within a 32-byte chunk5.

For a sequential flow of instructions, the fetching ahead of 32-byte chunks
of instruction information at 32-byte increments of the P-stage VLIW PC will
eventually result in a full instruction buffer, as the maximum VLIW instruction
size is only 28 bytes. This results in a non-stalling execution behavior, however,
it may degrade performance in the presence of taken jump operations. Figure 3.6
illustrates the problem: when instruction i + 2 is in the P-stage, potential I0 fetch
addresses include 0x0000:00d2, 0x0000:00f2 and 0x0000:0112. When instruction i+
5 (the fifth and last jump delay instruction) is in the P-stage, its PC (0x0000:00b7)
and size (0x08) are known and it becomes obvious there was no need to fetch
the chunks for addresses 0x0000:00d2, 0x0000:00f2 and 0x0000:0112. However,
these fetches may have started and the associated instruction information accepted
by the instruction buffer. The instruction information may have been useful for
instructions i + 6, i + 7, etc., but not for the jump target instruction j. As
a result of fetching ahead, the top two instruction buffer entries, on which the
VLIW instruction aligner operates, contain useless instruction information. To
prevent stall cycles associated with one-by-one removal of unused buffer entries,
the buffer’s FIFO behavior is extended with ”clear-all” functionality, which clears
all buffer entries. This function is used to clear all buffer entries when the fifth

5Note that this linker optimization may increase code size.
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and last jump delay instruction has been extracted from the buffer. As a result,
the newly arriving 32-byte chunk of the jump target address is accepted as the top
instruction buffer entry.

3.3 Load/store unit

This section describes the TM3270 load/store unit, which includes the 128 Kbyte
data cache (4-way set-associative, 128 byte line size). The cache has a LRU re-
placement policy, a copy-back write policy and an allocate-on-write-miss policy.
The allocate-on-write-miss policy is an improvement over the fetch-on-write-miss
policy as used by the TM3260 data cache. Allocating a cache line in case of a
write miss, rather than fetching the cache line, reduces the write miss penalty
and the bandwidth to main memory. The following subsections describe the flow
of load and store operations through the load/store unit pipeline (Section 3.3.1),
the data cache memory organization (Section 3.3.2), memory arbitration (Section
3.3.3) and the implementation of memory region based data prefetching (Section
3.3.4).

3.3.1 Load/store unit pipeline

The TM3270 load/store unit is pseudo dual-ported and connected to issue slots
4 and 5: store operations are issued in slots 4 and 5, traditional load operations
are issued in slot 5 (Figure 3.7)[67, 60]. The two-slot load operations, e.g. SU-
PER LD32R, are issued in slots 4+5 and double the bandwidth of ordinary load
operations. Although these operations use two issue slots, the cache access path
of traditional load operations in slot 5 is re-used; slot 4 is only used to provide an
additional destination operand. Traditional and two-slot load operations have a
4 cycle latency and produce results in stage X4. The collapsed load operations,
e.g. LD FRAC8, are issued in slot 5. Compared to traditional load operations,
they have their pipeline extended with filter functionality in stages X4, X5 and
X6. They have a 6 cycle latency and produce a result in stage X6.

Stage X1 calculates the address of memory operations based on the opera-
tion’s source operands and addressing mode. The addresses of both the first
and last referenced byte are calculated; i.e. for a 32-bit memory operation the
first byte address addr lo and the last byte address addr hi are three bytes apart
(addr hi = addr lo+3). Stage X2 performs access arbitration for the tag and data
memory structures. Although the functionality provided by this stage is limited,
the delay is significant. This is because a large amount of relatively wide address
and data busses need to be multiplexed and routed to the different memory struc-
tures. Furthermore, SRAM memory structure implementations typically have a
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Figure 3.7: TM3270 load/store unit pipeline.
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large setup time, which extends the presence of these memories from stage X3
into stage X2. Stage X3 contains the tag and data memory structures (this stage
also contains the LRU and byte validity structures, which are not depicted). The
data memory structures have a clock frequency that is close to the processor clock
frequency. The tag memory structures are somewhat faster, which allows for the
inclusion of tag comparison logic in stage X3. Stage X4 contains two state ma-
chines that control the flow of operations through the load/store unit pipeline(s).
Furthermore, it includes a block that re-organizes retrieved cache data based on
cache way information, operation type (e.g. signed or unsigned load operation)
and processor endianness. Stages X5 and X6 contain a filter bank to provide the
filter functionality as required for collapsed load operations. At the lower right
side of Figure 3.7, the cache write buffer (CWB) holds pending updates to the
data cache.

The flow of load and store operation through the pipeline is as follows. Stage
X1 calculates the addresses of the first and last referenced bytes of load and store
operations. For load operations, stage X2 requests access to the cache tag and
cache data structures, which are read in stage X3. For store operations, stage X2
requests access to the cache tag structure, which is read in stage X3. Note that
store operations do not require access to the cache data structure: they do not
produce a destination register operand. Both load and store operations require
access to the cache tag structure to generate the cache hit signal. The generation
of a cache hit signal for loads is somewhat complicated by the allocate-on-write-
miss policy, since the validity of the requested bytes needs to be checked. The
stage X4 state machines use the retrieved cache information, such as the cache
hit signal, to further control the flow of load and store operations. In case of a
load hit, way selection is performed on the retrieved cache data. In case of a load
miss, a cache line is retrieved from main memory by the refill unit. Note that two
types of load misses may occur: A load miss may indicate that the cache line is
not present in the cache or that the cache line is present in the cache, but the
requested bytes are not all valid. In the first case, the retrieved cache line is put
directly in the cache, in the second case, the retrieved cache line is merged with
the already valid bytes in the cache. In case of a store hit, the store data is put
into the CWB. In case of a store miss, the refill unit allocates a cache line.

The CWB acts as temporary storage for pending stores to the data cache and
allows us to delay the moment at which the store data is put in the cache.

3.3.2 Memory organization

Figure 3.8 shows the organization of the data cache memory structures in SRAMs.
The cache tag, cache data and cache byte validity memory structures are im-
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plemented with off-the-shelf single ported SRAMs with bit-write functionality, to
allow for a selective update of memory bits as identified by a bit mask. Available
SRAMs had a maximum data width restriction of 128 bits.

A[3:2] == 11


Way


0

3
1
 2
0


255


A[14:7]


Tag SRAM organization

(4 copies)


Way


0

3
1
 2
0


2047


A[14:4]


Data SRAM organization


A[3:2] == 00


0x00
 0x01
 0x02
 0x03


0x10


...
...


0x11
 0x13
0x12


...
 ...


0x70
 0x73
0x72
0x71


A[3:2] == 01


A[3:2] == 10


32-bit address A:

A[31:15]:
 tag

A[14:7]:
 set address

A[6:0]:
 byte address


valid
 tag
pre-fetch


17 bits
1 bit
1 bit


32 bits


8


A[3:2] == 11


Way


0

3
1
 2
0


511


A[14:6]


Byte valid SRAM organization


A[3:2] == 00


validity of bytes 0x00..0x03, 0x10..0x13, 0x20..0x23, 0x30..0x33


A[3:2] == 01


A[3:2] == 10


validity of bytes 0x40..0x43, 0x50..0x53, 0x60..0x63, 0x70..0x73


16 bits


2


Figure 3.8: Data cache SRAM organization.



3.3. Load/store unit 51

Issue slots 4 and 5 have dedicated tag memory structures and each structure
contains two copies of the cache tags, resulting in a total of four copies of the
cache tags. Each tag structure has two copies of the cache tags to support non-
aligned memory access, without incurring processor stall cycles. The SRAMs are
indexed with the set address A[14 : 7] of a 32-bit address A, and each SRAM
entry contains the tag information of the 4 ways within the selected set. The tag
information consists of a cache line tag, a cache line valid bit and a cache line
prefetch bit.

The data memory structure is partitioned into 4 separate SRAMs of 128 bits
wide. The SRAMs are indexed with address A[14 : 4] of a 32-bit address A, and
each entry SRAM entry contains cache line data for each of the four ways. The
SRAM partitioning is based on bits 3 and 2 of the address A; all byte elements
that share these address bits reside in the same SRAM. As a result, a 128 byte
cache line uses 8 entries of each SRAM, and cache lines are SRAM interleaved at
a granularity of 4 byte elements.

The byte validity memory structure has a similar organization as the data
memory structure. It is partitioned into four separate SRAMs of 64 bits wide.
The SRAMs are indexed with address A[14 : 6]. The 128 byte validity bits of
a cache line are located in 2 entries of each SRAM. Note that a cache line byte
and the related byte validity bit are located in corresponding SRAMs, since both
structure are partitioned based on bits 3 and 2 of the address A. As a result, the
access arbitration for the two structures can be shared.

The data cache organization is illustrated by means of an example. Consider a
32-bit memory operation for address A=0x0000:00fc (addr lo = 0x0000:00fc and
addr hi = 0x0000:00ff). The set address (bits 14 downto 7) is 0x01 for both
addr lo and addr hi. The set addresses are used to index the two copies of the
tag SRAMs in a tag memory structure. The tag is 0x0:0000 for both addr lo and
addr hi. Address bits 3 and 2 determine which of the four data and byte validity
SRAMs are accessed. Address bits 3 and 2 are 0b11 for both addr lo and addr hi,
so data and byte validity SRAM ”11” are accessed. The data SRAM is indexed
with A[14 : 4] = 0x00f and the byte validity SRAM is indexed with A[14 : 6] =
0x003.

The 32-bit memory operation of the previous example was aligned, and conse-
quently the address indexes for the different SRAMs are the same for both addr lo
and addr hi. For non-aligned accesses this no longer holds. A non-aligned 32-bit
memory operation for address A=0x0000:00fd (addr lo = 0x0000:00fd and addr hi
= 0x0000:0100) requires access to multiple data and byte validity SRAMs. Fur-
thermore, a 32-bit memory operation for address 0x0000:00fd crosses a cache line
boundary. Therefore, the tags of two cache lines need to be investigated to gener-
ate the cache hit signal. To this end, each tag structure has two copies of the cache
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tags. The set address is 0x01 for addr lo and the set address is 0x02 for addr hi.
An alternative implementation is to have a single copy of the cache tags in each
tag structure, and in the case of cache line crossing, two cycles are used to access
both two cache lines. Although this alternative is cheaper (single copies of the
cache tags would reduce area by 0.142 mm2), it complicates the pipeline control,
and produces more unpredictable execution behavior. Address bits 3 and 2 are
0b11 for addr lo and are 0b00 for addr hi, so data and byte validity SRAMs ”11”
and ”00” are accessed. Data SRAM ”11” is indexed with addr lo[14 : 4] = 0x00f
and data SRAM ”00” is indexed with addr hi[14 : 4] = 0x010. Validity SRAM
”11” is indexed with addr lo[14 : 4] = 0x003 and validity SRAM ”00” is indexed
with addr hi[14 : 4] = 0x004.

Note that the data structure organization provides simultaneous (single cycle)
access of up to 16 sequential bytes of a cache line. This allows for a 8 cycle cache
line update by the refill and prefetch units, and for a 8 cycle cache line extraction
by the copy back unit (a cache line is 128 bytes). By limiting the amount of
cycles these units need for a cache line access, the interference with load and
store operations is limited, reducing data cache stall cycles. The byte validity
organization provides simultaneous access of up to 64 byte validity bits of a cache
line. This allows for a 2-cycle cache line allocation by the refill unit (in the case
of a write miss).

The data memory organization is partitioned into four SRAMs. Increasing the
amount of SRAMs can increase the bandwidth to this structure. This would allow
for even more efficient cache line update and extraction by the refill, prefetch and
copy back units. However, layout and routing is complicated as the amount of
SRAMs increases. Furthermore, doubling the amount of SRAMs (each with half
the capacity) more than doubles the silicon area, due to the overhead of address
decoders and sense amplifiers in SRAM design.

3.3.3 Memory arbitration

Figure 3.7 shows that separate memory arbiters control the access to the tag
and data memory structures. Furthermore, each of the four SRAMs in the data
memory structure has its dedicated arbiter. This allows for a low granularity access
of the memory structures, resulting in high cache efficiency. For example, a 32-bit
store in slot 4, a 32-bit load from address 0x0000:000fc in slot 5 and two CWB
updates to addresses 0x0000:0004 and 0x0000:0008, can all be granted access to
the required memory structures in the same cycle. The store operation requires
access to the tag memory structure in slot 4, the load requires access to the tag
memory structure in slot 5 and access to SRAM ”11” in the data memory structure
and the two CWB updates require access to SRAMs ”01” and ”10” in the data
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memory structure.
Besides the granularity of the access control, cache efficiency is affected by ar-

biter priority setting. The following five separate entities that request the memory
structures are distinguished:

• Issued operations

• CWB

• Refill unit

• Prefetch unit

• Copy back unit

All may request access to the data memory structure in the same cycle, and only
one can be granted access (apart from simultaneous access by issued operations
and CWB updates to mutually exclusion SRAMs).

The following priority setting is used for the arbitration of the data memory
structure in normal operation mode (listed in decreasing priority):

1. Copy back unit

2. Refill unit

3. Issued operations

4. CWB

5. Prefetch unit

The rationale is as follows. A copy back operation has the highest priority,
because a victimized cache line typically frees up a cache line location for a cache
line refill that most likely stalls the processor. A refill operation has the second
highest priority. This operation includes both the allocation and retrieving of a
cache line. Both will stall the processor till completion. Next in line are the issued
operations: they get the highest priority as long as no copy back or refill operation
is required. Since store data is kept pending in a buffer, the CWB priority is lower
than that of the issued operations. Lowest priority is given to the prefetch unit.
Prefetches retrieve cache lines based on anticipated future use, and are typically
not stalling the processor.

When the issued operations are granted access to the data memory structure,
the low granularity access control grants the CWB access to those SRAMs that
are not required by the issued operations.

The priority setting may be changed in the following exceptional situations:
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• The CWB is full, and required by a store.

• A load has an address conflict with pending store data in the CWB.

• The prefetch unit raises its priority.

The first and second situations cause the CWB to have the highest priority.
When the first situation occurs, a CWB entry needs to be freed up for a new
store operation: at least one of the pending store data elements needs to be put
in the data memory structure. Likewise, the second situation can only be resolved
by putting the data of the conflicting pending store in the data memory structure
(data forwarding from the CWB is not supported, for timing closure reasons). The
details of the third situation and the effect on the priority setting are described in
the next section.

3.3.4 Data prefetching

The TM3270 provides memory region based prefetching as described in Section
2.5. When the processor detects a load from an address A within a prefetch
region x ([PFx START ADDR, PFx END ADDR]), a prefetch request for address
A+PFx STRIDE is sent to the prefetch unit.

The prefetch unit has a request buffer for up to six outstanding prefetch re-
quests. When the prefetch request buffer is almost continuously at the maximum
of its capacity, the effectiveness of prefetching may decrease because new prefetch
requests will overflow the buffer. Therefore, when the amount of prefetch buffer
entries exceeds a high water mark (more than four entries occupied) or when a
prefetch buffer entry turns into a compulsory miss, the arbitration priority of the
prefetch unit for the data memory structure is raised. This results in the follow-
ing priority setting for the arbitration of the data memory structure in prefetch
operation mode (listed in decreasing priority):

1. Copy back unit

2. Refill unit

3. Prefetch unit

4. Issued operations

5. CWB

The relative priority of issued operations and the prefetch unit has been re-
versed. This priority change accelerates prefetching, especially when almost every
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VLIW instruction contains a memory operation. For these code sequences, the
normal operation mode priority setting would grant access to the issued memory
operations and the prefetch unit may starve: it can not update the prefetched data
into the data cache, its single cache line data buffer gets full, and no new prefetch
request to memory can start.
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Figure 3.9: Memory region based prefetching, an implementation perspective.

It is not uncommon for almost every VLIW instruction to contain a load opera-
tion. Every load operation that accesses a prefetch memory region may potentially
trigger a prefetch request. As a result, for every load from address A, a prefetch
address A+PFx STRIDE may have to be calculated, and the presence of this
prefetch address in the cache needs to be checked. A traditional approach would
require a dedicated tag SRAM to provide the required bandwidth to check the
presence of prefetch addresses in the cache. We decided upon a different approach
that does not require a dedicated tag SRAM, and is therefore cheaper to imple-
ment [58]. Whenever a cache line is created in the data cache, either by a refill or
prefetch request, a cache line prefetch bit is set to ’1’. This introduces an overhead



56 Chapter 3. Implementation

of a single bit to every cache line (Figure 3.8). A prefetch will only be considered
for those load operations that access a prefetch region and have their prefetch bit
equal to ’1’ (Figure 3.9). Furthermore, a prefetch request will only be sent to
the prefetch unit, when its prefetch request buffer is not full; i.e. its six entries
are not all occupied. Only when these conditions are met, will the prefetch bit
of the cache line be set to ’0’. Our approach has the following advantage: every
cache line gives rise to at most one prefetch request, which prevents the possibility
of multiple duplicate prefetch requests for the same cache line. The amount of
checks for the presence of prefetch addresses in the cache is reduced. As a result,
the existing tag memory structures can be used to check the presence of prefetch
addresses in the cache, without any significant performance penalty.

Since prefetches are only requested when the prefetch request buffer is not full,
prefetch requests will not get lost. When they do not make it into the prefetch
unit, the prefetch bit will remain ’1’, and a future load to the same cache line
will initiate the same prefetch request if the buffer has freed up one of its entries.
This try-and-retry mechanism is especially useful for memory access patterns that
initiate a burst of prefetch requests in a relatively short period of time that would
overflow the prefetch request buffer.

3.4 Conclusions

In this chapter we described the TM3270 implementation: an overview of the pro-
cessor pipeline and more detailed descriptions of the instruction fetch unit and the
load/store unit. For the instruction fetch unit, we described how a compressed
VLIW encoding and a sequential instruction cache design are implemented that
result in low power consumption. The load/store unit implements a novel semi
dual-ported cache design, providing high data bandwidth, at a limited area penalty
when compared to a single-ported cache. The cache sustains a high store band-
width by allowing two operations per VLIW instruction and a high load bandwidth
by sustaining a single load operation per VLIW instruction with a bandwidth of
twice the datapath size. All load and store operations support non-aligned mem-
ory access, without incurring any processor stall cycles. Furthermore, a new data
prefetching technique is described.
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Realization

I
n the previous chapter we described the TM3270 implementation. This chapter
describes the TM3270 realization: the means used to materialize the imple-

mentation. In particular, we describe the first TM3270 realization in a low power
CMOS process technology, with a 90 nm feature size. The low power realization
allows for successful application in portable battery-operated markets. Section
4.1 describes the physical realization. Section 4.2 discusses power consumption.
Section 4.3 gives some performance numbers of the first realization. This sec-
tion includes performance data of a standard definition H.264 video decoder, and
quantifies the speedup of the new CABAC decoding operations described in Sec-
tion 2.3.5. Section 4.4 presents a summary and some conclusions.

4.1 CMOS realization

The first realization of the TM3270 is in a low power CMOS process technology,
with a 90 nm feature size and six metal layers. The design is fully synthesizable
and uses off-the-shelf single ported SRAMs. The processor reaches a frequency of
350 MHz under worst case operating conditions (125 C, 1.08 V, worst case process
corner), and a frequency of about 450 MHz under typical conditions (125 C, 1.2 V,
typical process corner). Figure 4.1 gives the processor floorplan with a breakdown
in its major modules. Table 4.1 gives the area of the individual modules. The
TM3270 area is 8.08 mm2 and the cache SRAMs constitute roughly 47% of this
area. The instruction fetch unit area includes the area of the SRAMs that are used
to implement the instruction cache tags, 64 Kbyte instruction memory structure
and LRU replacement memory structure. The load/store unit area includes the
area of the SRAMs that are used to implement the data cache tags, 128 Kbyte data
memory structure and byte validity structure. The data cache LRU replacement
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structure is implemented with standard cell logic.

Module Description mm2

IFU Instruction Fetch Unit 1.46
Decode VLIW instruction decoding 0.05

Register-file 128 entry register-file 0.97
Execute All functional units 1.53

LS Load/Store unit 3.60
BIU Bus Interface Unit 0.24

MMIO Memory Mapped IO peripherals 0.23

Total 8.08

Table 4.1: TM3270 area breakdown. The IFU and LS areas include the SRAMs
that are used to implement the cache designs (64 Kbyte instruction cache and 128
Kbyte data cache).

The TM3270 design has configurable cache sizes. The first implementation and
realization as presented in this thesis instantiates a 64 Kbyte instruction cache and
a 128 Kbyte data cache to address the requirements of standard definition video
algorithms. As mentioned the cache SRAMs 47% constitute of the total area.
This design decision results in a high cache hit rate, which reduces off-chip mem-
ory bandwidth requirements and reduces stall cycles associated to cache misses.
Furthermore, a high cache hit rate is beneficial for system power consumption, as
less power is consumed in off-chip memory traffic. For algorithms that are less
computationally demanding or operate on smaller image sizes, a TM3270 instan-
tiation with smaller cache sizes may be implemented. As an example, a place and
routed TM3270 instantiation with a 32 Kbyte instruction cache and a 32 Kbyte
data cache measures around 5.5 mm2.

The TM3270 floorplan is realized as follows: the SRAM memories are hand-
placed and the standard cell logic is placed by tools; i.e. no labor intensive hier-
archical placement of the modules is used to come to a place and routed design.
The synthesizability of the design and the semi-automated place and route ap-
proach make it relatively easy to port the design to a different process technology.
once the place and routed TM3270 design is integrated into a SoC design, it is
likely that it is one of the largest blocks in the SoC, which may cause SoC rout-
ing problems. Figure 4.2 illustrates the problem: when the TM3270 is placed on
a SoC boundary it prevents a shortest path routing of SoC interface signals to
I/O pins, potentially complicating timing closure on these signals1. The TM3270
has feed thru channels to ease SoC interface signal routing: rather than routing

1Note that although the TM3270 is a relatively large block in the SoC, it does not connect
to I/O pins directly. The communication to off-chip SDRAM memory is through a SoC memory
controller block.
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Figure 4.1: TM3270 floorplan (64 Kbyte instruction cache and 128 Kbyte data
cache).

the interface signals around the TM3270, the interface signals are routed through
the TM3270 design. A fixed amount of feed thru channels is provided as part of
the place and routed TM3270, 80 channels are provided in each of the following
directions: north-to-south, south-to-north, east-to-west and west-to-east. Each of
the channels has a series of buffer and inverter standard cells to guarantee driving
strength and signal integrity.

To improve Design for Manufacturability (DfM), multicut via insertion is ap-
plied in 72% of the design to increase the yield. Design for Testability (DfT) is
addressed by Built-In Self Tests (BIST) for the SRAMs and by scan-chain based
tests for the standard cell logic (with a 99.67% fault coverage based on a stuck-at
fault model).
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Figure 4.2: Routing of SoC interface signals: around the TM3270 (left) and using
the TM3270 feed thru routing channels (right).

4.2 Power consumption

Low power consumption is one of the main requirements of the TM3270 design. For
portable, battery-operated devices, low power has the obvious advantage of longer
”playing time”. However, also for devices with a power supply that plugs into
the wall, low power consumption is desirable, since the use of dedicated cooling
techniques adds cost. For the cost-driven consumer market, the use of cooling
techniques should be kept to a minimal to keep overall system cost as low as
possible. E.g., the use of heat sinks as a passive cooling technique to improve
power dissipation adds to the IC package cost and the use of fans as an active
cooling technique to increase the airflow adds to the overall system cost.

We distinguish both static and dynamic power consumption. Static power con-
sumption is mainly determined by transistor leakage current. We use a low power
dual (standard and high) threshold voltage CMOS process technology. Leakage
current is proportional to the inverse exponential of the threshold voltage Vt. To
keep the static power consumption small, both the standard threshold voltage
standard Vt and the high threshold voltage high Vt are relatively high at 0.37 and
0.47 V respectively for the NMOS transistors. However, the high threshold voltages
increase the transistor switching time, which has a negative impact on the device’s
maximum operating frequency. The TM3270 is realized with 78.4% standard Vt

cells and 21.6% high Vt cells; the high Vt cells are used for the non-timing critical
paths in the design.
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Dynamic power consumption is defined by CV 2f , C is the switched capac-
itance, V is the supply voltage and f is the operating frequency of the device.
The capacitance C is determined by process technology parameters and the de-
vice’s activity level. For the TM3270 realization, the low power CMOS process
technology is used for its low passive power consumption characteristics, but the
technology parameters are fixed from a TM3270 design perspective. However, the
device activity level is addressed as part of the TM3270 design.

At the architecture level, the decision for a statically scheduled VLIW approach
has an advantage over alternatives such as a superscalar approach. A superscalar
approach performs operand dependency analysis in hardware, whereas a VLIW
approach moves this function to the compiler/scheduler. As a result, the analysis
and the associated power consumption is removed from processor design. In line
with the VLIW philosophy of keeping the hardware simple (and low power) and
moving complexity to the compiler/scheduler, the decision was made to expose
the processor’s 5 jump delay slots at the architectural level, rather than to rely on
hardware support for jump/branch-prediction.

At the implementation level, power reduction techniques can be found at dif-
ferent levels. At a relatively high level, the decision for a sequential instruction
cache design, rather than a parallel instruction cache design, has an obvious power
consumption advantage. At a lower level, clock-gating is used extensively to reduce
power consumption, by turning off the clocks of unused registers in the design. As
a result of clock-gating, a total of 172 functional clock domains are present. All of
the TM3270’s functional units are clock-gated: when a functional unit is not used
by an operation, its clock is turned off. Functional unit clock-gating is performed
at pipeline stage granularity; i.e. only those stages that are used by executed op-
erations are clocked. As an example, consider the FALU functional unit, which
has 4 pipeline stages. When a FSUB operation is issued in stage D in cycle i,
the input registers of stage X1 of the FALU functional unit are clocked to receive
the operation information (opcode, source operands, etc.). In the next cycle i+1,
the input registers of stage X2 of the FALU functional unit are clocked to receive
the in-between result of the FSUB operation. As the FSUB operation proceeds
through the FALU pipeline, only the input registers of the following pipeline stage
are clocked.

With 128 32-bit registers, 5 guard register read ports, 10 source register read
ports and 5 destination register write ports, the register-file is a potentially power-
hungry part of the design. Like the functional units, the register-file is heavily
clock gated to reduce power consumption. Although the register-file has 10 source
register read ports to sustain the issue rate of five operations per VLIW instruction,
it is unlikely that all 10 read ports are required by the VLIW instruction: due to
a lack of available ILP, not all VLIW instruction may contain five operations.
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Furthermore, not all operations have two register operands: some operations only
have a single register operand (e.g. FSQRT), or have an immediate operand (e.g.
IIMM) for which no read port to the register-file is required. Each of the 10
source register read ports is implemented as a 128-to-1 multiplexer of 32 bits wide,
the control input to this multiplexer is a 7-bit source register identifier and the
data inputs are the 128 32-bit general-purpose registers. The activity level of this
structure is mainly determined by the source identifier: this identifier may change
every processor cycle and affects the flow through the structure, whereas only 5
of the general-purpose registers can change every cycle2 and affect only a limited
part of the flow through the structure. To reduce read port power consumption,
the source identifiers of not required read ports are kept stable; i.e. the clock is
turned off and the identifiers keep the value of the previous cycle. As a result, the
activity level is only affected by changes in the values of general-purpose registers.
To reduce write port power consumption, only those general-purpose registers
addressed by the 5 write ports are clocked.

Power reduction is also applied to the off-the-shelf single ported SRAMs in the
design. By turning off the chip-select input to these memories, power consumption
is significantly reduced. As an example, the chip-select inputs of the four data
memory structure SRAMs are individually controlled (Figure 3.8): only the to be
accessed SRAMs are turned on.

The TM3270 supports a power-down mode, which it can enter when it is idle;
i.e. it does not have any work to do. In this mode, almost all processor clocks are
turned off3 and the dynamic component of the power consumption is negligible.

The supply voltage V , in the dynamic power consumption equation CV 2f , is
1.2 V under typical conditions for our process technology, but functional correct
operation is guaranteed for a supply voltage of 0.8 V. The asynchronous clock
domain transfer in the bus interface unit that connects the processor to the SoC
infrastructure has level shifters that allow for different supply voltages of the pro-
cessor and SoC infrastructure. As a result, dynamic voltage scaling can be applied
to set the processor’s supply voltage V based on an application’s computational
requirements.

The operating frequency f , in the dynamic power consumption equation CV 2f ,
has a maximum of 450 MHz under typical conditions (1.2 V, typical process).
The required frequency is determined by an application’s computational require-
ments. Note that the video and audio application domain specific enhancements
to the TM3270 ISA greatly improve the processor performance on multimedia
applications. As a result, the required frequency of media-processors on multime-

2The register-file has 5 write ports.
3Only the clock for the power-down mode wake-up circuitry is turned on.
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dia applications is typically lower than processor architectures without these ISA
enhancements. The asynchronous clock domain transfer in the bus interface unit
allows for operating frequencies independent of the frequency of the SoC infrastruc-
ture. As a result, frequency scaling can be applied to set the processor’s operating
frequency f based on an application’s computational requirements, independent
of the frequency of the SoC infrastructure.

As an example consider a MP3 decoder application (384 Kbits stereo decod-
ing at 44.1 KHz). MP3 decoding is performed in 8 MHz with a OPI (operations
per VLIW instruction) of 4.5 operations per VLIW instruction and a CPI (cy-
cles per VLIW instruction) close to 1.04. Synopsys’ PowerCompiler tool [55] was
used to measure the power consumption on a back annotated gate level netlist5

(including SRAMs and the power grid). Table 4.2 gives a dynamic power con-
sumption breakdown at an operating voltage of 1.2 V, the contribution of static
power consumption is negligible for our low power CMOS process technology.

Module Description mW/MHz

IFU Instruction Fetch Unit 0.272
Decode VLIW instruction decoding 0.022

Register-file 128 entry register-file 0.107
Execute All functional units 0.255

LS Load/Store unit 0.266
BIU Bus Interface Unit 0.002

MMIO Memory Mapped IO peripherals 0.012

Total 0.935

Table 4.2: TM3270 dynamic power consumption breakdown for the MP3 decoder
application, at 1.2 V.

MP3 decoding has a dynamic power consumption of 0.935 mW/MHz, and if
all 450 MHz (125 C, 1.2 V, typical process corner) of processor performance were
spent on MP3 decoding, 450 MHz * 0.935 mW/MHz = 421 mW is consumed.
However, MP3 decoding is performed in 8 MHz and frequency scaling can be
applied to have the processor operate at 8 MHz, consuming only 8 MHz * 0.935
mW/MHz = 7.48 mW. Voltage scaling can be applied to further reduce power
consumption. The supply voltage may be reduced to 0.8 V: the lowest voltage
that guarantees functional correct operation. Due to the quadratic dependency of
dynamic power consumption on supply voltage, a reduction by a factor 1.22/0.82

= 2.25 is achieved, which results in a power consumption of 1
2.25 * 8 MHz * 0.935

mW/MHz = 3.32 mW.
4Mainly due to the effectiveness of data prefetching and the large 128 Kbyte data cache, which

eliminates almost all data cache misses.
5The same gate level netlist as used for the final floorplan.
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Power measurements on other applications showed that power consumption is
more dependent on generic characteristics such as OPI and CPI, than on algorith-
mic specifics such as the type of operations performed: applications with similar
OPI and CPI have a similar mW/MHz number. As the CPI increases (more stall
cycles), the mW/MHz number decreases as more clock gating is performed. This
illustrates one of the caveats of power analysis: power consumption should be
measured for the full duration of an application and not in terms of mW/MHz.

Note that downscaling of processor frequency may reduce the computational
requirements of an application. A CPI greater than 1.0 indicates stall cycles, which
are most likely related to instruction and data cache misses. As the processor
frequency is reduced (but the frequency of the SoC infrastructure is not changed),
the cache miss penalty expressed in processor cycles and the amount of associated
stall cycles is reduced. In other words, a MHz of processor performance becomes
more useful as the processor operating frequency decreases.

4.3 Performance

For the performance evaluation of new processor designs, we use a Philips in-
house benchmark suite called MediaStone. It consists of about 50 applications
and kernels from the media-processing domain. Section 4.3.1 compares TM3270
performance to that of it predecessor: the TM3260. The MediaStone benchmark
suite applications are optimized for the TM3260; i.e. no optimizations are per-
formed that use the new TM3270 features. Section 4.3.2 evaluates the performance
impact of the new CABAC operations as discussed in Section 2.3.5. We also op-
timized several applications using the new TM3270 features: Chapters 5, 6 and
7 describe TM3270 optimization of the motion estimation, MPEG2 encoder and
temporal upconversion applications. The performance impact of new operations,
data prefetching and the allocate-on-write-miss policy are quantified in the context
of these applications.

4.3.1 MediaStone

We made a selection of applications from the MediaStone benchmark suite, focus-
ing on video-processing (Table 4.3) and compare TM3270 performance to that of it
predecessor: the TM3260. The TM3260 finds commercial use in e.g. the PNX1500
IC [46]. The applications are optimized for the TM3260, and re-compiled for the
TM3270 without modifications. Therefore, the performance results do not include
improvements that could be achieved by applying TM3270 specific features (non-
aligned memory access, advanced data prefetching, new operations, etc.). As such,
the results are a lower bound for achievable performance improvement.
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Kernel/application Description

memset Sets a 64 Kbyte memory region to a pre-defined value.
memcpy Copies a 64 Kbyte memory region.
filter From the EEMBC consumer suite.
rgb2yuv From the EEMBC consumer suite.
rgb2cmyk From the EEMBC consumer suite.
rgb2yiq From the EEMBC consumer suite.
mpeg2 a MPEG2 decoder, input sequence

with highly disruptive motion vector field.
mpeg2 b MPEG2 decoder.
mpeg2 c MPEG2 decoder.
filmdet Film detection algorithm, as used in TV sets.
majority sel De-interlacer algorithm, as used in TV sets.

Table 4.3: Selection of video applications and kernels from the MediaStone bench-
mark suite.

Table 4.4 lists the main characteristics of the TM3260 and TM3270 that cause
difference in performance. The most notable are the operating frequencies and
data cache capacity. To evaluate the impact of these characteristics, we measured
four processor configurations. Configuration A represents the TM3260 and con-
figuration D represents the TM3270. Configuration B represents the TM3270,
operating at the TM3260 frequency of 240 MHz, and with TM3260 cache sizes.
Configuration C represents the TM3270, operating at 350 MHz, and with TM3260
cache sizes. Note that to achieve the higher operating frequency of the TM3270
(350 MHz vs. 240 MHz), the amount of jump delay slots and the load latency is
increased. As a result, the TM3270 has a deeper pipeline than the TM3260, which
has a negative impact on the CPI. However, this is more than compensated by
the TM3270 improved data cache design and its higher operating frequency, as is
illustrated by the performance numbers (Figure 4.3). The performance measure-
ments were performed with a 32-bit off-chip DDR SDRAM memory operating at
200 MHz.

Typically, the TM3260 (configuration A) has the lowest performance. However,
for the MPEG2 application, configuration A outperforms configurations B and C.
This is explained as follows. MPEG2 decoding is heavily dependent on the ability
of the data cache to capture the working set. Although all configurations A, B and
C have the same data cache capacity, the line size is different. The TM3270 doubles
the line size to 128 bytes, resulting in more capacity misses for MPEG2 decoding,
increasing the amount of stall cycles, and decreasing processor performance. Note
that the TM3270 design decision for 128-byte line size was based on a 128 Kbyte
data cache, as used for configuration D. Furthermore, the ability to perform two
loads/VLIW instruction, the 3 jump delay slots and the 3-cycle load latency, give
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Feature TM3260 TM3270

Operating frequency 240 MHz 350 MHz
Instruction cache 64 Kbyte, 8 way set assoc. 64 Kbyte, 8 way set assoc.

64 byte line size 128 byte line size
parallel cache design, sequential cache design,
3 jump delay slots 5 jump delay slots

Data cache 16 Kbyte, 8 way set assoc. 128 Kbyte, 4 way set assoc.
64 byte line size 128 byte line size
fetch on write miss allocate on write miss
3 cycle load 4 cycle load
dual-ported: pseudo dual-ported:
- two loads / VLIW instr. - one load / VLIW instr.
- two stores / VLIW instr. - two stores / VLIW instr.

Table 4.4: TM3260 and TM3270 main characteristics.

the TM3260 an advantage over the TM3270. As illustrated by configuration D,
the larger TM3270 data cache capacity more than makes up for this TM3270
disadvantage. The memcpy kernel shows the largest performance gain going from
configuration A to B. The main reason is the TM3270’s allocate-on-write-miss
policy. The kernel is memory bound for both configurations. As the TM3270
generates less memory traffic, its performance is significantly higher.

On average, the TM3270 gives a performance gain of 2.29 over the TM3260.
This number is achieved through re-compilation of applications optimized for the
TM3260. Not all applications benefit to the same extent from a larger data cache.
Whereas the MPEG2 application shows a large performance gain, the EEMBC
kernels and TV algorithms show a modest performance gain. These applications
benefit most from a higher operating frequency.

4.3.2 CABAC operations

We measured the performance of the CABAC decoding process (including overhead
for decoder data structure maintenance and context computation) as part of a
complete H.264 decoder. The H.264 standard allows for different decompositions
of 16x16 macroblock into smaller 4x4 or 8x8 blocks [37]. As the macroblocks are
decomposed into smaller blocks (e.g. sixteen 4x4 blocks) the control overhead of
the decoder increases. To reflect this increased complexity, the performance was
measured on a stream with 80% of the predicted macroblocks (for P and B frames)
decomposed into sixteen 4x4 blocks. The bitstream has a 2.5 Mbits/s bitrate and
represents a 4:2:0 PAL standard definition video stream (720*576 luminance pixels,
at 25 frames/s.).

To illustrate the performance enhancement of the new CABAC operations
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A: TM3260 (64 Kbyte / 16 Kbyte, 240 MHz)


B: TM3270 (64 Kbyte / 16 Kbyte, 240 MHz)


C: TM3270 (64 Kbyte / 16 Kbyte, 350 MHz)


D: TM3270 (64 Kbyte / 128 Kbyte, 350 MHz)


Figure 4.3: TM3260 and TM3270 relative performance numbers on a series of
video applications and kernels.

(Section 2.3.5), the CABAC decoding performance is measured with and without
the use of these new operations. Table 4.5 gives the results for the different frame
types: the use of the new CABAC operations improves performance in the range of
[1.5, 1.7]. Decoding of I-frames benefits most in both absolute and relative terms.
In absolute terms, because I-frames are encoded with more bitstream bits than P-
and B-frames. In relative terms, because I-frames have less overhead for decoder
data structure maintenance and context computation, and as a result the new
CABAC operations have a larger impact on the overall CABAC decoding process.

With the use of the new CABAC decoding operations, the TM3270 requirement
of H.264 decoding at a sustained bitrate of 2.5 Mbits/s with a maximum dynamic
performance complexity of 300 MHz is met, as illustrated by Figure 4.4. The figure
gives the computational complexity of the individual frames, partitioned into the
major decoding kernels: CABAC decoding, motion vector prediction, deblocking



68 Chapter 4. Realization

Frame-type Average Cycles Cycles/bit Speedup
bits/frame

Without CABAC operations

I 615,599 14,748,701 24.0 -
P 149,915 4,942,957 33.0 -
B 34,604 1,287,888 37.2 -

With CABAC operations

I 615,599 8,737,382 14.2 1.7
P 149,915 3,066,351 20.5 1.6
B 34,604 851,215 24.6 1.5

Table 4.5: Dynamic performance complexity of the CABAC decoding process for
I-, P- and B-frames of a PAL definition stream (2.5 Mbits/s): without and with
the new CABAC decoding operations.

control information calculation (this constitutes the calculation of the 4x4 block
boundary strengths that are used by the actual deblocking), deblocking and the
”other” partition, which collects all cycles that are not part of the previously
mentioned kernels. Even with the new CABAC operations, a significant part of
the computational budget is spent on the CABAC decoding process. To reduce
the effect of individual peaks in performance complexity, as introduced by the
decoding of computationally demanding I-frames, a four frame moving average
Average4 is calculated to determine the processor performance requirements. Note
that averaging (to spread the computational requirements) increases the memory
requirements of the system solution and adds a delay to the video decoding chain.
Around I-frames, the four-frame average reaches its maximum value of 250 MHz,
well below the 300 MHz target.

4.4 Conclusions

In this chapter we described the TM3270 realization: a 8.08 mm2 processor, with
a power consumption of roughly 0.9 mW/Mhz. On average the TM3270 provides
a speedup of 2.29 over its predecessor, the TM3260, for a series of video applica-
tions and kernels (Section 4.3.1). To achieve this speedup, the applications were
re-compiled for the TM3270, without any optimizations that take advantage of
the new TM3270 features. As a result, the speedup reflects a lower bound for
achievable performance improvement. The new CABAC decoding operations im-
prove the CABAC decoding process by a factor of 1.7 for I-frames (Section 4.3.2).
The processor provides enough performance to allow for even the most demand-
ing video applications, as illustrated by the dynamic performance complexity of a
standard definition H.264 video decoder (a 2.5 Mbits/s standard definition stream
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Figure 4.4: Dynamic performance complexity of the H.264 decoder for a pro-
gressive PAL standard definition stream (2.5 Mbits/s). The left Y-axis represents
the MHz requirement for decoding the 25 Hz stream, the right Y-axis represents
the amount of cycles to decode a frame. The average ”Average4” is a four-frame
moving average.

is decoded with a maximum frequency of 250 MHz, based on a four frame average).
To illustrate the performance potential of the TM3270, using the new features,

the following three chapters evaluate the performance of three video algoithms:
motion estimation (Chapter 5), MPEG2 encoding (Chapter 6) and temporal up-
conversion (Chapter 7). Each of the algorithms is optimized using the TM3270
extensions to the TriMedia ISA and the benefits of non-aligned memory access and
data prefetching are evaluated. These evaluations not only illustrate the TM3270
performance potential, but also provide a justification for the choice of the new
features.





Chapter 5

Motion estimation

M
otion estimation is used in industry-standard video encoders, such as MPEG2
(Chapter 6), MPEG4, H.264/AVC, and in proprietary video enhancement

algorithms, such as temporal upconversion (Chapter 7). In both cases, motion
estimation searches for motion-displaced spatial similarity between video images.
The motion estimator typically uses a block-matching kernel that determines the
similarity between two motion-displaced blocks of image pixels, taken from dif-
ferent video images. The Sum-of-Absolute-Differences (SAD) cost function is a
popular means to determine similarity.

In the case of video encoders, the similarity is exploited to achieve a high com-
pression factor. A small SAD value between two motion-displaced blocks implies
a small difference between the two blocks, which is efficiently encoded in a small
number of bits. In the case of temporal upconversion, the similarity is used to
derive motion-accurate video images at temporal positions that were not present
in the input video sequence. A small SAD value between two motion-displaced
blocks indicates a likely movement of an object in the video sequence. The image
pixels of the two blocks could be interpolated to calculate a block in a temporally
interpolated video image. Whereas, video encoders are mainly interested in small
block differences to allow for high compression, temporal upconversion requires an
accurate portrayal of video object movement to derive new video images with good
subjective quality. Although it is likely that a small SAD value indicates object
movement, it is not necessary. To prevent interpolation based on motion-displaced
blocks with a small SAD value that do not represent object movement, additional
criteria can be added to evaluate candidate motion vectors. For example: as ob-
ject sizes typically exceed block size, object movement should be represented by a
certain consistency in the motion vector field of the blocks that cover the object.
This consistency requirement could be added as a criterion, next to the SAD cost

71
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function.
This chapter evaluates the performance of a motion estimation algorithm on

the TM3270. We quantify the impact of new operations, data prefetching and off-
chip memory latency on processor performance. In Section 5.1, we describe our
motion estimation algorithm. In Section 5.2, we show how new TM3270 operations
are used to improve the implementations of the block-matching kernel and discuss
static performance complexity. In Section 5.3, we discuss the dynamic performance
complexity of our motion estimation algorithm. Finally, in Section 5.4, we present
the conclusions and suggestions for further optimization of the motion estimation
algorithm. An earlier evaluation of motion estimation on the TM3270 processor
can be found in [63].

5.1 Description of the algorithm

Many block-based motion estimation algorithms exist, and the suitability of a
particular algorithm depends on the application at hand. We do not intend to
introduce a new and better motion estimator, but rather intend to evaluate the
performance of new TM3270-specific features on an existing motion estimation
algorithm. For the motion estimation, we decided upon the 3-D Recursive Search
(3DRS) algorithm [11]. This block-based algorithm performs a motion search
using a limited set of candidate motion vectors, rather than an exhaustive motion
search. It provides a high quality result at a relatively low performance complexity,
making it an interesting candidate for a software implementation. The algorithm
has found successful application in commercial ICs [10].

5.1.1 The estimator

The 3DRS algorithm is a spatial-temporal algorithm; i.e. candidate motion vectors
for a block of image pixels are derived from the motion vectors of surrounding
blocks in both space and time. Our version of the algorithm uses a block size of 8x8
image pixels. Let’s assume a sequence of video images: a previous image Imagep,
a current image Imagec and a next image Imagen. The blocks in Imagec are

processed in a left-to-right, top-to-bottom sequence. Let −→bc =

(
bc[x]
bc[y]

)
denote

the position of block bc in Imagec, such that −→bc +

(
0
0

)
and −→bc +

(
7
7

)
identify

the upper left and lower right pixel positions of block bc. The horizontal (X) and
vertical (Y) block positions of block bc are integer multiples of 8 (the block size).
Each block bc in Imagec is matched against 11 motion-displaced blocks bi

n (i = 0,
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..., 10) in Imagen, as indicated by candidate motion vectors Mvi(−→bc ), such that:

−→
bi
n = −→

bc + Mvi(−→bc ) =

(
bc[x] + Mvi(−→bc )[x]
bc[y] + Mvi(−→bc )[y]

)

Mv
i
(b

c

)


block b
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n
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n
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c


Image
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 time
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Figure 5.1: Motion estimation: the current block bc is matched against candidate
blocks bi

n in the next image Imagen.

The motion vectors Mvi(−→bc ) have a 1
4 pixel precision, and as a result, the block

positions
−→
bi
n have a 1

4 pixel precision. For a block b, the integer position −−→int b is
defined by b−→b c, and the fractional offset −−−−→frac b is defined by −→b − −−→int b. At an
integer position −→

b the value of an image pixel is defined by Imagen[−→b ], at a
fractional position −→b the value is calculated using bi-linear interpolation:

Imagen[−→b ] = ( (1− frac b[x])(1− frac b[y]) Imagen[−−→int b]

+frac b[x](1− frac b[y]) Imagen[−−→int b +

(
1
0

)
]

+(1− frac b[x])frac b[y] Imagen[−−→int b +

(
0
1

)
]

+frac b[x]frac b[y] Imagen[−−→int b +

(
1
1

)
] + 2)/4

The calculation of a bi-linear interpolated 8x8 block at a horizontal and vertical
fractional position requires a 9x9 block of pixel values.

The candidate motion vector that provides the best match (lowest SAD value)
for the block at position −→bc , is denoted BestMv(−→bc ). The motion vector candidates
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are taken from the candidate sets CSzero (the zero motion vector), CSspatial (the
best motion vectors of already processed blocks in the current image Imagec),
CStemporal (the best motion vectors of blocks in the previous image Imagep), and
CSnoise spatial (noise updated best motion vectors of already processed blocks in
the current image Imagec):

CSzero =

(
0
0

)

CSspatial =





BestMv(−→bc + 8

(
−1
0

)
),

BestMv(−→bc + 8

(
−1
−1

)
),

BestMv(−→bc + 8

(
1
−1

)
)





CStemporal =





BestMv(−→bp),

BestMv(−→bp + 8

(
1
0

)
),

BestMv(−→bp + 8

(
2
0

)
),

BestMv(−→bp + 8

(
1
1

)
),

BestMv(−→bp + 8

(
−1
1

)
)





CSnoise spatial =





BestMv(−→bc + 8

(
−2
0

)
) +−−−−→

Noise0,

BestMv(−→bc + 8

(
0
−1

)
) +−−−−→

Noise1





Noise vectors −−−−→Noise0 and −−−−→Noise1 are cyclically selected from the list of noise
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vectors NS:

NS =





(
1
4
0

)
,

(
−1

4
0

)
,

(
0
1
4

)
,

(
0
−1

4

)
,

(
1
0

)
,

(
−1
0

)
,

(
0
1

)
,

(
0
−1

)
,

(
2
0

)
,

(
−2
0

)
,

(
0
2

)
,

(
0
−2

)
,

(
4
0

)
,

(
−4
0

)
,

(
0
4

)
,

(
0
−4

)





The horizontal component of a motion vector is unrestricted: motion-displaced
blocks bn can have any horizontal position in Imagen. The vertical component is
restricted to the range [-40, 393

4 ]. Motion vectors that point to motion-displaced
blocks bn outside the Imagen boundaries are clipped to the image boundaries.

5.1.2 Block-matching

Most of the performance complexity of our motion estimation algorithm is found in
the block-matching kernel. The matching kernel determines the similarity between
a block bc in the current image Imagec and a motion-displaced block bn in the next
image Imagen. We use the SAD cost-function is used to determine similarity: for
two similar blocks bc and bn, SAD(bc, bn) is a small value. The absolute differences
may be calculated using the block pixels directly or indirectly, resulting in different
block-matching approaches.

Traditional block-matching

The traditional block-matching approach performs the SAD function on the block
pixels directly. The SAD value for blocks bc and bn is calculated as follows:

SAD(bc, bn) =
7∑

i=0

7∑

j=0

|Imagec[
−→
bc +

(
i
j

)
]− Imagen[−→bn +

(
i
j

)
]|

The absolute differences of pixels at corresponding block positions are summed
to determine block similarity. A total of 64 absolute differences are summed to
calculate the SAD value.

Down-sampled block-matching

The performance complexity of the traditional block-matching approach may be
reduced by limitation of the amount of values involved in the SAD calculation.
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Rather than performing the SAD function on the block pixels directly, it is per-
formed on down-sampled block data. E.g., for a horizontal down-sampling of a
factor two, the SAD value for blocks bc and bn is calculated as follows:

SAD(bc, bn) =
3∑

i=0

7∑

j=0

| (Imagec[
−→
bc +

(
2 ∗ i
j

)
] + Imagec[

−→
bc +

(
2 ∗ i + 1

j

)
] + 1)/2

−(Imagen[−→bn +

(
2 ∗ i
j

)
] + Imagen[−→bn +

(
2 ∗ i + 1

j

)
] + 1)/2|

A total of 32 absolute differences are summed to calculate the SAD value.
However, additional calculations are required to calculate the down-sampled val-
ues. Therefore, this approach is only useful when the performance complexity of
the absolute difference calculations exceeds that of the down-sampling. In Sec-
tion 5.2.2 we show how new TM3270 operations are used to perform horizontal
down-scaling by a factor two at no additional performance complexity. As a re-
sult of horizontal down-sampling, the quality of the block match and the motion
estimator is degraded.

Note that the presented horizontal down-sampling approach is different from
an approach in which block matching is performed on a down-sampled image. A
horizontally down-sampled image (by a factor two) only contains half the image
pixel values of the original image; i.e. the original image pixels values are lost. In
our down-sampled block-matching approach, the down-sampling is performed as
part of the block-matching function and all of the original image pixel values are
input to the SAD calculation.

A reduction in performance complexity is achieved by not supporting vertical
fractional offsets (at a loss of quality in the block match and the motion estimator).
Ignoring the vertical fractional offset simplifies the fractional image pixel value
calculation to a linear interpolation:

Imagen[−→b ] = ( (1− frac b[x]) Imagen[−−→int b]

+frac b[x] Imagen[−−→int b +

(
1
0

)
] + 1)/2

5.2 Block-matching implementations

In this section we show how new TM3270 operations are used to efficiently im-
plement the block-matching approaches as described in the previous section. Our
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motion estimation algorithm matches each 8x8 block bc in Imagec against 11
motion-displaced blocks bi

n (i = 0, ..., 10) in Imagen, using the MatchBlock func-
tion. The blocks bc are processed in a left-to-right, top-to-bottom sequence. We
assume that image pixel values are represented by a single byte; i.e. 8 bits1. The
C-like interface of the MatchBlock function is given by:

int MatchBlock (

uint8* c_image, // current image

uint8* n_image, // next image

intdual16 position_curr, // current position in image

intdual16 position_max, // maximum position in image

intdual16 mv, // motion vector

int image_stride) // image stride/width

The function retrieves bc and bn block data from memory, and returns the
calculated SAD value.

5.2.1 Traditional block-matching

We created five different implementations of the traditional block-matching ap-
proach. The implementations provide the same functionality, but differ in the
extent to which they use TM3270 features: non-aligned memory access and new
operations (Table 5.1).

Implem. Non-aligned SUPER LD32 LD FRAC8 SUPER
QUADUSCALEMIXUI

Usage

A no no no no
B yes no no no
C yes yes no no
D yes yes hor. fract. pos. no
E yes yes hor. fract. pos. vert. fract. pos.

Operation count

A − 0 0 0
B − 0 0 0
C − 9 0 0
D − 9 34 0
E − 0 16 18

Table 5.1: Traditional block-matching implementations: the used features and
new operation counts to calculate block bn.

1Video images are typically represented by three values: one luminance value, and two chromi-
nance values. For the sake of simplicity, we assume that block matching is performed on the
luminance value only.
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Implementation A is the reference implementation: it does not use any of the
new features. Implementations B, C, D, and E gradually apply new TM3270
features to improve performance. Implementation A does not use non-aligned
load operations and requires dedicated operations to properly align pixel values
before fractional pixel calculation can commence for block bn. The following code
sequence shows how pixel values with a fractional horizontal offset and an integer
vertical offset are calculated:

alignment = n_image_position & 3;

t_x0123_y0 = *n_image_position++; // aligned 32-bit access: lower two address bits ignored

t_x4567_y0 = *n_image_position++; // aligned 32-bit access

t_x89ab_y0 = *n_image_position; // aligned 32-bit access

n_x0123_y0 = (t_x0123_y0 << (alignment*8)) | (t_x4567_y0 >> (32 - (alignment*8)));

n_x4567_y0 = (t_x4567_y0 << (alignment*8)) | (t_x89ab_y0 >> (32 - (alignment*8)));

n_x89ab_y0 = (t_x4567_y0 << (alignment*8));

switch (x_frac) { // Horizontal fractional interpolation.

case 0: // fractional offset of 0:

break;

case 1: // fractional offset of 1/4:

n_x0123_y0 = QUADAVG (n_x0123_y0,

QUADAVG (n_x0123_y0, FUNSHIFT1 (n_x0123_y0, n_x4567_y0)));

n_x4567_y0 = QUADAVG (n_x4567_y0,

QUADAVG (n_x4567_y0, FUNSHIFT1 (n_x4567_y0, n_x89ab_y0)));

break;

case 2: // fractional offset of 2/4:

n_x0123_y0 = QUADAVG (n_x0123_y0, FUNSHIFT1 (n_x0123_y0, n_x4567_y0));

n_x4567_y0 = QUADAVG (n_x4567_y0, FUNSHIFT1 (n_x4567_y0, n_x89ab_y0));

break;

default: // fractional offset of 3/4:

n_x0123_y0 = QUADAVG (FUNSHIFT1 (n_x0123_y0, n_x4567_y0),

QUADAVG (n_x0123_y0, FUNSHIFT1 (n_x0123_y0, n_x4567_y0)));

n_x4567_y0 = QUADAVG (FUNSHIFT1 (n_x4567_y0, n_x89ab_y0),

QUADAVG (n_x4567_y0, FUNSHIFT1 (n_x4567_y0, n_x89ab_y0)));

break;

}

Note that the original TriMedia ISA does not support operations to perform
a weighted interpolation at quarter resolution on byte elements. As a result, a
switch statement is used, with a dedicated code sequence for each fractional offset,
and the interpolation makes (repeated) use of the QUADAVG operation (four-way
8-bit average).

Implementation B uses non-aligned load operations to retrieve pixels values
with proper alignment, thereby eliminating the need for dedicated alignment op-
erations (Figure 5.2). The following code sequence shows how pixel values with a
fractional horizontal offset and an integer vertical offset are calculated:
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n_x0123_y0 = *n_image_position++; // non-aligned 32-bit access

n_x4567_y0 = *n_image_position++; // non-aligned 32-bit access

n_x89ab_y0 = *n_image_position; // non-aligned 32-bit access

switch (x_frac) { // Horizontal fractional interpolation.

case 0: // fractional offset of 0:

break;

case 1: // fractional offset of 1/4:

n_x0123_y0 = QUADAVG (n_x0123_y0,

QUADAVG (n_x0123_y0, FUNSHIFT1 (n_x0123_y0, n_x4567_y0)));

n_x4567_y0 = QUADAVG (n_x4567_y0,

QUADAVG (n_x4567_y0, FUNSHIFT1 (n_x4567_y0, n_x89ab_y0)));

break;

case 2: // fractional offset of 2/4:

n_x0123_y0 = QUADAVG (n_x0123_y0, FUNSHIFT1 (n_x0123_y0, n_x4567_y0));

n_x4567_y0 = QUADAVG (n_x4567_y0, FUNSHIFT1 (n_x4567_y0, n_x89ab_y0));

break;

default: // fractional offset of 3/4:

n_x0123_y0 = QUADAVG (FUNSHIFT1 (n_x0123_y0, n_x4567_y0),

QUADAVG (n_x0123_y0, FUNSHIFT1 (n_x0123_y0, n_x4567_y0)));

n_x4567_y0 = QUADAVG (FUNSHIFT1 (n_x4567_y0, n_x89ab_y0),

QUADAVG (n_x4567_y0, FUNSHIFT1 (n_x4567_y0, n_x89ab_y0)));

break;

}

motion-displaced

block position


32-bit aligned

address


Non-optimized A: three aligned

32-bit loads to retrieve 9 pixels


Optimized B: four non-aligned 32-bit loads

 to retrieve 7 pixels


image pixel

image pixel, involved in

SAD calculation


image pixels retrieved

by a single operation


Optimized D & E: two non-aligned

LD_FRAC8 to retrieve 9 pixels and


perform horizontal interpolation
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address
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SUPER_LD32 to retrieve 8 pixels and

one 32 bit load to retrieve the 9
 th
 pixel


Figure 5.2: Different implementations of the traditional block-matching kernel,
only the first four rows of a 8x8 block are depicted.
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Implementation C uses the two-slot SUPER LD32 load operation to retrieve
eight horizontal neighboring pixel values. For the calculation of eight horizontal
neighboring pixels in block bn with a horizontal fractional offset, nine pixel values
of Imagen are required. For implementations A and B, three traditional load
operations are used to retrieve the nine pixels. Implementation C, replaces two of
these load operations with a single SUPER LD32 operations. The following code
sequence shows how pixel values with a fractional horizontal offset and an integer
vertical offset are calculated (the SUPER LD32 operation is in fact generated by
the compiler/scheduler, rather than hand-instantiated by the programmer):

n_x0123_y0 = *n_image_position++; // non-aligned 32-bit access

SUPER_LD32 (&n_x4567_y0, &n_x89ab_y0, n_image_position); // non-aligned 64-bit access

switch (x_frac) { // Horizontal fractional interpolation.

case 0: // fractional offset of 0:

break;

case 1: // fractional offset of 1/4:

n_x0123_y0 = QUADAVG (n_x0123_y0,

QUADAVG (n_x0123_y0, FUNSHIFT1 (n_x0123_y0, n_x4567_y0)));

n_x4567_y0 = QUADAVG (n_x4567_y0,

QUADAVG (n_x4567_y0, FUNSHIFT1 (n_x4567_y0, n_x89ab_y0)));

break;

case 2: // fractional offset of 2/4:

n_x0123_y0 = QUADAVG (n_x0123_y0, FUNSHIFT1 (n_x0123_y0, n_x4567_y0));

n_x4567_y0 = QUADAVG (n_x4567_y0, FUNSHIFT1 (n_x4567_y0, n_x89ab_y0));

break;

default: // fractional offset of 3/4:

n_x0123_y0 = QUADAVG (FUNSHIFT1 (n_x0123_y0, n_x4567_y0),

QUADAVG (n_x0123_y0, FUNSHIFT1 (n_x0123_y0, n_x4567_y0)));

n_x4567_y0 = QUADAVG (FUNSHIFT1 (n_x4567_y0, n_x89ab_y0),

QUADAVG (n_x4567_y0, FUNSHIFT1 (n_x4567_y0, n_x89ab_y0)));

break;

}

Implementation D uses the collapsed LD FRAC8 load operation to retrieve im-
age pixel values, whereas implementations A, B and C use traditional load and/or
SUPER LD32 operations. A single LD FRAC8 operation is used to retrieve five
pixel values and performs horizontal fractional pixel calculation on-the-fly, thereby
eliminating the need for dedicated operations to calculate horizontal fractional po-
sitions. To calculate all eight horizontal fractional pixels, two of these operations
are used. The following code sequence shows how pixel values with a fractional
horizontal offset and an integer vertical offset are calculated:
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x_frac = x_frac * 4; // Calculate horizontal fractional position at 1/16 accuracy

x_frac = PACK16LSB (PACKBYTES (x_frac, x_frac), PACKBYTES (x_frac, x_frac));

n_x0123_y0 = LD_FRAC8 (n_image_position, x_frac);

n_x4567_y0 = LD_FRAC8 (n_image_position+4, x_frac);

Implementation E uses the SUPER QUADUSCALEMIXUI operation to calcu-
late pixel values at a vertical fractional offset. The following code sequence shows
how pixel values with an integer horizontal offset and a fractional vertical offset
are calculated:
y_frac = y_frac * 16; // Calculate vertical fractional position at 1/64 accuracy

y_frac = PACK16LSB (PACKBYTES (y_frac, y_frac), PACKBYTES (y_frac, y_frac));

y_frac_compl = QUADSUB (0x40404040, y_frac);

SUPER_LD32 (&n_x01234_y0, &n_x4567_y0, n_image_position); // non-aligned access

SUPER_LD32 (&n_x01234_y1, &n_x4567_y1, n_image_position+image_stride); // non-aligned access

n_x0123_y0 = SUPER_QUADUSCALEMIXUI (n_x0123_y0, y_frac_compl, n_x0123_y1, y_frac);

n_x4567_y0 = SUPER_QUADUSCALEMIXUI (n_x4567_y0, y_frac_compl, n_x4567_y1, y_frac);

5.2.2 Down-sampled block-matching

The two down-sampled block-matching approaches, as discussed in Section 5.1.2,
reduce performance complexity by limitation of the amount of inputs to the SAD
calculation, and by not supporting vertical fractional offsets (Table 5.2).

Implem. Non-aligned SUPER LD32 LD PACKFRAC8 SUPER
QUADUSCALEMIXUI

Usage

F yes yes hor. fract. pos. vert. fract. pos.
G yes yes hor. fract. pos. no

Operation count

F − 0 8 9
G − 0 8

Table 5.2: Down-sampled block-matching implementations: the used features and
new operation counts to calculate block bn.

Implementations F and G use the collapsed LD PACKFRAC8 operation to
retrieve pixel values and to perform horizontal down-sampling by a factor two.
The operation is used to retrieve the pixel values for both blocks bc and bn (Figure
5.3). For block bc, both implementations use 8 LD PACKFRAC8 operations. For
block bn, implementation F uses 9 LD PACKFRAC8 operations to allow for the
calculation of vertical fractional pixel values and implementation G uses only 8
LD PACKFRAC8 operations, as vertical fractional offsets are not supported. The
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following code sequence shows how pixel values with a fractional horizontal offset
and an integer vertical offset are calculated:
x_frac = x_frac * 4; // Calculate horizontal fractional position at 1/16 accuracy

x_frac = PACK16LSB (PACKBYTES (x_frac, x_frac), PACKBYTES (x_frac, x_frac));

n_x01234567_y0 = LD_PACKFRAC8 (n_image_position, x_frac);

Optimized F & G: one non-aligned

LD_PACKFRAC8 to retrieve 8 pixels and


perform down-scaling and

horizontal interpolation


32-bit aligned

address


motion-displaced

block position


image pixel

image pixel, involved in

SAD calculation


image pixels retrieved

by a single operation


Figure 5.3: Implementation of the down-sampled block-matching kernel, only the
first four rows of a 8x8 block are depicted.

5.2.3 Static performance complexity

The MatchBlock function was compiled and scheduled for the TM3270, for each
of the implementations A through G. Table 5.3 gives an overview of the static
performance complexity in terms of VLIW schedule lengths and number of oper-
ations.

Implem. Quality level Worst case Operations Ops. /
VLIW schedule VLIW instr.

A + 99 424 4.28
B + 97 361 3.72
C + 89 355 3.99
D + 58 201 3.47
E + 45 142 3.16
F − 36 84 2.33
G −− 30 59 1.97

Table 5.3: Static performance complexity for the MatchBlock function.
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Implementations A through E provide the same functionality, implementations
F and G provide similar functionality at degraded quality levels, as a result of
down-sampling and removing support for vertical fractional offsets. The VLIW
schedule lengths and operation counts include the overhead of retrieving function
parameters from the stack.

The operations column gives an indication of the static complexity, based on
the scheduled operations. Implementations A through C have dedicated code se-
quences to calculate pixel values at a specific fractional horizontal position and
implementations A through D have dedicated code sequences to calculate pixel
values at a specific fractional vertical position. The compiler/scheduler generates
guarded operations to optimally schedule code with multiple possible execution
paths. When scheduled operations have a guard value of ’0’, they are not exe-
cuted.

The difference between implementations A and B shows the impact of non-
aligned memory access. Implementation B uses non-aligned access: the additional
operations of implementation A to align the pixel values are not required. Imple-
mentation C shows the impact of the SUPER LD32 operation. Implementation D
shows the impact of the SUPER QUADUSCALEMIXUI operation, which is used
to efficiently implement fractional pixel calculations. Implementation E shows the
impact of the LD FRAC8 operation. Overall, implementation E has a 55% shorter
schedule length as implementation A, at a same quality level. At a degraded qual-
ity level, implementation F shows how a reduction in the amount of SAD input
values can reduce performance complexity. Similarly, implementation G shows how
removing support for vertical fractional offsets can reduce performance complexity
even further. As the performance complexity of the implementations improves, as
indicated by reduced VLIW schedule lengths and operation counts, the amount of
operations per VLIW instruction (issue slot utilization) reduces. The reduction in
issue slot utilization is explained as follows:

• The new TM3270 operations improve the ISA efficiency, calculations are
performed with less operations and the amount of operation level parallelism
decreases. As a result, it becomes harder to fill the five issue slots of a VLIW
instruction with independent operations.

• The operation count represents the amount of scheduled operations, rather
than the amount of executed operations. Implementations A through D have
dedicated code sequences to calculate pixel values with different fractional
offsets. The compiler/scheduler generates VLIW schedules with guarded op-
erations, and multiple dedicated code sequences may be mapped on a single
VLIW schedule based on similarity of the code sequences. A VLIW sequence
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distinguishes between different code sequences using guarded execution. In
the case of fractional pixel calculation the guards are dependent on the frac-
tional offset. As a result, those operations that do not contribute to the
calculation of a specific fractional offset have a guard value of ’0’, and are
not executed.

5.3 Dynamic performance complexity

In this section we discuss the dynamic performance complexity of our 3DRS al-
gorithm (as described in Section 5.1) for each of the seven implementations (A
through G) of the MatchBlock function on a standard definition (720*480) NTSC
video sequence. The performance is measured in our cycle-accurate performance
evaluation environment (Section 1.3.2). The dynamic performance complexity in-
cludes the static complexity in terms of the amount of VLIW instructions and the
execution behavior in terms of processor stall cycles. Processor stall cycles are
mainly caused by data cache misses.

For implementations E, F, and G we were able to successfully inline the Match
Block function in the motion estimation function (for implementations A, B, C
and D inlining resulted in excessive spilling, effectively degrading processor per-
formance). Inlining reduces function-call, and -return overhead. Rather than
retrieving the same bc block data for each of the 11 block matches, the block data
is retrieved only once. As a result, a large amount of load operations is removed
from the generated code. Furthermore, inlining provides the compiler/schedules
with the operation parallelism of 11 MatchBlock functions. As a result, the issue
slot utilization is improved when compared to the issue slot utilization for a single
block match. All implementations fit in the 64 Kbyte instruction cache, so apart
from initial compulsory cache misses, no instruction cache misses and associated
cache stall cycles were observed.

As the 3DRS algorithm iterates over a video sequence, it tends to converge to a
smooth motion vector field. Although we implemented the algorithm as presented
(including the control overhead of tracking the best motion vector candidate for
each block bc), we decided not to rely on the spatial and temporal convergence of
the algorithm:

• The spatial convergence is non-existent: we operate on images with randomly
initialized image pixel values in the [0, 255] byte value range.

• The temporal convergence is non-existent: we initialize the temporal motion
vector candidate set CStemporal with random motion vectors, with a hori-
zontal component in the range [-720, 7193

4 ] and a vertical component in the
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range [-40, 393
4 ].

As a result, our performance evaluation results reflect worse case, rather than
typical case execution behavior.

When memory region based prefetching is turned on, its settings are as follows
(Figure 5.4). A first prefetch memory region includes the current image Imagec.
The associated stride value is set to 8 ∗ image stride: when processing a pixel at

position −→bc in Imagec the pixel at position −→bc +

(
0
8

)
is prefetched. A second

prefetch memory region includes the next image Imagen. The associated stride
value is set to 40∗ image stride: when processing a pixel at position −→bn in Imagen

the pixel at position −→bn +

(
0
40

)
is prefetched. The value 40 is the vertical search

range of the motion estimation algorithm. These settings make it likely that the
image pixels for blocks bc and bn are found in the data cache when needed by the
algorithm.

5.3.1 Comparing the implementations

The performance of implementations A through G is measured, with prefetching
turned on and 0 additional memory delay cycles. This setup reflects a SoC use
case scenario in which only the TM3270 processor consumes off-chip memory band-
width. Although this is an unlikely scenario, it gives an upper bound of achievable
processor performance. Table 5.4 gives an overview of the dynamic performance
complexity.

Implem. Cycles VLIW Stall Ops. Ops. / Cycles /
instr. cycles VLIW instr. VLIW instr.

A 4,753,461 4,609,434 144,027 18,631,133 4.04 1.03
B 4,596,421 4,460,227 136,194 14,295,652 3.21 1.03
C 4,153,657 3,985,028 168,629 14,310,563 3.59 1.04
D 2,921,350 2,828,541 92,809 10,309,443 3.64 1.03
E 2,135,625 2,080,539 55,086 7,764,781 3.73 1.03
F 1,895,990 1,751,987 144,003 5,534,595 3.16 1.08
G 804,555 638,792 165,763 2,865,714 4.49 1.26

Table 5.4: Dynamic performance complexity: motion estimation results (prefetch-
ing on, 0 additional delay cycles).

Implementations A and E show the compound impact of using non-aligned
memory access and new operations: implementation A uses 4,753,461 cycles and
implementation E uses 2,135,625 cycles, a reduction of 65.1%. Implementation
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Figure 5.4: Prefetch memory region settings for Imagec and Imagen.
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G (with horizontal down-sampling, and without support for vertical fractional
offsets) uses only 804,555 cycles, a further reduction of 62.3% over implementation
E (and a reduction of 83.1% over implementation A). Implementations D through
G have higher issue slot utilization for the motion estimation algorithm, than for
a single block match, as a result of function inlining. All implementations have a
CPI close to the theoretical optimum of 1.0: efficient prefetching limits the amount
of data cache misses to a minimum. Most of the observed data cache misses were
conflict misses (the two images Imagec and Imagen, the motion vectors, and the
stack compete for the four cache lines in each set of our four way set-associative
data cache).

5.3.2 Memory latency

We use the delay block in our performance evaluation environment (Section 1.3.2)
to measure the impact of SDRAM latency on processor performance. We mea-
sured the performance of implementations A through G with prefetching turned
on and the additional memory delay cycles in the range [0, 150] (one memory delay
cycle represents 2.25 processor cycles). Since the amount of VLIW instruction is
unaffected by the memory latency, we focus on the amount of processor stall cycles
as a function of additional memory latency (Figure 5.5).

As memory latency increases, the amount of stall cycles due to cache misses
increases, which has a negative impact on processor performance. All of the im-
plementations have linear stall cycle curves, however, the lowest complexity imple-
mentation G has a steeper slope. For the higher complexity implementations A,
B, C, D, E, and F, the increase in stall cycles is a result of the larger miss penalty
of data cache conflict misses. Compulsory misses hardly occur, because prefetch-
ing is overlapped with computation and data is prefetched into the cache before
actual use. For implementation G, the increase in stall cycles is a result of both
conflict and compulsory misses. Because of the lower computational complexity
of implementation G, prefetching is no longer overlapped with computation. As a
result, prefetches have turned into compulsary misses, resulting in additional stall
cycles. This explains the steeper slope of the implementation G stall cycle curve.

Table 5.5 gives the dynamic performance complexity at 150 additional mem-
ory delay cycles. The cycle count difference between the down-sampling imple-
mentations F and G has become significantly smaller; the difference is 2,312,954
- 2,113,646 = 199,308 at 150 additional memory delay cycles, whereas the differ-
ence is 1,895,990 - 804,555 = 1,091,435, at 0 additional memory delay cycles, a
reduction of 81.7%. This illustrates that as an application becomes more memory
bound, the static performance complexity becomes less important. At 150 addi-
tional memory delay cycles, implementations F and G require a similar amount of
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Figure 5.5: Processor stall cycles as a function of additional memory delay cycles
(prefetching on).

cycles (2,312,954 and 2,113,646 cycles), but implementation F provides a better
quality result (due to the support of vertical fractional offsets).

5.3.3 Data prefetching

Processor-performance benefits from prefetching of data from the off-chip SDRAM
into the processor’s data cache. When prefetching is turned off, the amount of
compulsory data cache misses increases significantly. To determine the impact of
prefetching, we measured the performance of implementations A through G with
prefetching turned off and the additional memory delay cycles in the range [0, 150]
(Figure 5.6). As memory latency increases, the amount of stall cycles increases.
All stall cycle curves are similar, which is expected as all implementations operate
on the same amount of input data (Imagec and Imagen).

Especially at larger memory latencies, the benefit of prefetching is significant
(Table 5.6 versus Table 5.5). When prefetching is turned off, the dynamic per-
formance complexity of implementation E increases from 2,527,134 to 4,135,684
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Implem. Cycles VLIW Stall Ops. Ops. / Cycles /
instr. cycles VLIW instr. VLIW instr.

A 5,142,063 4,609,434 532,629 18,631,133 3.62 1.12
B 4,974,828 4,460,227 514,601 14,295,652 3.21 1.12
C 4,535,788 3,985,028 550,760 14,310,563 3.59 1.14
D 3,308,739 2,828,541 480,198 10,309,443 3.64 1.17
E 2,527,134 2,080,539 446,595 7,764,781 3.73 1.21
F 2,312,954 1,751,987 560,967 5,534,595 3.16 1.32
G 2,113,646 638,792 1,474,854 2,865,714 4.49 3.31

Table 5.5: Dynamic performance complexity: motion estimation results (prefetch-
ing on, 150 additional delay cycles).

Implem. Cycles VLIW Stall Ops. Ops. / Cycles /
instr. cycles VLIW instr. VLIW instr.

A 6,844,294 4,604,391 2,239,903 18,577,172 4.03 1.49
B 6,589,782 4,460,224 2,129,558 14,284,471 3.20 1.48
C 6,138,029 3,985,025 2,153,004 14,299,382 3.59 1.54
D 4,948,272 2,828,539 2,119,733 10,346,081 3.66 1.75
E 4,135,684 2,080,536 2,055,148 7,742,859 3.72 1.99
F 3,916,556 1,751,984 2,164,572 5,512,613 3.15 2.24
G 2,722,733 638,782 2,083,951 2,881,583 4.51 4.26

Table 5.6: Dynamic performance complexity: motion estimation results (prefetch-
ing off, 150 additional delay cycles).

cycles, an increase of 63.6% (at 150 additional memory delay cycles).

5.4 Conclusions

The programmability of a media-processor based solution allows for flexibility in
the implementation of a motion estimation algorithm. We have shown how the new
operations contribute to improved performance complexity and how implementa-
tions E, F, and G trade off performance complexity and quality level of the motion
estimator. Reductions in performance complexity can be achieved by applying e.g.
sub-sampling: limitation of the amount of values in the SAD calculation by not
using all of a block’s pixel values, as applied for implementations F and G.

The use of non-aligned memory access and new operations improves the dy-
namic performance complexity of the motion estimator by 65.1% (Section 5.3.1,
implementation A versus implementation E, prefetching on, 0 additional delay cy-
cles). Implementation E requires 2,135,625 cycles per image; motion estimation
on 30 standard definition images per second would require 64.1 MHz (14.2% of
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Figure 5.6: Processor stall cycles as a function of additional memory delay cycles
(prefetching off).

the 450 MHz processor frequency). As memory latency increases, the benefit of
prefetching increases: the dynamic performance complexity of implementation E
is improved by 63.6% (Section 5.3.3, 150 additional memory delay cycles).

Four-way 8-bit operation Two-way 16-bit operation

LD FRAC8 LD FRAC16
LD PACKFRAC8 LD PACKFRAC16

SUPER QUADUSCALEMIXUI SUPER DUALISCALEMIX

Table 5.7: Four-way 8-bit operations and their two-way 16-bit counterparts.

The need for increased image quality has resulted in image formats with 10-
and 12-bit luminance value representations. In this chapter, the motion estimation
algorithm assumed 8-bit image pixel values. To accommodate the higher resolution
pixel values, the TM3270 supports all new pixel processing operations with a SIMD
subword size of both 8- and 16-bit. Table 5.7 lists the four-way 8-bit operations
as presented in this chapter, and their two-way 16-bit counterparts. Note that
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the four-way 8-bit operations process four subwords, whereas the two-way 16-bit
operations only process two subwords.





Chapter 6

MPEG2 encoder

I
n the previous chapter we discussed TM3270 performance on a motion estima-
tion algorithm. Motion estimation constitutes a significant amount of the com-

putational complexity of video encoders. In this chapter we will discuss TM3270
performance on MPEG2 encoding.

Multiple video standards exist that address the compression of video to reduce
transmission bandwidth and storage requirements of the compressed video signal,
typically expressed in bitrate: the amount of bits per second of encoded video
material. Currently, MPEG2 is the de facto standard for video compression. But
newer standards have been introduced that enhance the techniques of MPEG2 to
further reduce bitrate requirements or to improve video quality at a given bitrate.
However, with the introduction of new standards, older standards do not neces-
sarily become obsolete, since backward compatibility needs to be guaranteed to
allow for playback of existing encoded video material. The requirement to sup-
port multiple standards makes a programmable platform, such as the TM3270
media-processor, an interesting solution.

Each of the video standards offers a collection of techniques to allow for efficient
video compression. The video encoder has the freedom to decide what techniques
to apply and how to apply them. The increasing amount of compression techniques
and their interdependencies in terms of their effect on bitrate and video quality
results in a combinatorial explosion of possibilities. When real-time video encod-
ing is required, computational complexity forces us to make a decision on how to
apply which compression techniques. This decision is far from trivial and drives
a large research community to improve video encoder efficiency. The flexibility of
a programmable implementation platform allows for fast application of the con-
tinuous improvements in encoder efficiency, resulting in a short time-to-market.
Note that the video decoder does not have the encoder’s freedom to decide what

93
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techniques to apply. Its operation is determined by the compressed video signal,
and it needs to support all of the standard’s compression techniques.

This chapter evaluates the performance of a MPEG2 encoder on the TM3270.
In Section 6.1, we give an overview of the MPEG2 encoder and identify the parts
that are optimized using new TM3270 operations. In Section 6.2, we show how
new operations are used to improve the MPEG2 motion estimator and discuss the
static performance complexity. In Section 6.3, we show how new operations are
used to improve the MPEG2 texture pipeline and discuss the static performance
complexity. In Section 6.4, we briefly discuss the application of non-aligned to
improve bitstream generation performance. In Section 6.5, we discuss the dynamic
performance complexity of the complete MPEG2 encoder. Finally, in Section 6.6
we present a summary and conclusions. The work presented in this chapter was
earlier published as [64].

6.1 Description of the algorithm

This section gives an overview of the MPEG2 encoder that was used to evaluate
new TM3270 operations. The starting point was a plain-vanilla C-implementation
of a MPEG2 encoder [18], and we invested 6 man weeks to optimize the im-
plementation for the TM3270. We have not undertaken any optimizations that
compromise MPEG2 compliancy. Most of the optimizations involve the use of new
operations to reduce the encoder’s computational complexity.

Figure 6.1 gives an overview of the MPEG2 encoder, and its functionality is
summarized as follows. Macroblocks of 16x16 image pixels are processed in a left-
to-right, top-to-bottom image order. First, motion estimation is performed at mac-
roblock granularity. This function decides upon the encoding mode (intra-coded
or predicted), and produces up to two motion vectors (no vectors for intra-coded
macroblocks, one vector for uni-directional predicted macroblocks and two vectors
for bi-directional predicted macroblocks). Next, the texture pipeline function is
performed for each block of 8x8 image pixels in a macroblock. The encoder uses
a 4:2:0 video format: each 16x16 macroblock has four luminance blocks and two
chrominance block, resulting in a total of six blocks per macroblock. The texture
pipeline consists of a sequence of kernels that perform image reconstruction based
on the source image and up to two reference images, using the motion vectors a
determined by the motion estimator. Furthermore, the texture pipeline produces
a sequence of (run, length) pairs for every 8x8 block. The (run, length) sequence
is variable length encoded and a compressed video bitstream is generated. This
last step is performed after the texture pipeline has produced the (run, length)
sequences for all of the six blocks in a macroblock.
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Figure 6.1: MPEG2 encoder overview, with a breakdown of its main functions.

6.2 Motion estimator

A significant amount of the computational complexity of a video encoder is found
in the motion estimator. We decided upon the 3-D Recursive Search (3DRS) al-
gorithm [11] to implement the motion estimator. Chapter 5 gives an example
application of this algorithm for a 8x8 block based motion estimator. The mo-
tion estimator performs multiple matches, to determine the best match between a
macroblock in the input image with a motion-displaced macroblock in a reference
image. Most of the computational complexity of the algorithm is found in the
macroblock matching function. The MPEG2 standard allows for motion vectors
with 1

2 pixel precision in both the horizontal and vertical direction. To reduce the
computational complexity of fractional pixel calculation, we restricted the vertical
motion vector component to full pixel precision (the horizontal component has a
1
2 pixel precision).
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6.2.1 Macroblock matching

The block-matching kernel determines the similarity of a 16x16 macroblock in the
current image with motion-displaced macroblock in a reference image. The Sum-
of-Absolute-Difference (SAD) cost function is used as matching criterion. For the
estimator we use two optimized versions of the block-matching kernel. Version
A with a relatively high computational complexity that provides a high quality
matching result and version B with a relatively low computational complexity
that provides a lower quality matching result. Version B uses down-scaling and
sub-sampling of macroblock pixel data. As a result, the amount of inputs to the
SAD calculation is significantly reduced.

motion-displaced

macroblock position


32-bit aligned address


Non-optimized: five aligned 32-bit loads to retrieve 17 pixels


Optimized, version A: four non-aligned LD_FRAC8 operations to

retrieve 17 pixels and perform horizontal interpolation


Optimized, version B: one non-aligned LD_PACKFRAC8 operation to

retrieve 8 pixels and perform down-scaling and horizontal interpolation


image pixel

image pixel, involved in

SAD calculation


image pixels retrieved

by a single operation


Figure 6.2: Optimized and non-optimized (versions A and B) implementations
of the block-matching kernel. Depicted is the retrieval of the first four rows of
macroblock pixels from a reference image.

Figure 6.2 illustrates three implementations of the block-matching kernel as
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applied on the first four rows of a 16x16 macroblock in a reference image (one
non-optimized implementation and two optimized implementations (versions A
and B)). The non-optimized implementation and optimized implementation A are
functionally equivalent and use all of the macroblock pixels for the SAD calcula-
tion (256 absolute differences are summed). The non-optimized implementation
uses five 32-bit aligned load operations to retrieve the 17 pixels that are required
to calculate the 16 horizontally interpolated pixels of a macroblock row. Opti-
mized implementation A uses four non-aligned LD FRAC8 operation to retrieve
the 17 pixels and to calculate the 16 horizontally interpolated pixels of a mac-
roblock row. Optimized implementation B uses only half of the macroblock pixels
(sub-sampling). The optimized implementation uses a single LD PACKFRAC8
operation to retrieve 8 pixels and to perform down-scaling and horizontal pixel
calculation for a macroblock row. Sub-sampling and down-scaling result in a lower
quality matching result for optimized implementation B. However the complexity
of the SAD calculation is reduced by a factor of four (only 64 absolute differences
are summed).

Retrieving data for the 16x16 macroblock in the current image is simplified
when the image is located at 32-bit aligned address and when the image width is
a multiple of 4 bytes, such that every image line starts a 32-bit aligned address.
Given the macroblock width of 16 bytes, every upper-left pixel of a macroblock
is located at a 32-bit boundary. Since no fractional horizontal pixel calculation is
required for the macroblock in the current image, four aligned 32-bit load opera-
tions are used to retrieve the 16 pixels in a macroblock row in the non-optimized
implementation. The optimized version A uses two SUPER LD32R operations to
retrieve the 16 pixels in a macroblock row. The optimized version B uses a single
LD PACKFRAC8 operation to retrieve 8 pixels and to perform down-scaling for
a macroblock row.

Table 6.1 compares the macroblock matching computational complexity of the
non-optimized implementation and the two optimized implementations (versions
A and B). Optimized implementation A achieves a speedup of 1.56 with respect to
the non-optimized implementation, as a result of the use of the new LD FRAC8
and SUPER LD32R operations and the non-aligned memory access. This speedup
is achieved with the same quality matching result. At a lower quality matching
result, optimized implementation B achieves a speedup of 2.32 with respect to the
non-optimized implementation.

6.2.2 The estimator

The 3DRS algorithm performs multiple block matches, to determine the best
match between a 16x16 macroblock in the input image and a motion-displaced
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Implement. LD FRAC8 LD PACK SUPER Total VLIW Speedup
FRAC8 LD32R ops. instr.

Non-opt. 0 0 0 449 169 -
Optimized 64 0 32*2 333 108 1.56
(version A)
Optimized 0 32 0 169 73 2.32
(version B)

Table 6.1: Block-matching implementations. Speedup is based on VLIW instruc-
tion count with respect to the non-optimized implementation. Each SUPER LD32R
operation is counted twice, as it occupies two issue slots.

macroblock in a reference image. The estimator’s computational complexity de-
pends on the amount of macroblock matches and the computational complexity of
a single macro block match. Our implementation of the 3DRS algorithm evaluates
17 motion vector candidates for each uni-directionally predicted macroblock (P-
frame). In a initial step, 12 motion vector candidates are evaluated using the opti-
mized implementation B, as described in the previous section. The motion vectors
are taken from candidate sets CSzero (the zero motion vector), CSspatial (4 mo-
tion vectors of already processed blocks in the current image Imagec), CStemporal

(5 motion vectors of blocks in the previous image Imagep), and CSnoise spatial (2
noise updated motion vectors of already processed blocks in the current image
Imagec) (Section 5.1.1). In a second, refinement step, 5 additional motion vec-
tor candidates are evaluated using the optimized implementation A, based on the
best motion vector as determined by the initial step: the best motion vector is
re-evaluated using the higher quality block-matching implementation A, the best
motion vector horizontally offsetted by a 1

2 pixel and the best motion vector verti-
cally offsetted by a full pixel. Figure 6.3 illustrates the motion estimator’s initial
and refinement steps.

The optimized block-matching kernels are function inlined in the motion es-
timator function, to allow for compiler/scheduler optimizations. The macroblock
in the current image is only retrieved once for the 12 block matches using imple-
mentation B performed in the initial step, rather than separately for every block
match. Likewise, the macroblock in the current image is only retrieved once for
the 5 block matches using implementation A performed in the refinement step.
Furthermore, function inlining removes function call overhead.

The motion estimator function includes the control overhead for the motion
vector administration of the 3DRS algorithm and the clipping of motion vectors
to ensure that they do not point outside the reference image. The clipping of
motion vectors uses the new two-slot SUPER DUALIMEDIAN operation: one of
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Figure 6.3: The motion estimator for a uni-directionally predicted macroblock:
in an initial step 12 motion vector candidates are evaluated using the low quality
block match implementation B, in a refinement step 5 additional motion vector
candidates are evaluated using the high quality block match implementation A.

the operation’s inputs is the motion vector (using a two-way 16-bit representation),
and the other two inputs are the upper-left and lower right image pixel positions.
Table 6.2 gives an overview of the static performance complexity of the motion
estimator function. Without inlining of the block-matching functions, the VLIW
schedule length is at least the sum of the block-matching functions (12 copies of
implementation B and 5 copies of implementation A). Note that this schedule
length is optimistic; as it does not include the actual function call overhead and
the motion estimator control overhead. Inlining of the block-matching functions
achieves a speedup of at least 2.48.

Implementation VLIW Speedup
instructions

Optimized, no inlining ≥ 12*73 + 5*108 = 1416 -
Optimized, inlining 570 2.48

Table 6.2: Static performance complexity of the motion estimator function for
a uni-directionally predicted macroblock, with and without inlining of the block-
matching functions.

For bi-directionally predicted macroblocks (B-frame), motion estimation is per-
formed for two reference images. We restricted the amount of motion vectors for
each reference image to 11 motion vector candidates to limit the motion estima-
tion computational complexity. In a initial step, 6 motion vector candidates are
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evaluated using the optimized implementation B. In a second, refinement step, 5
additional motion vector candidates are evaluated using the optimized implemen-
tation A, based on the best motion vector as determined by the initial step. Table
6.3 gives an overview of the static performance complexity of the motion estima-
tor function for a single reference image. Inlining of the block-matching functions
achieves a speedup of at least 2.02.

Implementation VLIW Speedup
instructions

Optimized, no inlining ≥ 6*73 + 5*108 = 953 -
Optimized, inlining 471 2.02

Table 6.3: Static performance complexity of the motion estimator function for
a bi-directionally predicted macroblock (for a single reference image), with and
without inlining of the block-matching functions.

6.3 Texture pipeline

In this section we present the static performance complexity of optimized and
non-optimized versions of the texture pipeline for blocks in a bi-directionally pre-
dicted macroblock; i.e. two reference images are used. The encoder uses a 4:2:0
video format: each macroblock of 16x16 pixels has four luminance blocks and two
chrominance blocks, resulting in a total of six 8x8 blocks per macroblock. The
texture pipeline is performed for each of these blocks of 8x8 pixels. The texture
pipeline consists of a sequence of kernels, as shown in Figure 6.4. Note that the tex-
ture pipeline performance complexity for bi-directionally predicted macroblocks is
higher than that of intra-coded macroblocks and uni-directionally predicted mac-
roblocks: intra-coded macroblocks do not require the difference calculation ker-
nel and have a simpler image reconstruction kernel, uni-directionally predicted
macroblocks have a single reference image which results in a simpler difference
calculation kernel. The following subsections present the performance complex-
ity of optimized and non-optimized versions of the individual kernels. Subsection
6.3.8 presents the performance complexity of the complete texture pipeline. Sim-
ilar to the performance complexity analysis of the motion estimator, we restrict
our texture pipeline analysis to motion vectors with a vertical component of full
pixel precision (the horizontal component has a 1

2 pixel precision). This restriction
simplifies the implementation of the difference calculation kernel.
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Figure 6.4: The texture pipeline for a 8x8 block. The pipeline consists of a
sequence of kernels: difference calculation, discrete cosine transform, quantization,
run length encoding, inverse quantization, inverse discrete cosine transform and
image reconstruction.

6.3.1 Difference calculation

The difference calculation kernel produces a 8x8 block of unsigned 8-bit prediction
values (the predicted block), based on the image pixels of two reference images at
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positions indicated by the respective motion vectors. The 8x8 block of prediction
values is used by the image reconstruction kernel. Furthermore, the difference
calculation kernel produces an 8x8 block of signed 9-bit difference values that
represent the difference between the prediction values and the image pixels of the
to be encoded 8x8 block in the current image.
void DifferenceCalculation (

uint8* c_block, // current block

uint8* r_image1, // reference image 1

uint8* r_image2, // reference image 2

intdual16 c_position, // current position in image

(for motion vector offset)

intdual16 mv1, // motion vector for ref. image 1

intdual16 mv2, // motion vector for ref. image 2

int image_width, // image width

uint8* pred_block, // prediction block

int16* diff_block) // difference block

The optimized implementation uses 32 collapsed LD FRAC8 operations to re-
trieve the two 8x8 blocks of reference image pixels, and performs horizontal frac-
tional pixel calculation on the fly. The non-optimized implementation uses 24
32-bit aligned load operations to retrieve the required pixels for a single reference
block, resulting in a total of 48 load operations for two reference blocks: an in-
crease in load bandwidth of 50%. The optimized implementation uses 8 two-slot
SUPER LD32R operations to retrieve the 8x8 block of current image pixels; the
non-optimized implementation uses 16 32-bit aligned load operations (assuming
a 32-bit alignment of the current block). Table 6.4 compares the computational
complexity of the non-optimized and optimized implementations: optimization
achieves a speedup of 1.26.

Implementation LD FRAC8 SUPER LD32R Total VLIW Speedup
operations instr.

Non-opt. 0 0 306 78 -
Optimized 32 8*2 263 62 1.26

Table 6.4: Static performance complexity of the difference calculation kernel.
Each SUPER LD32R operation is counted twice, as it occupies two issue slots.

Intermezzo. The MPEG4 and H.264/AVC standards prescribe a non-linear
multi-taps filter for the calculation of reference data at fractional positions. This
prohibits the use of the LD FRAC8 operation. However, the required interpo-
lation is efficiently implemented with the new tow-slot SUPER USCALEFIR8UI
and SUPER IFIR8UI operations. Given eight horizontal neighboring image pixels
r0, r1, ..., r7, with ri located at horizontal position i, the H.264/AVC standard
calculates p at horizontal position 31

2 using a 6-taps filter:
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p = 2r1 − 10r2 + 40r3 + 40r4 − 10r5 + 2r6 + 32
p = Max(Min(p >> 6, 0), 255)

The MPEG4 standard calculates p at horizontal position 31
2 using a 8-taps

filter:

p = −2r0 + 6r1 − 12r2 + 40r3 + 40r4 − 12r5 + 6r6 − 2r7 + rounding

(with rounding either 31 or 32)
p = Max(Min(p >> 6, 0), 255)

For H.264/AVC the SUPER USCALEFIR8UI operation performs the required
calculation: filtering, rounding, scaling, and clipping to the range of an unsigned
8-bit integer. For MPEG4/AVC with a rounding value of 32, the same operation
can be used. For a rounding factor of 31, the SUPER IFIR8UI can be used to
calculate the 8-taps filter, additional operations are required to perform rounding,
scaling, and clipping.

6.3.2 Discrete cosine transform

The discrete cosine transform (DCT) kernel produces a 8x8 block of signed 16-bit
frequency coefficients, based on the 8x8 block of difference values as produced by
the difference calculation kernel.
void Dct (int16* diff_block, // difference block

int16* freq_coeff_block) // frequency coefficients block

The 8x8 two-dimensional (2D) DCT is row-column separated into 8-points
1D transforms. We use the Chen algorithm [5] for both the optimized and non-
optimized implementations. The algorithm makes frequent use of butterfly and
rotate operators, which are defined by:

Butterfly(input0, input1) : output0 = input0 + input1
output1 = input0− input1

Rotate(input0, input1, cos(a), sin(a)) : output0 = input0 ∗ cos(a)− input1 ∗ sin(a)
output1 = input0 ∗ sin(a) + input1 ∗ cos(a)

The new TM3270 operations allow for the calculation of the 2D DCT with
signed 16-bit arithmetic. These operations use two-way 16-bit SIMD arithmetic.
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As a result, two independent 1D DCTs can be calculated in parallel. The butterfly
operation uses the two-way 16-bit addition and subtraction operations: DSPID-
UALADD and DSPIDUALSUB (both operations are present in the original Tri-
Media ISA). Two independent butterfly structures are calculated in parallel using
one DSPIDUALADD and one DSPIDUALSUB operation. The rotate operation
uses the new two-way 16-bit SUPER DUALISCALEMIX operation. Two of these
two-slot operations calculate two independent rotate structures in parallel. Since,
the operation scales its in-between result by a factor 214, the partial results of the
DCT calculation can be kept within a signed 16-bit representation. Furthermore,
the operation’s rounding improves the accuracy of the calculation. The new DU-
ALISCALEUI RZ operations is similar in terms of rounding and scaling, and is
used for the multiplication of partial DCT results. The compiler/scheduler keeps
the working set of this kernel in registers; i.e. no spill code is generated. Table
6.5 compares the computational complexity of the non-optimized and optimized
implementations: optimization achieves a speedup of 1.74.

Implement. SUPER SUPER DUAL Total VLIW Speedup
LD32R DUAL ISCALEUI ops. instr.

ISCALEMIX RZ

Non-opt. 0 0 0 802 179 -
Optimized 16*2 48*2 32 380 103 1.74

Table 6.5: Static performance complexity of the discrete cosine transform kernel.
Each two-slot operation is counted twice, as it occupies two issue slots.

Intermezzo. To avoid accuracy problems, the H.264/AVC standard prescribes
an integer transform for the spatial-to-frequency domain translation and vice verse
[37], rather than an integer approximation of a floating point transform as used
by most other video standards. It is efficiently implemented with the signed 16-
bit arithmetic DSPIDUALADD and DSPIDUALSUB operations, and the new
SUPER DUALIMIX operation.

6.3.3 Quantization

The quantization kernel produces a 8x8 block of signed 16-bit quantized frequency
coefficients, based on the 8x8 block of frequency coefficients as produced by the
DCT kernel a quantizer value. The quantizer value is the product of the quantiza-
tion matrix value and the macroblock quantizer value. For uni- and bi-directionally
predicted marcoblocks, our implementation supports only a single quantization
value for a complete 8x8 block; i.e. each of the block’s 64 frequency coefficients is
quantized with the same quantizer value. For intra-coded macroblocks, our imple-
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mentation supports a separate quantizer value for each of the block’s 64 frequency
coefficients. As a result, the computational complexity of this kernel is higher for
intra-coded blocks, than for predicted blocks. The performance numbers in this
section are for predicted blocks.
void Quantization (

int16* freq_coeff_block, // frequency coefficients block

int quantizer, // quantizer value

int16* quant_freq_coeff_block) // quantized freq. coeff. block

The MPEG2 standard defines the inverse quantization (Section 6.3.5) for a
predicted block by:

dequant coeff = ((2 ∗ quant coeff + k) ∗ quantizer)/32
quantizer = macroblock quantizer ∗matrix quantizer

k = Sign(quant coeff)
/ : division with truncation to 0.

For the inverse quantization, an exact implementation of the above definition is
required to ensure accuracy. However, for the quantization we decided upon a low
complexity approximation. The approximation performs a single multiplication of
the frequency coefficient with a pre-computed value based on the quantizer value.
It uses the new two-way 16-bit DUALISCALEUI RZ operation (multiplication
with scaling, and rounding to zero). This operation performs the quantization of
two frequency coefficients. For a total of 64 coefficients, 32 DUALISCALEUI RZ
operations are required. The non-optimized implementation provides the same
functionality, but uses 32-bit arithmetic. Table 6.6 compares the computational
complexity of the non-optimized and optimized implementations: optimization
achieves a speedup of 3.06.

Implementation SUPER DUAL Total VLIW Speedup
LD32R ISCALEUI RZ ops. instr.

Non-opt. 0 0 455 98 -
Optimized 16*2 32 131 32 3.06

Table 6.6: Static performance complexity of the quantization kernel. Each two-
slot operation is counted twice, as it occupies two issue slots.

The quantization kernel also produces a coded value (Figure 6.4). This value
is ’1’ when at least one of the quantized coefficients has a non-zero value. When
this is not the case (coded value is ’0’), a possibility exists to shorten the execution
path through the texture pipeline, as described in Section 6.3.8.
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6.3.4 Run length encoding

The run length encoding kernel is based on a block of quantized frequency coef-
ficients as produced by the quantization kernel. Run length encoding checks for
coefficient values of ”0”, to produce (run, length) pairs of quantized coefficients
run, with a length value indicating the amount of preceding ”0” coefficients in
zigzag order, as prescribed by the MPEG2 standard.
void RunLengthEncoding (

int16* quant_freq_coeff_block, // quantized freq. coeff. block

int16* run_length_pairs) // series of (run, length) pairs

The kernel does not take advantage of any of the new operations: the optimized
and non-optimized implementations are the same (Table 6.7).

Implementation Total VLIW Speedup
Operations instructions

Non-opt. 357 76 -
Optimized 357 76 1.00

Table 6.7: Static performance complexity of the run length encoding kernel.

6.3.5 Inverse quantization

The inverse quantization kernel produces a 8x8 block of signed 16-bit dequantized
frequency coefficients, based on the 8x8 block of quantized frequency coefficients
as produced by the quantization kernel and an inverse quantizer value (the same
value as used as quantizer value by the quantization kernel). The quantizer value is
the product of the quantization matrix value and the macroblock quantizer value.
For uni- and bi-directionally predicted marcoblocks, our implementation supports
only a single quantization value for each 8x8 block; i.e. each of the block’s 64
frequency coefficients is quantized with the same quantizer value. For intra-coded
macroblocks, our implementation supports a separate quantizer value for each of
the block’s 64 frequency coefficients. As a result, the computational complexity
of this kernel is higher for intra-coded blocks, than for predicted blocks. The
performance numbers in this section are for predicted blocks.
void Dequantization (

int16* quant_freq_coeff_block, // quantized freq. coeff. block

int quantizer, // (inverse) quantizer value

int16* dequant_freq_coeff_block) // dequantized freq. coeff. block
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The MPEG2 standard defines the inverse quantization for a predicted block
by:

dequant coeff = ((2 ∗ quant coeff + k) ∗ quantizer)/32
quantizer = macroblock quantizer ∗matrix quantizer

k = Sign(quant coeff)
/ : division with truncation to 0.

The optimized implementation is performed with two-way 16-bit arithmetic,
and uses the new two-way 16-bit DUALADDSUB operation. This operation is
used to add the sign bit to the doubled dual quant coeff :
(2 * dual_quant_coeff + k) = DUALADDSUB (DSPIDUALADD (dual_quant_coeff, dual_quant_coeff),

0x00010001)

Table 6.8 compares the computational complexity of the non-optimized and
optimized implementations: optimization achieves a speedup of 1.35.

Implementation SUPER DUALADDSUB Total VLIW Speedup
LD32R instr.

Non-opt. 0 0 333 74 -
Optimized 16*2 32 236 55 1.35

Table 6.8: Static performance complexity of the quantization kernel. Each two-
slot operation is counted twice, as it occupies two issue slots.

6.3.6 Inverse discrete cosine transform

The inverse discrete cosine transform kernel (IDCT) produces a 8x8 block of signed
16-bit difference values, based on the 8x8 block of dequantized frequency coeffi-
cients as produced by the inverse quantization kernel.
void Idct (

int16* dequant_freq_coeff_block, // dequantized freq. coeff. block

int16* diff_block) // difference block

The 8x8 2D IDCT is row-column separated into 8-points 1D transforms. We
use a version of the Loeffler algorithm [35]. Like the forward DCT, the algorithm
makes frequent use of butterfly and rotate operators. The optimized implemen-
tation is performed with two-way 16-bit arithmetic. The rounding and scaling
capabilities of SUPER DUALISCALEMIX and DUALISCALEUI RZ allow for a
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standard compliant accuracy. The compiler keeps the working set of this kernel in
registers; i.e. no spill code was generated. Table 6.9 compares the computational
complexity of the non-optimized and optimized implementations: optimization
achieves a speedup of 1.49.

Implement. SUPER SUPER DUAL Total VLIW Speedup
LD32R DUAL ISCALEUI ops. instr.

ISCALEMIX RZ

Non-opt. 0 0 0 719 162 -
Optimized 16*2 48*2 48 397 109 1.49

Table 6.9: Static performance complexity of the inverse discrete cosine transform
kernel. Each two-slot operation is counted twice, as it occupies two issue slots.

6.3.7 Image reconstruction kernel

The image reconstruction kernel produces a 8x8 block of unsigned 8-bit recon-
structed image pixels for the current image, based on the prediction values as
produced by the difference calculation kernel and based on the difference values as
produced by the IDCT kernel.

void ImageReconstruction (

uint8* pred_block, // prediction block (input)

int16* diff_block, // difference block (input)

int image_width, // image width

uint8* c_block) // current block (output)

The initial steps of the image reconstruction are with 16-bit arithmetic, and
the final step clips the intermediate results to an unsigned 8-bit integer range.
The optimized implementation uses the SUPER LD32R operation to retrieve the
prediction and difference values. Table 6.10 compares the computational complex-
ity of the non-optimized and optimized implementations: optimization achieves a
speedup of 1.33.

Implementation SUPER Total VLIW Speedup
LD32R Operations instructions

Non-opt. 0 190 57 -
Optimized 24*2 204 43 1.33

Table 6.10: Static performance complexity of the image reconstruction kernel.
Each two-slot operation is counted twice, as it occupies two issue slots.
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6.3.8 Putting it all together

The previous sections discussed the implementations of the individual texture
pipeline kernels. Given the pipelined organization of the texture pipeline (Figure
6.4), it is possible to combine these functions into a single TextureP ipeline func-
tion through function inlining. This gives the compiler/scheduler the opportunity
to remove function-call and -return overhead and to pass in-between kernel results
through registers, rather than through memory, which eliminates a large amount
of load and store operations that move in-between results between the proces-
sor registers and memory. Furthermore, the compiler/scheduler is presented with
more operation level parallelism, which might allow for a higher operations/VLIW
instruction ratio, thereby reducing the overall VLIW schedule length.
void TexturePipeline (

uint8* c_block_in, // current block (input)

uint8* r_image1, // reference image 1

uint8* r_image2, // reference image 2

intdual16 c_position, // current position in image

intdual16 mv1, // motion vector for ref. image 1

intdual16 mv2, // motion vector for ref. image 2

int image_width, // image width

int quantizer, // quantizer value

int16* run_length_pairs, // series of (run, length) pairs

uint8* c_block_out) // current block (output)

{

DifferenceCalculation ();

Dct ();

Quantization ();

RunLengthEncoding ();

Dequantization ();

Idct ();

ImageReconstruction ();

}

Table 6.11 repeats the computational complexity results of the optimized ker-
nels and compares the computational complexity of two texture pipeline imple-
mentations: the first implementation sums the complexity results of the kernels
and the second gives the results after function inlining. Note that the compu-
tational complexity result of the first implementation is optimistic, since it only
includes the complexity results of the kernels, but not the function-call overhead of
these kernels in the TextureP ipeline function. As a result of function inlining the
overall schedule length is reduced from 480 to 358 VLIW instructions, a speedup
of 1.34. Function inlining is possible for both the optimized and non-optimized
kernel implementations. However, the benefit for the optimized kernel implemen-
tations is higher as a result of reduced register pressure. Without the use of new
operations, the register pressure of the non-optimized kernel implementations is
relatively high and function inlining causes spilling, introducing a large amount of
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additional load and store operations to spill and reload in-between results to and
from the stack. With the use of new operation, function inlining of the optimized
kernel implementations hardly causes spilling: the texture pipeline for intra-coded
and uni-directionally predicted blocks do not spill, and the texture pipeline for
bi-directionally predicted blocks only spills three in-between results. It is expected
that optimization of the scheduler’s register allocator can completely eliminate
spilling for a bi-directionally predicted block.

Function VLIW instructions Speedup

Difference calculation 62 -
DCT 103 -
Quantization 32 -
Run length encoding 76 -
Inverse quantization 55 -
Inverse DCT 109 -
Image reconstruction 43 -

TexturePipeline, no inlining ≥ 480 -
TexturePipeline, inlining 358 1.34

Table 6.11: Static performance complexity of the texture pipeline for a bi-
directionally predicted block, with and without function inlining.

We investigated two further optimizations of the TextureP ipeline function:

1. Use of the coded value as produced by the quantization kernel to eliminate
the unused part of the texture pipeline functionality.

2. Reduce the amount of encoded quantized frequency coefficients to reduce
texture pipeline functionality.

The coded value is ’1’ when at least one of the quantized coefficient has a
non-zero value, otherwise the coded is ’0’. When the coded value is ’0’, it is
not necessary to perform a large part of the texture pipeline: the run length
encoding, inverse quantization and IDCT kernels do not need to be executed.
Furthermore, the computational complexity of the image reconstruction kernel
is reduced: the reconstructed 8x8 block in the current image is the predicted
8x8 block as produced by the difference calculation kernel. These so called non-
coded blocks become more frequent as the target bitrate decreases. We created a
texture pipeline implementation that takes advantage of the coded value: when the
coded value is ’0’ a faster execution path through the TextureP ipeline function
is achieved. When the coded value is ’1’, the new implementation has a somewhat
longer normal execution path than the original implementation, as a result of
scheduler overhead related to the conditional jump on the coded value. As a result,
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this optimization is only effective for lower bitrate applications. This optimization
is only performed for predicted macroblocks; i.e. the texture pipeline for intra-
coded marcoblocks has no fast execution path, since it is unlikely that none of
intra-coded block coefficients has a non-zero value. Table 6.12 gives the complexity
results: the fast execution path achieves a speedup of 1.83.

Function VLIW instructions Speedup

TexturePipeline, inlining 358 -
TexturePipeline, inlining (coded)
- fast execution path 196 1.83
- normal execution path 383 0.93
TexturePipeline, inlining (coded, 48 coeff.)
- fast execution path 180 1.99
- normal execution path 339 1.06

Table 6.12: Static performance complexity of the texture pipeline for a bi-
directionally predicted block for two (incremental) optimizations: use of the coded
value and reducing the amount of encoded quantized frequency coefficients.

In [17] it is shown that for low bitrate applications, the encoding of only a small
amount of quantized frequency coefficients in the low frequency domain results in
limited quality degradation. By reducing the amount of frequency coefficients, the
computational complexity of the DCT, quantization, run length encoding, inverse
quantization, IDCT and image reconstruction kernels is reduced. We created a
texture pipeline implementation that only encodes the first 48 quantized frequency
coefficients in zigzag order, the 16 higher frequency domain coefficients are assumed
to be ”0”. This optimization is only performed for predicted macroblocks; i.e.
for intra-coded marcoblocks all 64 coefficients are encoded. Table 6.12 gives the
complexity results of the new implementation, which takes advantage of the coded
value, and only encodes 48 coefficients: the fast execution path achieves a speedup
of 1.99.

6.4 Bitstream generation

The bitstream generator writes bit patterns to a sequential stream located in
memory. It makes frequent use of the PutBits function, which takes a bit pattern
pattern of a certain size size, and writes the pattern to the stream:
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static uint8* OutputPtr;

static int OutputState; // left aligned

static int OutputStateBitCount;

void PutBits (int pattern, int size)

// write rightmost size (0 <= size <= 25) bits of pattern to Output

{

int mask;

int bits_produced;

mask = (1 << size) - 1;

OutputStateBitCount = OutputStateBitCount + size;

OutputState = OutputState

| ((pattern & mask) << (32 - OutputStateBitCount));

* (int *) OutputPtr = OutputState; // non-aligned store

bits_produced = OutputStateBitCount & 0x38;

OutputPtr = OutputPtr + (bits_produced >> 3);

OutputState = OutputState << bits_produced;

OutputStateBitCount = OutputStateBitCount & 0x7;

}

The global state of the PutBits function is captured by three variables: Output
P tr is a byte address to the current position in the stream, OutputState holds at
most 7 bits that have not yet been written to the stream (in its most significant
bit positions) and OutputStateBitCount gives the bit size of OutputState. The
maximum size of pattern is 25 bits, to ensure that the combined size of pattern
and OutputState does not exceed the 32-bit integer size. Note that almost all of
the MPEG2 code words are 24 or less bits in size, which means that the PutBits
function can be used to write almost all of the codewords to the bitstream. The
PutBits function does not use any of the new operations, but it does take ad-
vantage of the TM3270’s non-aligned memory access. After the bits of pattern
and OutputState have been properly aligned and merged, the result is written to
memory with a single non-aligned 32-bit store operation. Without support for
non-aligned memory access, the 32-bit store operation to byte address OutputP tr
would have to be replaced by a series of four 8-bit store operations:

OutputPtr[0] = OutputState >> 24;

OutputPtr[1] = OutputState >> 16;

OutputPtr[2] = OutputState >> 8;

OutputPtr[3] = OutputState;
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6.5 Dynamic performance complexity

In this section we present the dynamic performance complexity of our MPEG2
encoder with the optimizations as described in the previous sections. The per-
formance is measured in our cycle-accurate performance evaluation environment
(Section 1.3.2). For those measurements for which prefetching is turned on, next-
sequential cache line prefetching is performed.

We encoded the ”Foreman” sequence at CIF resolution (352*288 pixels) at
25 frames per second, with a target bitrate of 500,000 bits per second. The rate
control kernel (Figure 6.1) controls the bitrate through the macroblock quantizer
value. The encoder uses a 4:2:0 video format: each macroblock of 16x16 pixels has
four luminance blocks and two chrominance blocks, resulting in a total of six 8x8
blocks per macroblock. The group-of-pictures (GOP) encoding pattern is given
by: I-B-B-P-B-B-P-B-B-P-B-B (in frame display order), and repeats itself every
12 frames. The estimator evaluates 17 motion vector candidates for each mac-
roblock in a P-frame and 11 motion vector candidates for each macroblock in a
B-frame (Section 6.2.2). The texture pipeline uses the two performance optimiza-
tions as described in Section 6.3.8: use of the coded value and encoding of only 48
quantized frequency coefficients. Bitstream generation uses the PutBits function
as described in Section 6.4.

Figure 6.5 gives an overview of the dynamic performance complexity. For
each frame type, a cycle breakdown into the major MPEG2 kernels is given (the
”other” part collects all cycles that are not part of the major MPEG2 kernels).
The average numbers are calculated based on the frame type frequencies as defined
by the GOP pattern. I-frames have the lowest complexity, as they do not require
motion estimation. The amount of cycles in the bitstream generation kernel is
related to the amount of bits that are used to encode a certain frame type: I-frames
use more bits per frame than P- and B-frames. For B-frames, motion estimation
is performed for two reference images, which explains the high complexity of the
motion estimator kernel. However, B-frames use the smallest amount of bits to
encode a frame, which results in a low complexity of the bitstream generation
kernel. On average 1.438,220 cycles are used to encode a frame (including processor
stall cycles). At 25 frames per second, this results in a 35.95 MHz processor load.

To evaluate the impact of prefetching, we measured MPEG2 encoder perfor-
mance with prefetching turned on and off, and for different additional memory
delay cycles. Prefetching and additional memory delay cycles do not affect the
amount of executed VLIW instruction, but only the amount of processor stall cy-
cles. Figure 6.5 gives the results: at 0 additional memory delay cycles, prefetching
reduces the amount of stall cycles from 190,458 to 171,618, a reduction of 9.9%.
At 100 additional memory delay cycles, prefetching reduces the amount of stall
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Figure 6.5: Dynamic performance complexity of the MPEG2 encoder for I-, P-
and B-frames, for prefetching on and 0 additional memory delay cycles. The
average is calculated based on the GOP pattern: I-B-B-P-B-B-P-B-B-P-B-B.

cycles from 932,718 to 557,633, a reduction of 40.2%.

6.6 Conclusions

It is not the intend of this chapter to build the best quality MPEG2 encoder, but
rather to evaluate the performance improvement of new TM3270 features (new
operations and non-aligned memory access) and to give an indication of achievable
performance on the TM3270. When the image quality is deemed unsatisfactory,
the flexibility of a programmable solution allows for changes to improve quality,
e.g. different algorithms [34] could be used to implement the motion estimator.

The presented MPEG2 encoder requires 35.95 MHz to encode a CIF sequence.
At an operating frequency of 450 MHz, the TM3270 media-processor is capable of
encoding more than twelve CIF video sequences in parallel, an interesting feature
for e.g. video observance systems in which multiple cameras can be connected to
a video encoder IC with a single TM3270.
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Figure 6.6: Processor stall cycles as a function of additional memory delay cycles,
for prefetching on and prefetching off.

We have shown how that collapsed load operations significantly reduce the
static performance complexity of the block-matching kernel: a speedup of 1.56
for 16x16 block match (Section 6.2.1, optimized implementation A)). Other new
operations are used to speed up the texture pipeline kernels with a factor of up
to 3.06 (Section 6.3.8: maximum speedup is achieved for the quantization kernel).
The use of non-aligned memory access improves the performance of the bitstream
generation (Section 6.4). Furthermore, we have shown that data prefetching can
improve performance by 40.2% for larger off-chip SDRAM latencies (Section 6.5,
100 additional memory delay cycles).





Chapter 7

Temporal upconversion

I
n Chapter 5 we discussed TM3270 performance on a motion estimation al-
gorithm. In this chapter we will discuss TM3270 performance on a motion-

compensated temporal upconversion algorithm, which requires the motion vector
data as produced by a motion estimation algorithm.

T
emporal upconversion is a video enhancement algorithm that adapts the fre-
quency of a video sequence to the frequency of a display device (Figure 7.1).

E.g. movie video material is encoded at a progressive frame rate of 24 Hz, and
typically displayed on 50 Hz display devices in Europe (PAL standard) and on
60 Hz display devices in the USA (NTSC standard). A straightforward approach
to temporal upconversion is frame repetition, in Europe every movie image is re-
peated twice to generate a 48 Hz video sequence1 and in the USA every movie
image is repeated two or three times to generate a 60 Hz video sequence. These
upconversion approaches are known as 2:2 pull down for the European flavor, and
3:2 pull down for the flavor as used in the USA. Frame repetition provides satis-
factory image quality for stationary image parts, but results in jerky motion for
moving image parts. These motion artifacts are known as motion judder or film
judder. To prevent these artifacts, the latest of temporal upconversion algorithms
apply motion-compensation techniques. Rather than repeating source images on
the display device, new images are calculated using a motion vector field that
intends to represent the motion of video objects.

The application of temporal upconversion is not limited to movie video mate-
rial. The PAL and NTSC standards prescribe the interlaced video material at an
interlaced field rate of 50 and 60 Hz respectively, resulting in a perfect match with
the traditional 50 and 60 Hz display devices. However, higher frequency display

148 Hz is considered close enough to the 50 Hz of the display device, and as a result movies
are shorter when viewed on a 50 Hz display device than in a movie theater.

117
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Figure 7.1: Temporal upconversion. A sequence of images at the display frequency
(white color) is calculated from a sequence of images at the source frequency.

devices have become available with the introduction of 100 Hz CRT displays and
LCD display in the television market to offer a better viewing experience.

This chapter evaluates the performance of a motion-compensated temporal
upconversion algorithm on the TM3270. We quantify the contribution of new
operations, data prefetching, data cache write miss policy and off-chip memory
latency on processor performance. In Section 7.1, we describe the temporal up-
conversion algorithm. In Section 7.2, we show how new TM3270 operations are
used to improve the implementations of the temporal upconversion algorithm. In
Section 7.3, we discuss the dynamic performance complexity of our temporal up-
conversion algorithm. Finally, in Section 7.4, we present the conclusions. An
earlier evaluation of the temporal upconversion on the TM3270 processor can be
found in [65].

7.1 Description of the algorithm

We do not intend to introduce a new and better temporal upconverter, but rather
to evaluate the performance of new TM3270-specific features on an existing algo-
rithm. For the temporal upconverter, we decided upon an enhanced version of the
cascaded median upconverter [42]. The cascaded median upconverter uses pixels
of the two temporally neighboring images from the source video sequence (Imagep

and Imagen) to calculate a new upconverted image (Imagec) (Figure 7.2). We
use a block-based implementation of the algorithm, with a block size of 4x4 im-
age pixels. The blocks in Imagec are generated in a left-to-right, top-to-bottom
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Figure 7.2: Motion-compensated temporal upconversion. Static and dynamic
pixels from the neighboring source images.

sequence. The position of bc in Imagec is denoted by −→bc such that −→bc +

(
0
0

)

and −→bc +

(
3
3

)
identify the upper left and lower right pixel positions of block bc.

The horizontal (X) and vertical (Y) block positions are integer multiples of 4 (the
block size). We assume the availability of a motion vector Mv(−→bc ) for every bc

in Imagec, which intends to represent motion from Imagep to Imagen through
block bc in Imagec. The horizontal component of a motion vector is unrestricted,
the vertical component is restricted to the range [-40, 393

4 ] (the motion vectors
Mv(−→bc ) have a 1

4 pixel precision). Motion vectors that point to blocks outside the
Imagen boundaries are clipped to the image boundaries.

The cascaded median upconverter uses non motion-compensated (static) and
motion-compensated (dynamic) pixels of the two temporally surrounding images
from the source video sequence. Static pixels are taken from colocated positions in
the two temporally neighboring images: b stp and b stn. Dynamic pixels are taken
from motion-compensated positions in the two temporally neighboring images:
b dynp and b dynn, as indicated by the motion vector Mv(−→bc ) and a fraction p
that indicates the relative temporal position of Imagec with respect to Imagep

and Imagen. Given the position −→bc , the positions −−−−→b dynp and −−−−→b dynn are calculated
as follows:

−−−−→
b dynp = −→

bc − pMv(−→bc ) =

(
bc[x]− pMv(−→bc )[x]
bc[y]− pMv(−→bc )[y]

)
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−−−−→
b dynn = −→

bc + (1− p)Mv(−→bc ) =

(
bc[x] + (1− p)Mv(−→bc )[x]
bc[y] + (1− p)Mv(−→bc )[y]

)

The positions −−−−→b dynp and −−−−→b dynp are calculated at a 1
4 pixel precision. Image

pixel values are represented by a single byte2. For a block b, the integer position−−→
int b is defined by b−→b c, and the fractional offset −−−−→frac b is defined by −→b − −−→int b.
At an integer position −→b the value of an image pixel is defined by Imagen[−→b ], at
a fractional position −→b the value is calculated using bi-linear interpolation:

Imagen[−→b ] = ( (1− frac b[x])(1− frac b[y]) Imagen[−−→int b]

+frac b[x](1− frac b[y]) Imagen[−−→int b +

(
1
0

)
]

+(1− frac b[x])frac b[y] Imagen[−−→int b +

(
0
1

)
]

+frac b[x]frac b[y] Imagen[−−→int b +

(
1
1

)
] + 2)/4

The calculation of a bi-linear interpolated 4x4 block at a horizontal and vertical
fractional position requires a 5x5 block of pixel values.

The cascaded median upconverter combines a static median, a dynamic median
and a mixer (Figure 7.3). This combination takes advantage of the individual
filters’ strengths and reduces the impact of the individual filters’ weaknesses. A
detailed description of the algorithm can be found in [42]. We further enhanced
the quality of the cascaded median upconverter by the addition of a fader.

The static average and dynamic average functions calculate a weighted average
based on the temporal position p. For a small value of p, the pixels from Imagep

have a relatively large weight, and the pixels from Imagen have a relatively small
weight.

Average(input1, input2, p) = (1− p) ∗ input1 + p ∗ input2

The mixer function calculates a weighted average based on a smoothness factor
s. The upconversion algorithm calculates the smoothness factor based on the cur-
rent block’s motion vector Mv(−→bc ) and the motion vectors of spatially surrounding

2Video images are typically represented by three values: one luminance value, and two chromi-
nance values. For the sake of simplicity, we assume that temporal upconversion is performed on
the luminance value only.
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Figure 7.3: Enhanced cascaded median upconverter.

blocks. The smaller the sum of the differences between the current motion vector
and the surrounding motion vectors, the higher the relative weight of the dynamic
average input to the mixer. The smoothness factor represents the local consis-
tency/smoothness of the motion vector field.

Mixer(input1, input2, s) = (1− s) ∗ input1 + s ∗ input2

The fader function calculates a weighted average based on a fading factor
f . The upconversion algorithm calculates the fading factor based on the current
block’s motion vector Mv(−→bc ), and the motion vectors of spatially surrounding
blocks. A large difference between the current motion vector and one of the sur-
rounding motion vectors (a large block-to-block motion vector field discontinuity),
results in a small relative weight for the dynamic average input to the fader.

Fader(input1, input2, f) = (1− f) ∗ input1 + f ∗ input2

The median function calculates a three input median:

Median(input1, input2, input3) =
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Min(Max(Min(input1, input2), input3),Max(input1, input2))

7.2 Implementation

In this section we show how new TM3270 operations are used to efficiently imple-
ment the temporal upconversion algorithm as described in the previous section.
The algorithm generates the individual 4x4 blocks in Imagec in a left-to-right,
top-to-bottom sequence, using the CalculateBlock function, which calculates a
single block in Imagec. We assume that image pixel values are represented by a
single byte; i.e. 8 bits. The C-like interface of this function is given by:
void CalculateBlock (

uint8* p_image, // previous image

uint8* c_image, // current image

uint8* n_image, // next image

intdual16 position_curr, // current position in image

intdual16 position_max, // maximum position in image

intdual16 mv, // motion vector

int image_stride, // image stride/width

int temporal, // temporal position

int smoothness, // smoothness factor

int fading) // fading factor

7.2.1 Six implementations

We created six different implementations of the CalculateBlock function. The
implementations provide the same functionality, but differ in the extent to which
they use TM3270 features: non-aligned memory access and new operations (Table
7.1).

Implementation A is the reference implementation: it does not use any of the
new features. Implementations B, C, D, E, and F gradually apply new TM3270
features to improve performance. Whereas implementation A has dedicated oper-
ations to properly align pixel values before fractional pixel calculation can com-
mence, implementation B uses non-aligned load operations to retrieve pixel values
with the proper alignment, thereby eliminating the need for dedicated alignment
operations. Implementation C uses the collapsed LD FRAC8 operation. For the
calculation of four horizontal neighboring pixels with a horizontal fractional off-
set, five pixel values from an image are required. For implementations A and B,
two traditional load operations are used to retrieve the five pixel values. Imple-
mentation C uses a single LD FRAC8 load operation to retrieve the five pixel
values and performs horizontal fractional pixel calculation on-the-fly, thereby re-
ducing the amount of load operations and eliminating the need for dedicated op-
erations to calculate horizontal fractional positions. Implementation D uses the
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Implem. Non LD FRAC8 SUPER SUPER
-aligned QUADUSCALEMIXUI QUADUMEDIAN

Usage

A no no no no
B yes no no no
C yes hor. fract. pos. no no
D yes hor. fract. pos. vert. fract. pos. no
E yes hor. fract. pos. vert. fract. pos. no

average, mixer, and fader
F yes hor. fract. pos. vert. fract. pos. median filter

average, mixer, and fader

Operation count

A − 0 0 0
B − 0 0 0
C − 4 0 0
D − 4 8 0
E − 4 24 0
F − 4 24 12

Table 7.1: Six different implementations of the CalculateBlock function: the
used features and the operation counts of new operations.

two-slot SUPER QUADUSCALEMIXUI operation to efficiently implement the
vertical fractional pixel calculation. A single SUPER QUADUSCALEMIXUI op-
eration calculates four vertical fractional pixels. Implementation E extends the use
of the SUPER QUADUSCALEMIXUI operation. It uses the operation for vertical
fractional pixel calculation and to efficiently implement the weighted average op-
eration as required by the average, mixer and fader functions. Implementation F
uses the two-slot SUPER QUADUMEDIAN operation to efficiently implement a
3-taps median operation as required by the median function. Without this new op-
eration, the median function is implemented by using the traditional QUADUMIN
and QUADUMAX operations:
Median (input1, input2, input3) = QUADUMIN (QUADUMAX (QUADUMIN (input1, input2),

input3),

QUADUMAX (input1, input2))

The traditional implementation uses two QUADUMIN and two QUADUMAX
operations, resulting in a total of four used issue slots. Both operations have a
latency of two cycles, resulting in a compound latency of six cycles for the median
function. The SUPER QUADUSCALEMIXUI implementation requires only two
issue slots and the compound latency is reduced to two cycles.

The use of new operations to more efficiently implement a certain functionality
has the obvious advantage of a reduction in the amount of required operations. As
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a result, the functionality is performed at a lower static performance complexity.
An additional advantage is the reduction of register pressure. An implementa-
tion should preferably keep all intermediate results of the calculation in processor
registers (this eliminates the need for spilling of register values to and from the
stack, which requires additional load and store operations). As new operations
perform larger parts of the calculation, less processor registers are required to
hold intermediate results, which reduces the register pressure. E.g. the tradi-
tional 3-taps median implementation has three intermediate results, whereas the
SUPER QUADUSCALEMIXUI implementation has no intermediate results.

7.2.2 Static performance complexity

The CalculateBlock function was compiled and scheduled for the TM3270, for
each of the implementations A through F. Table 7.2 gives an overview of the
static performance complexity in terms of VLIW schedule length and number of
operations. The VLIW schedule lengths and operation counts include the overhead
of retrieving function parameters from the stack.

Implem. VLIW schedule Operations Ops. / VLIW instr.

A 92 375 4.08
B 81 320 3.95
C 65 244 3.75
D 62 202 3.26
E 59 186 3.15
F 60 162 2.70

Table 7.2: Static performance complexity for the CalculateBlock function.

The differences between implementations A and B represent the impact of non-
aligned memory access. Implementation A has dedicated operations to properly
align pixel values before fractional pixel calculation can commence, implementa-
tions B does not need these operations. Implementation F uses all of the new
TM3270 features and shows a significant reduction in terms of operations. How-
ever, its VLIW schedule length is larger than that of implementation E. This
is explained by the infancy of the current scheduler: the assignment of two-slot
operations to issue slots is more complicated than the assignment of single slot
operations (this limitation is addressed in later versions of the scheduler). As the
performance complexity of the implementations improves, as indicated by reduced
VLIW schedule lengths and operation counts, the amount of operations per VLIW
instruction (issue slot utilization) reduces. The reduction in issue slot utilization
is explained by the improved ISA efficiency: the use of new TM3270 operations
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reduces the amount of operations and it becomes harder to fill the five issue slots
of a VLIW instruction with independent operations.

7.3 Dynamic performance complexity

In this section we discuss the dynamic performance complexity of our temporal
upconversion algorithm (as described in Section 7.1) for each of the six imple-
mentations (A through F) of the CalculateBlock function on a standard def-
inition (720*480) NTSC video sequence. The performance is measured in our
cycle-accurate performance evaluation environment (Section 1.3.2). The dynamic
performance complexity includes the static complexity in terms of the amount of
issued VLIW instructions and the execution behavior in terms of processor stall
cycles. Processor stall cycles are mainly caused by data cache misses.

The compiler/scheduler was able to successfully inline the CalculateBlock
function in the temporal upconversion function for all of the implementations. In-
lining reduces function-call, and -return overhead. Furthermore, the inner loop of
the temporal upconversion function, which iterates over the blocks bc, was unrolled
four times. This provides the compiler/scheduler with the operation parallelism of
4 CalculateBlock functions, at the cost of an increased code footprint. All imple-
mentations fit in the 64 Kbyte instruction cache, so apart from initial compulsory
instruction cache misses, no instruction cache misses and associated cache stall
cycles were observed.

Since video object sizes typically exceed our 4x4 block size, object movement
should be represented by a certain consistency in the motion vector field of the
blocks that cover the object. Therefore, motion-compensated dynamic block ref-
erences b dynp and b dynn for neighboring blocks bc exhibit high spatial locality.
We decided not to rely on this locality, and use a motion vector field with random
motion vectors, with a horizontal component in the range [-720, 7193

4 ] and a ver-
tical component in the range [-40, 393

4 ]. As a result, our performance evaluation
results reflect worse case, rather than typical case execution behavior.

When memory region based prefetching is turned on, its settings are dependent
on the temporal position p and the vertical motion vector search range. Figure 7.2
shows that as the temporal position p becomes smaller, the displacement between
blocks b dynp and bc becomes smaller and the displacement between blocks b dynn

and bc becomes larger. For a restricted vertical search range of [-40, 393
4 ] and a

temporal position p the maximum vertical displacement between blocks b dynp and
bc is given by 40 ∗ p. A first prefetch memory region includes the previous image
Imagep. The associated stride value is set to 40∗p∗image stride: when processing
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Figure 7.4: Prefetch memory region settings for Imagep and Imagen, for a
temporal position p of 0.4.
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a pixel at position −→bp in Imagep the pixel at position −→bp +

(
0

40 ∗ p

)
is prefetched

(Figure 7.4). A second prefetch memory region includes the next image Imagen.
The associated stride value is set to 40 ∗ (1− p) ∗ image stride: when processing

a pixel at position −→
bn in Imagen the pixel at position −→

bn +

(
0

40 ∗ (1− p)

)
is

prefetched. These settings make it likely that the image pixels for blocks b dynp

and b dynn are found in the data cache when needed by the algorithm. Imagec is
created by the temporal upconversion algorithm. When the allocate on write miss
policy of the data cache is enabled, no prefetching is required for this image. When
the allocate on write miss policy is disabled, and a fetch on write miss policy is
used, a third prefetch memory region is used that includes Imagec. The associated
stride value is set to 4 ∗ image stride: when processing a pixel at position −→bc in

Imagec the pixel at position −→bc +

(
0
4

)
is prefetched (Figure 7.5).
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Figure 7.5: Prefetch memory region settings for Imagec (when a fetch on write
miss policy is used).

7.3.1 Comparing the implementations

The performance of implementations A through F is measured, with prefetching
turned on, an allocate on write miss policy and 0 additional memory delay cycles.
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This setup reflects a SoC use case scenario in which only the TM3270 processor
consumes off-chip memory bandwidth. Table 7.3 gives an overview of the dynamic
performance complexity.

Implem. Cycles VLIW Stall Ops. Ops. / Cycles /
instr. cycles VLIW instr. VLIW instr.

A 1,982,854 1,918,957 63,897 8,622,483 4.49 1.03
B 1,736,874 1,670,314 66,560 7,423,559 4.44 1.04
C 1,290,174 1,222,480 67,694 5,658,964 4.63 1.06
D 1,086,778 1,017,399 69,379 4,843,324 4.76 1.07
E 1,025,611 957,161 68,450 4,571,643 4.78 1.07
F 953,825 886,829 66,996 4,161,819 4.69 1.08

Table 7.3: Dynamic performance complexity: temporal upconversion results
(prefetching on, allocate on write miss policy, 0 additional delay cycles).

The implementations have a cycles / VLIW instruction ratio (CPI) in the range
of [1.03, 1.08], which is close to the theoretical optimum of 1.0. This reflects the
efficiency of prefetching: image data has been prefetched from the off-chip mem-
ory into the data cache before the actual use of the data by the algorithm. The
implementations have a operations / VLIW instruction ratio (OPI) in the range
of [4.44, 4.78], which is close to the theoretical optimum of 5.0 (the TM3270 has
five issue slots). This reflects the high amount of operation level parallelism that is
available in the algorithm as a result of inlining the CalculateBlock function, the
loop unrolling and the scheduler’s ability to exploit this parallelism. Whereas the
OPI of implementations D, E, and F is relatively low (Table 7.2: 3.26, 3.15 and
2.70 respectively) at the CalculateBlock function level, the OPI at the temporal
upconversion function level is significantly higher (Table 7.3: 4.76, 4.78, and 4.69
respectively). The use of non-aligned memory access, without any further opti-
mizations in terms of new operations, reduces the dynamic performance complexity
from 1,982,854 cycles for implementation A to 1,736,874 cycles for implementation
B, a reduction of 12.4%. The use of both non-aligned memory access and the new
operations, reduces the complexity from 1,982,854 cycles for implementation A to
953,825 cycles for implementations F, a reduction of 51.9%.

7.3.2 Memory latency

We use the delay block in our performance evaluation environment (Section 1.3.2)
to measure the impact of SDRAM latency on processor performance. We measured
the performance of implementations A through F with prefetching turned on, an
allocate on write miss policy and the additional memory delay cycles in the range
[0, 150] (one memory delay cycle represents 2.25 processor cycles). Since the
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amount of VLIW instruction is unaffected by the memory latency, we focus on
the amount of processor stall cycles as a function of additional memory latency
(Figure 7.6).
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Figure 7.6: Processor stall cycles as a function of additional memory delay cycles
(prefetching on, allocate on write miss policy).

As memory latency increases, the amount of stall cycles due to data cache
misses increases, which has a negative impact on processor performance. All of
the stall cycle curves have a discontinuity in their slope. The lower complexity
implementations reach the discontinuity at less additional memory delay cycles,
than the higher complexity implementations. We distinguish the slopes at the left
and the right side of the discontinuity.

At the left side of the discontinuity, the implementations are compute bound;
i.e. performance is mainly dependent on the amount of VLIW instructions. The
stall cycle increase is a result of the increase of stall cycles due to a limited amount
of data cache conflict misses. The implementations have a similar memory refer-
ence pattern and a similar conflict miss pattern, which explains the similarity of
the stall cycles curves left of the discontinuities.

At the right side of the discontinuity, the implementations gradually become
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more memory bound; i.e. performance becomes dependent on the availability of
data in the data cache. This availability of data is heavily dependent on the effi-
ciency of prefetching. As the memory latency increases, the efficiency of prefetch-
ing decreases, resulting in more compulsory misses. This decrease in prefetch-
ing efficiency becomes apparent when the time to prefetch data into the data
cache exceeds the time to apply the required operations on the data. At this
point, prefetches change into compulsory misses. This change is a gradual process.
Prefetches start in time, but are not able to complete in time: new compulsory
misses are typically on cache lines with prefetches in progress. The lower com-
plexity implementations require less operations and are faced earlier by a decrease
in prefetch efficiency, than the higher complexity implementations, which explains
why the lower complexity implementation reach the discontinuity at less additional
memory delay cycles.

Implem. Cycles VLIW Stall Ops. Ops. / Cycles /
instr. cycles VLIW instr. VLIW instr.

A 2,347,309 1,918,957 428,352 8,622,483 4.49 1.22
B 2,234,374 1,670,314 564,060 7,423,559 4.44 1.34
C 2,016,461 1,222,480 793,981 5,658,964 4.63 1.65
D 1,937,042 1,017,399 919,643 4,843,324 4.76 1.90
E 1,900,875 957,161 943,714 4,571,643 4.78 1.99
F 1,868,948 886,829 982,119 4,161,819 4.69 2.11

Table 7.4: Dynamic performance complexity: temporal upconversion results
(prefetching on, allocate on write miss policy, 150 additional delay cycles).

At 150 additional memory delay cycles, prefetching efficiency has significantly
decreased, Table 7.4 shows the dynamic performance complexity. Compared to
the dynamic performance complexity at 0 additional memory delay cycles (Table
7.3), the cycle count differences between the implementations have become smaller.
This illustrates the general principle that implementation optimization based on
static performance complexity has less impact when the implementations become
more memory bound.

7.3.3 Data prefetching

To determine the impact of prefetching on processor performance, we measured
the performance of implementations A through F with prefetching turned off, an
allocate on write miss policy and the additional memory delay cycles in the range
[0, 150] (Figure 7.7).

As memory latency increases, the amount of stall cycles due to data cache
misses increases, which has a negative impact on processor performance. Data
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Figure 7.7: Processor stall cycles as a function of additional memory delay cycles
(prefetching off, allocate on write miss policy).

cache misses include both compulsory and conflict misses, the working set of the
implementations fit in the 128 Kbyte data sache, so no capacity misses were ob-
served. The implementations have a similar memory reference pattern and a sim-
ilar miss pattern, which explains the similarity of the stall cycles curves.

Although the implementations have become memory bound at higher SDRAM
latencies, prefetching can still significantly contribute to processor performance.
At 150 additional memory delay cycles, implementation F takes 3,348,267 cycles
without prefetching and 1,868,948 cycles with prefetching (Table 7.5), a reduction
of 44.2%. This significant improvement is explained as follows: both the data
cache refill and prefetch unit can have a single outstanding bus transaction to
the off-chip memory. Especially for higher memory latencies, the ability to have
two, rather than one, outstanding bus transactions significantly improves processor
performance.
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Implem. Cycles VLIW Stall Ops. Ops. / Cycles /
instr. cycles VLIW instr. VLIW instr.

A 4,340,223 1,918,223 2,422,000 8,616,429 4.49 2.26
B 4,098,852 1,669,821 2,429,031 7,412,224 4.44 2.45
C 3,664,106 1,222,223 2,441,883 5,657,830 4.63 3.00
D 3,466,666 1,017,143 2,449,523 4,826,470 4.75 3.41
E 3,415,849 957,021 2,458,828 4,586,944 4.79 3.57
F 3,348,267 886,814 2,461,453 4,096,493 4.62 3.78

Table 7.5: Dynamic performance complexity: temporal upconversion results
(prefetching off, allocate on write miss policy, 150 additional delay cycles).

7.3.4 Write miss policy

To determine the impact of the write miss policy on processor performance, we
measured the performance of implementations A through F with prefetching turned
on, a fetch on write miss policy and the additional memory delay cycles in the range
[0, 150] (Figure 7.8).

Implem. Cycles VLIW Stall Ops. Ops. / Cycles /
instr. cycles VLIW instr. VLIW instr.

A 2,781,915 1,913,441 868,474 8,644,096 4.52 1.45
B 2,658,772 1,664,922 993,850 7,445,175 4.47 1.60
C 2,432,044 1,222,603 1,209,441 5,669,897 4.64 1.99
D 2,335,280 1,017,404 1,317,876 4,843,938 4.76 2.30
E 2,302,736 957,285 1,345,451 4,582,816 4.79 2.41
F 2,267,398 886,831 1,380,567 4,178,034 4.71 2.56

Table 7.6: Dynamic performance complexity: temporal upconversion results
(prefetching on, fetch on write miss policy, 150 additional delay cycles).

The fetch on write miss policy fetches a cache line on a write miss, whereas
the allocate on write miss policy allocates a cache line on a write miss. We use
memory region based prefetching to limit the amount of write misses (Figure 7.5).
Fetching a cache line increases the write miss penalty and memory bandwidth. The
increase in memory bandwidth makes the implementations more memory bound,
as reflected by the discontinuities in the stall cycles curves, which occur at less
additional memory delay cycles (compared to Figure 7.6). Furthermore, the right
sides of the stall cycle curves are steeper when the fetch on write miss policy is
used.

Especially for higher memory latencies, the write miss policy significantly im-
pacts processor performance. At 150 additional memory delay cycles, implemen-
tation F takes 2,267,398 cycles with a fetch on write miss policy (Table 7.6) and
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Figure 7.8: Processor stall cycles as a function of additional memory delay cycles
(prefetching on, fetch on write miss policy).

1,868,948 cycles with an allocate on write miss policy (Table 7.4), a reduction of
17.6%.

7.4 Conclusions

The use of non-aligned memory access and new operations improves the dynamic
performance complexity of the temporal upconversion algorithm by 51.9% (Section
7.3.1, implementation A versus implementation F, allocate on write miss policy,
prefetching on, 0 additional delay cycles). Implementation F requires 953,825 cy-
cles per image; a temporal upconversion to 60 standard definition images per
second would require 57.2 MHz (12.7% of the 450 MHz processor frequency).
Prefetching improves the performance of implementation F by 44.2% at 150 ad-
ditional memory delay cycles (Section 7.3.3). The allocate on write miss policy
improves the performance of implementation F by 17.6%, when compared to a
fetch on write miss policy (Section 7.3.4, 150 additional memory delay cycles).
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Four-way 8-bit operation Two-way 16-bit operation

LD FRAC8 LD FRAC16
SUPER QUADUSCALEMIXUI SUPER DUALISCALEMIX

SUPER QUADUMEDIAN SUPER DUALIMEDIAN

Table 7.7: Four-way 8-bit operations, and their two-way 16-bit counterparts.

The need for increased image quality has resulted in image formats with 10- and
12-bit luminance value representations. In this chapter, the temporal upconverter
algorithm assumed 8-bit image pixel values. To accommodate the higher resolution
pixel values, the TM3270 supports all new pixel processing operations with a SIMD
subword size of both 8- and 16-bit. Table 7.7 lists the four-way 8-bit operations
as presented in this chapter, and their two-way 16-bit counterparts. Note that
the four-way 8-bit operations process four subwords, whereas the two-way 16-bit
operations only process two subwords.
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Conclusions

We have described the TM3270 media-processor design and evaluated the speedup
of new operations and other functional enhancements to the TriMedia architec-
ture. The TM3270 provides a media processing platform on which multiple video
and audio processing tasks can implemented, at a power consumption and silicon
area efficiency that allows for successful application in both the connected and
portable markets. Furthermore, its programmability provides flexibility, which
can be exploited to address future media standards. The TN3270 media-processor
was recently taped out as part of a SoC for the mobile phone market; initial silicon
samples indicate full functionality. The performance contributions of the TM3270
enhancements have been evaluated at an application level, rather than at a kernel
level. To this end, a significant effort has been made to optimize three complete
video applications, using the enhancements. To ensure realistic cycle behavior,
the TM3270 Verilog HDL model is used to guarantee a 100% accurate represen-
tation of processor and cache behavior. Furthermore, a performance evaluation
environment was created to represent realistic System-on-Chip processor behavior.

In the following three sections we summarize the main conclusions of the indi-
vidual chapters, briefly describe the main contributions of the thesis and propose
directions for further research.

8.1 Summary of conclusions

In Chapter 2 we described the architecture of the TM3270 TriMedia media-processor.
In terms of extensions to the TriMedia ISA, we described two-slot operations, col-
lapsed load operations, multiplication operations with rounding and clipping sup-
port and CABAC decoding operations. Besides these ISA extensions, we described
an instruction cache replacement policy that prevents cache trashing for code with
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temporal locality. Furthermore, we described a memory region based prefetching
technique, a combined software/hardware technique that prefetches data into the
data cache with limited overhead to the programmer.

Chapter 3 described the implementation of the TM3270. We gave an overview
of the processor pipeline and more detailed descriptions of the instruction fetch
unit and the load/store unit. For the instruction fetch unit, we described how
a compressed VLIW encoding and a sequential instruction cache design are im-
plemented to allow for a low power design. The load/store unit implements a
novel semi dual-ported cache design, providing high data bandwidth, at a limited
area penalty when compared to a single-ported cache. The cache sustains a high
store bandwidth by allowing two operations per VLIW instruction and a high
load bandwidth by sustaining a single load operation per VLIW instruction with a
bandwidth of twice the datapath size. All load and store operations support non-
aligned memory access, without incurring any processor stall cycles. Furthermore,
a new data prefetching technique is described.

Chapter 4 described the realization of the TM3270 in a low power CMOS
process technology, with a 90 nm feature size. The processor provides enough per-
formance to allow for even the most demanding video applications, as illustrated
by the dynamic performance complexity of a standard resolution H.264 video de-
coder (Section 4.3.2). On average the TM3270 provides a speedup of 2.29 over its
predecessor, the TM3260, for a series of video applications and kernels through
re-compilation and without any modifications to the applications (Section 4.3.1).

Chapter 5 evaluated the TM3270 performance on a motion estimation appli-
cation. The use of non-aligned memory access and new operations improves the
dynamic performance complexity of the motion estimator by 65.1% (Section 5.3.1).
The use of data prefetching improves the complexity by a factor of more than two
for larger off-chip SDRAM latencies (Section 5.3.3).

Chapter 6 evaluated the TM3270 performance on a MPEG2 video encoder.
Collapsed load operations improve the static performance complexity of the block
matching kernel by a factor of 1.56 for a 16x16 match (Section 6.2.1). Other new
operation improve the complexity of the texture pipeline kernels with a factor of
up to 3.06 (Section 6.3.8). Furthermore, we have shown that data prefetching can
improve performance by 40.2% for larger off-chip SDRAM latencies (Section 6.5).

Chapter 7 evaluated the TM3270 performance on a motion-compensated tem-
poral upconverter. The use of non-aligned memory access and new operations
improves the dynamic performance complexity of the temporal upconversion al-
gorithm by 51.9% (Section 7.3.1). Data prefetching can improve performance by
44.2% for larger off-chip SDRAM latencies (Section 7.3.3). Furthermore, we have
shown that a allocate on write miss policy improves performance by 17.6%, when
compared to a fetch on write miss policy (Section 7.3.4).
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8.2 Main contributions

The main contributions of this thesis are summarized as follows:

• A media-processor design that provides enough performance to address the
requirements of standard and some high definition video processing algorithms
in the connected market, such as high-end TV sets. At the same time, its
low power consumption enables successful application in portable battery
operated markets. The processor’s pipeline partitioning and the design of
individual units, such as the instruction fetch unit and the load/store unit,
are a result of a trade-off between performance, power and silicon area.

– The instruction fetch unit implements a sequential instruction cache de-
sign to limit power consumption and supports a cache line replacement
policy that prevents cache trashing as a result of code sequences with
limited temporal locality.

– The load/store unit design provides high performance through a semi
multi-ported cache, providing high data bandwidth to the data cache,
at a limited area penalty when compared to a single-ported cache. The
cache sustains a high store bandwidth by allowing two operations per
VLIW instruction and a high load bandwidth by sustaining a single load
operation per VLIW instruction with a bandwidth of twice the data-
path size. All load and store operations support non-aligned memory
access, without incurring any processor stall cycles. To our knowledge,
the particular implementation of the data cache is unprecedented. Fur-
thermore, a new data prefetching technique is introduced. From an ar-
chitectural perspective the technique provides limited overhead to the
programmer and from an implementation perspective it adds limited
overhead to the design in terms of silicon area.

• An extension of the TriMedia ISA with a series of new operations:

– Collapsed load operations combine the functionality of a traditional load
operation with that of a 2-taps filter function.

– Two-slot operations, as introduced in [68], find their first application in
the TM3270 design.

– CABAC decoding operations address the specific requirements of the
H.264 standard’s Context-based Adaptive Binary Arithmetic Coding
(CABAC) decoding process.
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• Evaluation of the media-processor design, using a series of video algorithms.
The use of complete algorithms as performance benchmarks allows us to
quantify the speedup of the individual design innovations at an applica-
tion level, rather than measuring the speedup of individual media kernels.
Furthermore, the evaluation is based on a cycle accurate description of the
processor and its SoC environment, which guarantees high accuracy of the
presented quantative data.

All of these contributions add to a common goal: a balanced processor design
in terms of silicon area and power consumption, which enables audio and standard
resolution video processing for both the connected and portable markets. Note
that although the innovations have been described in the context of the TM3270
design, their application extends to other media-processors and general-purpose
processors.

8.3 Further research

In this thesis we described the TM3270: not a prototype, but a completed design
that has taped out as part of a SoC for the mobile phone market. However,
advances in media processing applications may eventually require more powerful
media processing platforms. At the same time, flexibility, power consumption and
silicon area will remain key factors that determine the success of a new platform
in the cost-driven embedded consumer market. In this section we suggest some
directions of further research for media processing platforms.

For media-processor design we suggest the following:

• Re-address the TM3270 implementation from a power consumption perspec-
tive. Although the TM3270 design has acceptable power consumption for
the portable market, we feel that there is room for improvement. Currently,
a relative large portion of the power consumption is in the SRAMs that
implement the processor caches. Techniques such as small level 0 caches,
way prediction and the use of low power, but slower SRAMs to implement
a deeper pipelined (longer latency) data cache have all been evaluated for
general purpose processors. These evaluations typically focus on the average
execution behaviour of the technique. However, media-processors have more
realtime processing requirements, and as a result, techniques with impressive
average performance but with incidental significant performance drops are
unacceptable. Interesting techniques should result in predictable processor
execution behaviour.
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• Further enhance the load/store unit design with functionality that addresses
media processing data movement. The TM3270 uses memory region based
data prefetching to anticipate the need of data before it is actually used
by the application. As the hardware takes care of the prefetching, no ex-
plicit prefetch operations in software are required. However, once the data
is brought into the cache, it will stay there until removed, either explicitly
through invalidation or dirty-copy-back operations or implicitly as a result
of the LRU replacement policy. When no explicit operations are used to
remove the data from the cache, it may stay in the cache even till after it is
still required by the application. In this case the data occupies cache capac-
ity that could have been used for other data structures. When an application
uses data only once, it is to be preferred that the data is invalidated in
the cache (and the associated cache line made the least-recently-used cache
line), freeing up cache capacity for other data structures. Likewise, when
an application produces data and does not access it again, it is to be pre-
ferred that the data is copied back to memory and invalidated in the cache.
The described behavior could be implemented similar to the region based
prefetching. Performance evaluation is required to evaluate the processor
performance benefit of better utilizing the available cache capacity.

• With an increasing amount of processor silicon area spent in processor over-
head functions such as instruction and data caches, the relative cost of the
computational resources deceases. To improve media-processor performance,
an increase of computational resources may have become attractive, even
when the amount of application parallelism only allows for a limited return
on investment. E.g., the datapath could be doubled to 64-bit or the issue
bandwidth could be increased. In the case of a 64-bit datapath, source-
level backward compatibility is an important design constraint. In the case
of increasing the issue bandwidth, clustering is most likely necessary, com-
plicating scheduler technology and potentially degrading performance as a
result of inter-cluster communication. New techniques should be evaluated
anticipating/using the latest of video codec applications.

The previous suggestions for media-processor design will bring limited advances
in terms of power consumption, efficiency and performance level. As mentioned
earlier in this thesis (Section 1.1), the relative strengths and weaknesses of different
media processing approaches suggests that the best solution may be a combination
of approaches. We expect that VLIW-based media-processors provide an attractive
component for any combination of approaches, as they provide more raw general-
purpose performance than other types of embedded processors and have functional
enhancements that address media processing.
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To extend a media-processor with dedicated hardware or reconfigurable ac-
celeration, both communication and synchronization need to be addressed. We
distinguish a load/store based interface and a functional unit based interface. A
load/store based interface allows the control and observation of a relatively in-
dependent acceleration block. The existing media-processor bus interface does
most likely not provide the latency and throughput requirements required for such
an approach. A dedicated acceleration bus interface, with associated accelerator
load and store operations could be added to provide the required functionality.
The associated load and store operations are scheduled by the media-processor
compiler/scheduler. A functional unit based interface allows for the addition of
accelerators as if they were media-processor functional units. New media-processor
operations are implemented in dedicated hardware or reconfigurable logic, the op-
erations provide high communication bandwdith through the media-processor’s
register-file and provide synchronization as the operations are scheduled by the
media-processor compiler/scheduler.

In [51], M. Sima present the extension of a TriMedia processor with a run-time
reconfigurable FPGA based approach. A functional unit based interface is used
to combine the approaches. However, the interface is restricted to a single VLIW
issue slot of the media-processor, limiting the communication bandwidth between
the media-processor and the FPGA based accelerator. As indicated in [26] this
restriction may limit the performance potential of the approach. We suggest the
evaluation of FPGA based accelerators that utilize the register-file bandwidth of
all five issue slots. This increases the communication bandwidth and allows for
the creation of more complex operations. Besides, the cost in terms of silicon area
of FPGA based approaches is currently too high to enable application in low cost
SoCs, and needs to be addressed

Independent of whether the acceleration is performed by dedicated hardware
or through reconfigurability, the partitioning of an application in parts performed
by the media-processor and parts performed by accelerators needs to be addressed.
Tools to identify or perform partitioning, taking into account communication and
synchronization between media-processor and accelerators, are required to enable
an efficient solution. Furthermore, there is a need for tooling that can perform or
assist in the mapping of application parts to the accelerators.
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Appendix A

New operations

T his appendix defines the new TM3270 operations that are presented in the
thesis. Each operation is executed by a specific functional unit; Table A.1

gives an overview of the functional units, with their latency and issue slot loca-
tion(s).

Functional unit Latency Issue slots

CONST 1 1 2 3 4 5
ALU 1 1 2 3 4 5
SHIFTER 1 1 2 3 4 5
JUMP 5 2 4
DSPALU 2 1 3 4
IMUL 4 2 3
FALU 4 1 4
FMUL 4 2 3
FCMP 2 2 3
FTOUGH 17 2
LS ST - 4 5
LS LD 3 5
LS SPECIAL - 5
LS FRAC 6 5
SUPER ALU 1 1 + 2 3 + 4
SUPER DSPALU 2 1 + 2 3 + 4
SUPER IMUL 4 2 + 3
SUPER CABAC 4 2 + 3
SUPER LS LD 4 4 + 5

Table A.1: TM3270 functional units. All functional units, except for the
FTOUGH unit, are fully pipelined.
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A.1 Single slot operations

Syntax

[ IF guard ] ALLOC SET src1 src2 LS SPECIAL

Description

Allocates a data cache line, and the data of the allocated line is set to a 32-bit repeated
pattern as contained within operand src1.

Function (big endian mode)

if guard[0] {

int i;

int address = src2 & 0xffff:ff80; // start of 128 byte line

for (i = 0; i < 32; i++) {

Mem[address++] = src1[31:24];

Mem[address++] = src1[23:16];

Mem[address++] = src1[15:8];

Mem[address++] = src1[7:0];

}

}

Syntax

[ IF guard ] DUALASL src1 src2 → dst1 SHIFTER

Description

Two-way 16-bit SIMD operation that performs a left shift.

Function

if guard[0] {

dst1[31:16] = src1[31:16] << src2;

dst1[15:0] = src1[15:0] << src2;

}
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Syntax

[ IF guard ] CLSAME src1 src2 → dst1 DSPALU

Description

Computes the amount of leading bits that are the same within the sources.

Function

if guard[0] {

int temp = src1 ^ src2;

int clz = 0;

while ( (clz < 32)

&& (temp & (1 << (31-clz)) == 0))

clz++;

dst1 = clz;

}

Syntax

[ IF guard ] DUALISCALEUI RNINT src1 src2 → dst1 DSPMUL

Description

Two-way 16-bit SIMD operation that computes a rounded, scaled and clipped product of
16-bit input values.

Function

if guard[0] {

int temp;

int rounding;

temp = (U16) src1[31:16] * (I16) src2[31:16];

rounding = ((I16) src2[31:16] < 0) ? 0x1fff : 0x2000;

temp = (temp + rounding) >> 14; // scaling

dst1[31:16] = IMIN (IMAX (I16_MIN, temp), I16_MAX); // clipping

temp = (U16) src1[15:0] * (I16) src2[15:0];

rounding = ((I16) src2[15:0] < 0) ? 0x1fff : 0x2000;

temp = (temp + rounding) >> 14;

dst1[15:0] = IMIN (IMAX (I16_MIN, temp), I16_MAX);

}
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Syntax

[ IF guard ] LD FRAC8 src1 src2 → dst1 LS FRAC

Description

Retrieves five unsigned 8-bit integers from memory and performs a weighted average on
neighboring elements.

Function (big endian mode)

if guard[0] {

U8 data0 = Mem[src1];

U8 data1 = Mem[src1+1];

U8 data2 = Mem[src1+2];

U8 data3 = Mem[src1+3];

U8 data4 = Mem[src1+4];

U4 weight = src2[3:0];

int rounding = 8;

dst1[31:24] = (data0 * (16-weight) + data1 * weight + rounding) >> 4;

dst1[23:16] = (data1 * (16-weight) + data2 * weight + rounding) >> 4;

dst1[15:8] = (data2 * (16-weight) + data3 * weight + rounding) >> 4;

dst1[7:0] = (data3 * (16-weight) + data4 * weight + rounding) >> 4;

}

Syntax

[ IF guard ] LD PACKFRAC8 src1 src2 → dst1 LS FRAC

Description

Retrieves eight unsigned 8-bit integers from memory and performs a weighted average on
neighboring elements.

Function (big endian mode)

if guard[0] {

U8 data0 = Mem[src1];

U8 data1 = Mem[src1+1];

U8 data2 = Mem[src1+2];

U8 data3 = Mem[src1+3];

U8 data4 = Mem[src1+4];

U8 data5 = Mem[src1+5];

U8 data6 = Mem[src1+6];

U8 data7 = Mem[src1+7];

U4 weight = src2[3:0];

int rounding = 8;

dst1[31:24] = (data0 * (16-weight) + data1 * weight + rounding) >> 4;

dst1[23:16] = (data2 * (16-weight) + data3 * weight + rounding) >> 4;

dst1[15:8] = (data4 * (16-weight) + data5 * weight + rounding) >> 4;

dst1[7:0] = (data6 * (16-weight) + data7 * weight + rounding) >> 4;

}
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Syntax

[ IF guard ] LD FRAC16 src1 src2 → dst1 LS FRAC

Description

Retrieves three unsigned 16-bit integers from memory and performs a weighted average on
neighboring elements.

Function (big endian mode)

if guard[0] {

U16 data0 = Mem[src1];

U16 data1 = Mem[src1+2];

U16 data2 = Mem[src1+4];

U4 weight = src2[3:0];

int rounding = 8;

dst1[31:16] = (data0 * (16-weight) + data1 * weight + rounding) >> 4;

dst1[15:0] = (data1 * (16-weight) + data2 * weight + rounding) >> 4;

}

Syntax

[ IF guard ] LD PACKFRAC16 src1 src2 → dst1 LS FRAC

Description

Retrieves four unsigned 16-bit integers from memory and performs a weighted average on
neighboring elements.

Function (big endian mode)

if guard[0] {

U16 data0 = Mem[src1];

U16 data1 = Mem[src1+2];

U16 data2 = Mem[src1+4];

U16 data3 = Mem[src1+6];

U4 weight = src2[3:0];

int rounding = 8;

dst1[31:16] = (data0 * (16-weight) + data1 * weight + rounding) >> 4;

dst1[15:0] = (data2 * (16-weight) + data3 * weight + rounding) >> 4;

}
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Syntax

[ IF guard ] ISCALEFIR8UI src1 src2 → dst1 DSPMUL

Description

Four-way 8-bit SIMD operation that computes a rounded, scaled and clipped sum of four
products.

Function

if guard[0] {

int temp;

int rounding = 0x20;

temp = (U8) src1[31:24] * (I8) src2[31:24]

+ (U8) src1[23:16] * (I8) src2[23:16]

+ (U8) src1[15:8] * (I8) src2[15:8]

+ (U8) src1[7:0] * (I8) src2[7:0];

temp = (temp + rounding) >> 6;

dst1 = IMIN (IMAX (I8_MIN, temp), I8_MAX);

}

Syntax

[ IF guard ] USCALEFIR8UI src1 src2 → dst1 DSPMUL

Description

Four-way 8-bit SIMD operation that computes an unsigned rounded, scaled and clipped sum
of four products.

Function

if guard[0] {

int temp;

int rounding = 0x20;

temp = (U8) src1[31:24] * (I8) src2[31:24]

+ (U8) src1[23:16] * (I8) src2[23:16]

+ (U8) src1[15:8] * (I8) src2[15:8]

+ (U8) src1[7:0] * (I8) src2[7:0];

temp = (temp + rounding) >> 6;

dst1 = IMIN (IMAX (0, temp), U8_MAX);

}
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Syntax

[ IF guard ] ISCALEFIR16 src1 src2 → dst1 DSPMUL

Description

Two-way 16-bit SIMD operation that computes a rounded, scaled and clipped sum of two
products.

Function

if guard[0] {

int temp;

int rounding = 0x2000;

temp = (I16) src1[31:16] * (I16) src2[31:16]

+ (I16) src1[15:0] * (I16) src2[15:0];

temp = (temp + rounding) >> 14;

dst1 = IMIN (IMAX (I16_MIN, temp), I16_MAX);

}

A.2 Two-slot operations

Syntax

[ IF guard ] SUPER DUALIMEDIAN src1 src2 src3 → dst1 SUPER DSPALU

Description

Two-way 16-bit SIMD operation that computes the three-input median of signed 16-bit input
values.

Function

if guard[0] {

dst1[31:16] = IMIN (IMAX (IMIN (src1[31:16], src2[31:16]), src3[31:16]),

IMAX (src1[31:16], src2[31:16]));

dst1[15:0] = IMIN (IMAX (IMIN (src1[15:0], src2[15:0]), src3[15:0]),

IMAX (src1[15:0], src2[15:0]));

}
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Syntax

[ IF guard ] SUPER QUADUMEDIAN src1 src2 src3 → dst1 SUPER DSPALU

Description

Four-way 8-bit SIMD operation that computes the three-input median of unsigned 8-bit
input values.

Function

if guard[0] {

dst1[31:24] = UMIN (UMAX (UMIN (src1[31:24], src2[31:24]), src3[31:24]),

UMAX (src1[31:24], src2[31:24]));

dst1[23:16] = UMIN (UMAX (UMIN (src1[23:16], src2[23:16]), src3[23:16]),

UMAX (src1[23:16], src2[23:16]));

dst1[15:8] = UMIN (UMAX (UMIN (src1[15:8], src2[15:8]), src3[15:8]),

UMAX (src1[15:8], src2[15:8]));

dst1[7:0] = UMIN (UMAX (UMIN (src1[7:0], src2[7:0]), src3[7:0]),

UMAX (src1[7:0], src2[7:0]));

}

Syntax

[ IF guard ] SUPER LD32R src3 src4 → dst1 dst2 SUPER LS LD

Description

Retrieves two 32-bit integers from consecutive addresses in memory.

Function

if guard[0] {

dst1 = Mem[src3+src4];

dst2 = Mem[src3+src4+4];

}
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Syntax

[ IF guard ] SUPER IFIR8UI src1 src2 src3 src4 → dst1 SUPER DSPMUL

Description

Four-way 8-bit SIMD operation that computes the sum of eight products.

Function

if guard[0] {

dst1 = (U8) src1[31:24] * (I8) src2[31:24]

+ (U8) src1[23:16] * (I8) src2[23:16]

+ (U8) src1[15:8] * (I8) src2[15:8]

+ (U8) src1[7:0] * (I8) src2[7:0]

+ (U8) src3[31:24] * (I8) src4[31:24]

+ (U8) src3[23:16] * (I8) src4[23:16]

+ (U8) src3[15:8] * (I8) src4[15:8]

+ (U8) src3[7:0] * (I8) src4[7:0];

}

Syntax

[ IF guard ] SUPER ISCALEFIR8UI src1 src2 src3 src4 → dst1
SUPER DSPMUL

Description

Four-way 8-bit SIMD operation that computes a rounded, scaled and clipped sum of eight
products.

Function

if guard[0] {

int temp;

int rounding = 0x20;

temp = (U8) src1[31:24] * (I8) src2[31:24]

+ (U8) src1[23:16] * (I8) src2[23:16]

+ (U8) src1[15:8] * (I8) src2[15:8]

+ (U8) src1[7:0] * (I8) src2[7:0]

+ (U8) src3[31:24] * (I8) src4[31:24]

+ (U8) src3[23:16] * (I8) src4[23:16]

+ (U8) src3[15:8] * (I8) src4[15:8]

+ (U8) src3[7:0] * (I8) src4[7:0];

temp = (temp + rounding) >> 6;

dst1 = IMIN (IMAX (I8_MIN, temp), I8_MAX);

}
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Syntax

[ IF guard ] SUPER USCALEFIR8UI src1 src2 src3 src4 → dst1
SUPER DSPMUL

Description

Four-way 8-bit SIMD operation that computes an unsigned rounded, scaled and clipped sum
of eight products.

Function

if guard[0] {

int temp;

int rounding = 0x20;

temp = (U8) src1[31:24] * (I8) src2[31:24]

+ (U8) src1[23:16] * (I8) src2[23:16]

+ (U8) src1[15:8] * (I8) src2[15:8]

+ (U8) src1[7:0] * (I8) src2[7:0]

+ (U8) src3[31:24] * (I8) src4[31:24]

+ (U8) src3[23:16] * (I8) src4[23:16]

+ (U8) src3[15:8] * (I8) src4[15:8]

+ (U8) src3[7:0] * (I8) src4[7:0];

temp = (temp + rounding) >> 6;

dst1 = IMIN (IMAX (0, temp), U8_MAX);

}

Syntax

[ IF guard ] SUPER IFIR16 src1 src2 src3 src4 → dst1 SUPER DSPMUL

Description

Two-way 16-bit SIMD operation that computes the sum of four products.

Function

if guard[0] {

dst1 = (I16) src1[31:16] * (I16) src2[31:16]

+ (I16) src1[15:0] * (I16) src2[15:0]

+ (I16) src3[31:16] * (I16) src4[31:16]

+ (I16) src3[15:0] * (I16) src4[15:0];

}
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Syntax

[ IF guard ] SUPER ISCALEFIR16 src1 src2 src3 src4 → dst1 SUPER DSPMUL

Description

Two-way 16-bit SIMD operation that computes a rounded, scaled and clipped sum of four
products.

Function

if guard[0] {

int temp;

int rounding = 0x2000;

temp = (I16) src1[31:16] * (I16) src2[31:16]

+ (I16) src1[15:0] * (I16) src2[15:0]

+ (I16) src3[31:16] * (I16) src4[31:16]

+ (I16) src3[15:0] * (I16) src4[15:0];

temp = (temp + rounding) >> 14;

dst1 = IMIN (IMAX (I16_MIN, temp), I16_MAX);

}

Syntax

[ IF guard ] SUPER QUADIMIXUI src1 src2 src3 src4 → dst1 dst2
SUPER DSPMUL

Description

Four-way 8-bit SIMD operation that computes four sums of two products.

Function

if guard[0] {

int temp;

temp = (U8) src1[31:24] * (I8) src2[31:24] + (U8) src3[31:24] * (I8) src4[31:24];

dst1[31:16] = IMIN (IMAX (I16_MIN, temp), I16_MAX);

temp = (U8) src1[15:0] * (I8) src2[15:0] + (U8) src3[15:0] * (I8) src4[15:0];

dst1[15:0] = IMIN (IMAX (I16_MIN, temp), I16_MAX);

temp = (U8) src1[15:8] * (I8) src2[15:8] + (U8) src3[15:8] * (I8) src4[15:8];

dst2[31:16] = IMIN (IMAX (I16_MIN, temp), I16_MAX);

temp = (U8) src1[7:0] * (I8) src2[7:0] + (U8) src3[7:0] * (I8) src4[7:0];

dst2[15:0] = IMIN (IMAX (I16_MIN, temp), I16_MAX);

}
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Syntax

[ IF guard ] SUPER QUADISCALEMIXUI src1 src2 src3 src4 → dst1
SUPER DSPMUL

Description

Four-way 8-bit SIMD operation that computes four signed rounded, scaled and clipped sums
of two products.

Function

if guard[0] {

int temp;

int rounding = 0x20;

temp = (U8) src1[31:24] * (I8) src2[31:24] + (U8) src3[31:24] * (I8) src4[31:24];

temp = (temp + rounding) >> 6;

dst1[31:24] = IMIN (IMAX (I8_MIN, temp), I8_MAX);

temp = (U8) src1[15:0] * (I8) src2[15:0] + (U8) src3[15:0] * (I8) src4[15:0];

temp = (temp + rounding) >> 6;

dst1[23:16] = IMIN (IMAX (I8_MIN, temp), I8_MAX);

temp = (U8) src1[15:8] * (I8) src2[15:8] + (U8) src3[15:8] * (I8) src4[15:8];

temp = (temp + rounding) >> 6;

dst1[15:8] = IMIN (IMAX (I8_MIN, temp), I8_MAX);

temp = (U8) src1[7:0] * (I8) src2[7:0] + (U8) src3[7:0] * (I8) src4[7:0];

temp = (temp + rounding) >> 6;

dst1[7:0] = IMIN (IMAX (I8_MIN, temp), I8_MAX);

}
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Syntax

[ IF guard ] SUPER QUADUSCALEMIXUI src1 src2 src3 src4 → dst1
SUPER DSPMUL

Description

Four-way 8-bit SIMD operation that computes four unsigned rounded, scaled and clipped
sums of two products.

Function

if guard[0] {

int temp;

int rounding = 0x20;

temp = (U8) src1[31:24] * (I8) src2[31:24] + (U8) src3[31:24] * (I8) src4[31:24];

temp = (temp + rounding) >> 6;

dst1[31:24] = IMIN (IMAX (0, temp), U8_MAX);

temp = (U8) src1[15:0] * (I8) src2[15:0] + (U8) src3[15:0] * (I8) src4[15:0];

temp = (temp + rounding) >> 6;

dst1[23:16] = IMIN (IMAX (0, temp), U8_MAX);

temp = (U8) src1[15:8] * (I8) src2[15:8] + (U8) src3[15:8] * (I8) src4[15:8];

temp = (temp + rounding) >> 6;

dst1[15:8] = IMIN (IMAX (0, temp), U8_MAX);

temp = (U8) src1[7:0] * (I8) src2[7:0] + (U8) src3[7:0] * (I8) src4[7:0];

temp = (temp + rounding) >> 6;

dst1[7:0] = IMIN (IMAX (0, temp), U8_MAX);

}

Syntax

[ IF guard ] SUPER DUALISCALEMIX src1 src2 src3 src4 → dst1
SUPER DSPMUL

Description

Two-way 16-bit SIMD operation that computes two signed rounded, scaled and clipped sums
of two products.

Function

if guard[0] {

int temp;

int rounding = 0x2000;

temp = (I16) src1[31:16] * (I16) src2[31:16] + (I16) src3[31:16] * (I16) src4[31:16];

temp = (temp + rounding) >> 14;

dst1[31:16] = IMIN (IMAX (I16_MIN, temp), I16_MAX);

temp = (I16) src1[15:0] * (I16) src2[15:0] + (I16) src3[15:0] * (I16) src4[15:0];

temp = (temp + rounding) >> 14;

dst1[15:0] = IMIN (IMAX (I16_MIN, temp), I16_MAX);

}
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A.3 CABAC operations

This section describes the TM3270 CABAC operations (Section 2.3.5). These op-
erations were added to meet the processor’s H.264 decoding requirement: main
profile H.264 decoding at main level at a sustained bitrate of at least 2.5 Mbits/s
with a maximum dynamic performance complexity of 300 MHz. The CABAC op-
erations are used to efficiently implement the biari decode symbol function, which
decodes a single binary value bit from a CABAC coded bitstream [38]:

LpsRangeTable[64][4] // range table for least probable symbol (LPS)

MpsNextStateTable[64] // MPS state transition table

LpsNextStateTable[64] // LPS state transition table

biari_decode_symbol ( // decodes a single binary value "bit" from the

// CABAC coded bitstream

inout value, // coding value, 10-bit value

inout range, // coding range, 9-bit value

inout state, // modeling context state, 6-bit

inout mps, // modeling context MPS, 1-bit

in stream_data, // bitstream data

inout stream_bit_position, // bit position in "stream_data"

out bit) // decoded binary value

{

stream_data_aligned = stream_data << stream_bit_position;

range_lps = LpsRangeTable[state][(range >> 6) & 3)];

temp_range = range - range_lps

if (value < temp_range) { // MPS: most probable symbol

value = value;

range = temp_range;

bit = mps;

mps = mps;

state = MpsNextStateTable[state];

} else { // LPS: least probable symbol

value = value - temp_range;

range = range_lps;

bit = !mps;

mps = mps ^ (state != 0);

state = LpsNextStateTable[state];

}

while (range < 256) { // renormalization, at most 8 bits can be consumed

value = (value << 1)

| ((stream_data_aligned >> 31) & 1);

range <<= 1;

stream_data_aligned <<= 1;

stream_bit_position += 1;

}

}

The two 64 entry state transition tables MpsNextState and LpsNextState
are implemented as a hard-coded lookup tables in the SUPER CABAC functional
unit, and are defined by Tables A.2 and A.3. The 64 by 4 entry least probable
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symbol range table LpsRangeTable is implemented as a hard-coded lookup table
in the SUPER CABAC functional unit, and is defined by Table A.4.

State 0 1 2 3 4 5 6 7 8 9

NextState 1 2 3 4 5 6 7 8 9 10

State 10 11 12 13 14 15 16 17 18 19

NextState 11 12 13 14 15 16 17 18 19 20

State 20 21 22 23 24 25 26 27 28 29

NextState 21 22 23 24 25 26 27 28 29 30

State 30 31 32 33 34 35 36 37 38 39

NextState 31 32 33 34 35 36 37 38 39 40

State 40 41 42 43 44 45 46 47 48 49

NextState 41 42 43 44 45 46 47 48 49 50

State 50 51 52 53 54 55 56 57 58 59

NextState 51 52 53 54 55 56 57 58 59 60

State 60 61 62 63

NextState 61 62 62 63

Table A.2: Most probable symbol state transition table: MpsStateNext.

State 0 1 2 3 4 5 6 7 8 9

NextState 0 0 1 2 2 4 4 5 6 7

State 10 11 12 13 14 15 16 17 18 19

NextState 8 9 9 11 11 12 13 13 15 15

State 20 21 22 23 24 25 26 27 28 29

NextState 16 16 18 18 19 19 21 21 22 22

State 30 31 32 33 34 35 36 37 38 39

NextState 23 24 24 25 26 26 27 27 28 29

State 40 41 42 43 44 45 46 47 48 49

NextState 29 30 30 30 31 32 32 33 33 33

State 50 51 52 53 54 55 56 57 58 59

NextState 34 34 35 35 35 36 36 36 37 37

State 60 61 62 63

NextState 37 38 38 63

Table A.3: Least probable symbol state transition table: LpsStateNext.
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(range >> 6) & 3 (range >> 6) & 3

State 0 1 2 3 State 0 1 2 3

0 128 176 208 240 32 27 33 39 45
1 128 167 197 227 33 26 31 37 43
2 128 158 187 216 34 24 30 35 41
3 123 150 178 205 35 23 28 33 39
4 116 142 169 195 36 22 27 32 37
5 111 135 160 185 37 21 26 30 35
6 105 128 152 175 38 20 24 29 33
7 100 122 144 166 39 19 23 27 31
8 95 116 137 158 40 18 22 26 30
9 90 110 130 150 41 17 21 25 28
10 85 104 123 142 42 16 20 23 27
11 81 99 117 135 43 15 19 22 25
12 77 94 111 128 44 14 18 21 24
13 73 89 105 122 45 14 17 20 23
14 69 85 100 116 46 13 16 19 22
15 66 80 95 110 47 12 15 18 21
16 62 76 90 104 48 12 14 17 20
17 59 72 86 99 49 11 14 16 19
18 56 69 81 94 50 11 13 15 18
19 53 65 77 89 51 10 12 15 17
20 51 62 73 85 52 10 12 14 16
21 48 59 69 80 53 9 11 13 15
22 46 56 66 76 54 9 11 12 14
23 43 53 63 72 55 8 10 12 14
24 41 50 59 69 56 8 9 11 13
25 39 48 56 65 57 7 9 11 12
26 37 45 54 62 58 7 9 10 12
27 35 43 51 59 59 7 8 10 11
28 33 41 48 56 60 6 8 9 11
29 32 39 46 53 61 6 7 9 10
30 30 37 43 50 62 6 7 8 9
31 29 35 41 48 63 2 2 2 2

Table A.4: Least probable symbol range table: LpsRangeTable.
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Syntax

[ IF guard ] SUPER CABAC CTX src1 src2 src3 src4 → dst1 dst2
SUPER CABAC

Description

H.264 context modeling.

Function

if guard[0] {

int value = (src1 >> 16) & 0x3ff;

int range = src1 & 0x1ff;

int stream_bit_position = src2 & 0x1f;

int stream_data = src3;

int state = (src4 >> 1) & 0x3f;

int mps = src4 & 1;

int stream_data_aligned = stream_data << stream_bit_position;

int range_lps = LpsRangeTable[state][(range >> 6) & 3)];

int temp_range = range - range_lps

if (value < temp_range) { // MPS: most probable symbol

value = value;

range = temp_range;

mps = mps;

state = MpsNextStateTable[state];

} else { // LPS: least probable symbol

value = value - temp_range;

range = range_lps;

mps = mps ^ (state != 0);

state = LpsNextStateTable[state];

}

while (range < 256) { // renormalization, at most 8 bits can be consumed

value = (value << 1)

| ((stream_data_aligned >> 31) & 1);

range <<= 1;

stream_data_aligned <<= 1;

stream_bit_position += 1;

}

dst1 = (value << 16) | range;

dst2 = (state << 16) | mps;

}
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Syntax

[ IF guard ] SUPER CABAC STR src1 src2 src4 → dst1 dst2
SUPER CABAC

Description

H.264 bitstream processing.

Function

if guard[0] {

int value = (src1 >> 16) & 0x3ff;

int range = src1 & 0x1ff;

int stream_bit_position = src2 & 0x1f;

int state = (src4 >> 1) & 0x3f;

int mps = src4 & 1;

int bit;

int range_lps = LpsRangeTable[state][(range >> 6) & 3)];

int temp_range = range - range_lps

if (value < temp_range) { // MPS: most probable symbol

range = temp_range;

bit = mps;

} else { // LPS: least probable symbol

range = range_lps;

bit = !mps;

}

while (range < 256) { // renormalization, at most 8 bits can be consumed

range <<= 1;

stream_bit_position += 1;

}

dst1 = stream_bit_position & 0x3f;

dst2 = bit;

}



De TM3270 Media-processor
Jan-Willem van de Waerdt

Samenvatting

I
n dit proefschrift presenteren we de TM3270 VLIW media-processor, de laatste
processor in de rij van TriMedia processoren. We beschrijven de innovatieve as-

pecten van deze processor in relatie tot zijn voorganger: de TM3260. We beschri-
jven innovaties op het gebied van het processor data cache geheugen, zoals het
automatisch pre-fetchen van data in het cache geheugen. Daarnaast worden ar-
chitectuuruitbreidingen beschreven, zoals uitbreidingen aan de Instructie Set Ar-
chitectuur (ISA) van de processor, Voorbeelden van deze uitbreidingen zijn col-
lapsed load operaties, two-slot operaties en specifieke H.264 CABAC operaties.
De TM3270 innovaties hebben een gemeenschappelijk doel: een gebalanceerd pro-
cessor ontwerp in termen van silicium oppervlakte en stroomverbruik, dat in staat
is om geluid en standaard resolutie video materiaal te bewerken. De prestatie van
de processor wordt geevalueerd aan de hand van een serie van video applicaties:
een bewegings-schatter. Het decoderen van een MPEG2 video stroom en het op-
schalen van video materiaal in de tijd. Elk van deze applicaties is geoptimaliseerd
door gebruik te maken van de innovaties van de TM3270 processor. Dit stelt ons
in staat om de prestatieverbetering van de individuele innovaties te meten, zoals
verbeteringen op het gebied van processor data-cache geheugen en nieuwe oper-
aties. We tonen aan dat verbeteringen in het processor data cache geheugen, zoals
het automatisch pre-fetchen van data in het cache geheugen, de prestatie van de
processor kan verdubbelen, wanneer het achtergrond geheugen traag is. De nieuwe
operaties reduceren het aantal VLIW instructies dat door de processor wordt uit-
gevoerd (de zogenaamde statische complexiteit) en verbeteren de prestatie van
de processor (de zogenaamde dynamische complexiteit). Gecombineerd resulteren
de innovaties tot een verdubbeling van de TM3270 prestatie in relatie tot zijn
voorganger, de TM3260, op de geevalueerde video applicaties.
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