[AC-06-B5.7.05

CDHS DESIGN FOR A UNIVERSITY NANO-SATELLITE

Author
Gerard Aalbers
Computer Engineering, EEMCS, TU Delft, The Netherlands
g.t.aalbers@delfic3.nl

Co-Author(s)
Georgi N. Gaydadijev
Computer Engineering, EEMCS, TU Delft, The Netherlands
g.n.gaydadijev@Qce.et.tudelft.nl

Rouzbeh Amini
System Integration, AE, TU Delft, The Netherlands
r.amini@Ir.tudelft.nl

Abstract

The design starting points for the Delfi-C3 university nano-satellite are the absence of a battery, use
of a commercial off the shelf structure and on-board computer, single failure survivability strategy and
limited operational flexibility. Two architectures were considered during the design of the command

and data handling subsystem:

a star architecture, with the on-board computer in the center, and a

distributed architecture, with the on-board computer as and microcontrollers for subsystem control. The
microcontrollers are connected to the on-board computer by a serial databus based on the 12C standard.
To improve its reliability, a simple error detection and correction approach based on parity bits will be
used. The star architecture proved too cumbersome to work with and the distributed architecture was

selected as the baseline design for Delfi-C3.

Full text

1 INTRODUCTION

The Delfi-C3 satellite is the first Dutch university
nano-satellite and is currently under development at
the Delft University of Technology in The Nether-
lands [1]. The project was initiated in November
2004 and is a cooperation between the faculties of
Aerospace Engineering (AE) and Electrical Engineer-
ing, Mathematics and Computer Science (EEMCS).
The project is primarily run by a mix of MSc. and
BEng. students, although for some parts the help
of industry or university supervisors is used. The
Delfi-C3 satellite is based on the 3-unit cubesat
package which has been bought from Pumpkin inc.
This packages includes a structure of approximately

10x10x30 centimeters and an electronics board in-
cluding an On-board Computer (OBC); this package
can be considered Commercial Off The Shelf (COTS).

Delfi-C3 is currently under contract for a launch on
the 30th of June 2007 from an Indian launchsite.
This launch will place Delfi-C3 in a sun-synchronous
low earth orbit at an altitude of approximately 600
km.

1.1 Delfi-C3 mission and payloads

The mission of the Delfi-C3 satellite mainly concerns
its three payloads. These payloads are:

e Thin Film Solar Cells (TFSC), developed and

provided by the Dutch company Dutch Space.
Primary payload and first flight opportunity for
these cells.

e The Autonomous Wireless Sun Sensor (AWSS),
a sun sensor with a wireless connection for data
transfer to the Command and Data Handling
Subsystem (CDHS) and its own power provision.
This sun sensor is developed by the Dutch re-
search institute TNO.

e A highly efficient on-chip radio transceiver, de-
veloped by the faculty of EEMCS of the TU
Delft. Due to time constraints, Delfi-C3 will only
fly its power-amplifier.

The mission objectives are separated into techni-
cal and educational objectives. The educational ob-
jectives are fairly straightforward, and come down
to succeeding in actually building and launching the
satellite with a team of students. Since all payloads
are in-orbit demonstrations of new technologies, the
technical objectives are mostly concerned with get-
ting the data from these experiments to the ground.
Of these, the primary technical objective of the Delfi-
C3 mission is to get the experiment data of the TFSC
payload to the ground. The fourth technical objective
is to establish a network of ground stations, which
helps to increase coverage for low earth-orbit mis-
sions.

Figure 1: The Delfi-C3 satellite

1.2 The Command and Data Handling
Subsystem
The Delfi-C3 Command and Data Handling

Subsystem (or On Board Data Handling subsystem)
can be characterized by the following functionality:

e Processing, storage, distribution and execution
of received telecommands

e Acquisition, processing and storage of data pre-
sented by different subsystems and on-board ex-
periments

e Control and synchronization of the measure-
ments performed on the on-board experiments

e Decoding data received from and encoding data
transmitted to the communications platform

e Control of satellite operation based on available
data

All items mentioned above are standard functions
for a CDHS to perform. The Delfi-C3 CDHS dis-
tinguishes itself from others not by functionality but
by implementation, which will be discussed in the
remainder of the paper. First we will introduce the
starting points of the design of the CDHS. This leads
to the next two sections in which we will discuss the
two architectures that were considered for the orga-
nization of the CDHS. In these chapters we will dis-
cuss the basic concept, details and drawbacks of the
architecture, all having the Delfi-C3 satellite in mind.
Since one of these architectures uses a data bus, a sec-
tion on the databus is included to discuss its details.
Finally, there will be conclusions and recommenda-
tions.

2 DESIGN STARTING POINTS

In this section we will present the design starting
points of the CDHS. These starting points are de-
rived from higher level mission concepts or require-
ments and pose constraints on the design of the
CDHS.

2.1 Commercial Off The Shelf flightboard

As mentioned in the introduction, the Delfi-C3 satel-
lite is based on a COTS structure and OBC. The
OBC resides on a flightboard, which can be seen in
figure 2. This board provides the following:

e Remove Before Flight (RBF) pin

USB type B connector (connected to the OBC)

External power connector

Mounting sockets for 2.4 GHz transceiver

e Texas Instruments MSP430F 169 type microcon-
troller

e JTAG programming and testing connector
e Several crystal oscillators

e Connector for the CubesatKit bus

Figure 2: The flightboard including OBC

The use of this board, which was decided upon at
the very start of the project to provide a head-start
in the design, affects the satellite’s and CDHS de-
sign in several ways. The flightboard is based on the
PC-104 standard and is placed in a stack with all
other Printed Circuit Boards (PCB). The design of
the structure and flightboard force the other PCBs
to be of the same size and take stacking connectors
into account when laying out their components. The
flightboard also provides several external connectors
but these allow only limited freedom when a cus-
tom connector design is required. With the choice
of the flightboard, the Texas Instruments microcon-
troller that is incorporated, also became part of the
satellite’s design.

2.2 Absence of power storage

One of the more interesting aspects of the Delfi-C3
project is the absence of a battery in the satellite.
This was done for three reasons. The first is that
all the experiments only produce useful data when
the satellite is in sunlight, this all but eliminates the
need for the satellite to function in eclipse. Second,
including a battery and control circuitry would have
a large impact on the already very limited available
mass (up to 3 kilograms). Finally, the required
range of operational temperatures for a battery is
smaller than what the thermal control subsystem
of Delfi-C3 can provide or is required by other
components. Since the thermal control subsystem
of Delfi-C3 is entirely passive, enhancing it with
active components to accommodate a battery would
even further increase the complexity accompanying
a battery.

The absence of power storage means that there
will be a loss of power during every orbit as soon
as the satellite enters eclipse. For the CDHS this
means that all data stored in volatile memory will
be lost and that all electronic components, e.g.
microcontrollers, will be reset. Since the exact
time of eclipse is very hard to predict on-board the
satellite, we can not safely assume when this reset
will occur. On top of that, failure of one of the
solar panels will also result in unexpected resets,
reaffirming the ability to survive resets at any given
point in time.

2.3 Redundancy

One of the underlying philosophies across the entire
design of the satellite is to eliminate Single Point
Failures (SPF). The elimination of an SPF is
only applied when the elimination is fairly easy or
absolutely necessary, because unlimited eliminations
of SPFs will eventually lead to flying two identical
satellites. Another aspect of this design aim is to
look at the SPF's at satellite level; the satellite design
must be able to cope with one failure, i.e. one failure
will not affect the primary mission objective.

Since the data from the TFSC experiment is
considered to be the most important, there would
need to be some redundant solution for getting that
data to the ground. The primary means is the
CDHS that collects the data and then transmits
it through the communications platform. In that
case a failure of the OBC would be an SPF as no
data would be processed. With the redundancy and
SPF philosophy in mind, there always needs to be
secondary means of getting the TFSC experiment
data to the communications platform.

2.4 Operational flexibility

From a mission operations point of view, a certain
amount of flexibility in the satellite control is desir-
able. This helps to solve problems or to deal with
unexpected situations that occur during the mission.
The degree of desired flexibility is dependent on
the uncertainty in the mission environments and
circumstances that is expected during the mission
design. For low earth orbit missions like Delfi-C3,
the uncertainty is low as this type of mission has
been flown before and so the required flexibility is
low. Since the CDHS is in control of the satellite’s
subsystems, the flexibility is usually applied there.

A high degree of flexibility in the CDHS would
essentially mean the ability to update all of the
CDHS software on orbit. This would require a
dedicated controller that would be in charge of the
communications platform through which it would
receive the software updates. This dedicated con-
troller ensures the capability to communicate with
the satellite, even while reprogramming the CDHS,
and it is usually implemented as a non-erasable
component. In this case, however, the required
degree of flexibility is not that high and because
of the COTS flightboard and OBC the freedom to
implement such a dedicated controller is very limited.

The limited flexibility and required and the complex-
ity of in-orbit software updates led to the decision to
limit the flexibility of the CDHS to changing opera-
tional parameters. These parameters are embedded
in the software at the time of programming but they
can be changed during the mission by telecommands.
The parameters can be changed temporarily, i.e.
until the next eclipse, or permanently, i.e. until they
are updated again or reset to their original value.
Changing a parameter temporarily simply overwrites
its current value in program execution memory.
Changing a parameter permanently means that the
value needs to be written in a non-volatile memory
in the CDHS, in addition to overwriting the current
value. The non-volatile memory thus contains a list
of updated values for certain operational parameters
that will be loaded when the CDHS is activated.

3 STAR ARCHITECTURE

In this section we present the first of two architec-
tures, the star architecture. This architecture was
the original baseline design for the Delfi-C3 satellite.
Although the star architecture is well-known, we will
still discuss some of its details with respect to Delfi-
C3.

3.1 Basic concept

The star architecture concept places the OBC in the
center of the satellite and all the subsystems are di-
rectly connected to it. All of the CDHS functions are
performed by the OBC; it is in control of all the sub-
system, performing all data transfers with them and
is in charge of all communications with the ground.
The connections through the satellite will run over
the CubesatKit bus that is supported by the flight-
board. A visual representation of the star architec-
ture as it would be implemented in Delfi-C3 can be
seen in figure 3.

Figure 3: Delfi-C3 star architecture

3.2 Details

3.2.1 Boot sequence

As soon as the CDHS receives power, it will switch
off all subsystems. This is done in order to prevent
the subsystems from consuming all available power.
This can occur when the satellite is just coming out
of eclipse or when a subsystem has failed during
the last orbit and started consuming all available
power in the satellite. After the OBC has completed
its own boot procedure it will start switching on
and configuring subsystems sequentially. After each
subsystem is configured, the OBC will write a status
bit to the non-volatile memory. This will enable
detection of a subsystem that for some reason resets
or shuts down the satellite when it is receives power.
After this phase has been completed, nominal
operation of the satellite will commence.

3.2.2 Handling of telecommands

All telecommands received by the communications
platform will be passed to the OBC without any local
processing. The OBC will verify and process the re-
ceived command to prepare it for execution. Verifica-
tion will be done by means of forward error correction
and a process involving echoing the command to the
ground. The OBC is also in charge of executing all
of the commands because it controls all subsystems.

3.2.3 Measurement synchronization

One of the key aspects of all the experiment data is
that they can be related in the time domain. The
data from the TFSC experiment, for example, will

be related to the data from the AWSS experiment
in order to get a better idea of the performance of
the solar cells under different lighting conditions.
One of the requirements for Delfi-C3 states these
measurements have to be taken within one second of
each other in order for them to be meaningful.

With the star architecture, the OBC is in charge of
controlling all the measurements and acquiring the
measurement data. This means that is relatively
easy to fulfill this requirement by simply following
the right sequence when acquiring the data and
making sure that this happens in one uninterrupted
chain(?).

3.2.4 Back-up mode

The center node is clearly the weak point of the
star architecture. If this node fails, all subsystems
will be completely isolated and no communication is
possible between them. The other nodes, however,
are isolated from each other and failure of one
of these will not affect the others. Any failures
along an interface between the central nodes and
another node will also not affect the remaining
nodes, assuming the central node can deal with this
failure. The center node represents the OBC while
the subsystems are the surrounding nodes.

To allow for the transmission of TFSC experi-
ment data in case of OBC failure, there needs to
be a secondary path from the TFSC measurement
circuitry to the communications platform. To keep
this as simple as possible, an analog transmission of
the TFSC data to the communications platform was
envisioned. The voltages are converted to frequencies
before transmission to the communications plat-
form, which in turn can transmit these to the ground.

In order to switch to this back-up mode, the
OBC would need to be connected to watchdog
circuitry that checks whether the OBC is still func-
tioning properly. If the watchdog detects that this is
not the case, it would reset the OBC . After several
resets the watchdog would activate the back-up
mode. In this back-up mode the OBC is powered
down because it could interfere with subsystem
operation in the back-up mode. In back-up mode,
all subsystems will be switched to their default on or
off modes by the Electrical Power Subsystem (EPS),
depending on the required subsystems.

3.3 Drawbacks

The star architecture discussed in this section was
the first CDHS design baseline for the Delfi-C3
satellite. As the design of the CDHS and other
subsystems grew more mature, the team discovered
that this particular architecture had several disad-
vantages.

The subsystems inside the satellite are placed
on PCBs, which in turn are part of a stack. This
means that the subsystems are independent in terms
of hardware design and changes in one subsystem af-
fect the other subsystems less. The star architecture
of the CDHS, however, is highly dependent upon all
of these subsystems and their changes. If the decision
is made to add an additional measurement or control
signal to a subsystem, the interface between the
OBC and that subsystem will change. This means
a change in hardware at both the subsystem and
OBC, a change in software on the OBC and possibly
an additional pin on the satellite bus.

Because all subsystems are directly connected
to the OBC, the number of pins on it soon proved to
be insufficient to accommodate all the connections.
Especially the number of pins available for analog
to digital conversion proved troublesome. Signal
multiplexing and demultiplexing was applied for
several signals but it was still questionable whether
the number of connections would stay within limits.
The number of connections to and from the subsys-
tems also grew beyond the number of channels that
could be accommodated on the satellite bus. Beside
these physical problems, managing all these signals
became increasingly complex.

The second issue that arose with respect to the
satellite bus was electro magnetic interference. In
the star architecture all measurement signals will
have to run from their respective subsystem to the
OBC. All of these signals will travel relatively long
distances and in close proximity of other analog
and digital signals with only a minimal amount of
shielding. This would almost certainly lead to electro
magnetic interference, especially with the analog
signals, which in turn would affect the obtained
precision for the measurements.

4 DISTRIBUTED
ARCHITECTURE

In this section the second architecture concept is pre-
sented, the distributed architecture. This architec-
ture is the current baseline design for the Delfi-C3
satellite.

4.1 Basic concept

In the distributed architecture, the OBC still fulfills
a central role but is no longer directly connected to
all the subsystems. Instead, each subsystem has been
given a local microcontroller that handles all direct
interaction with the subsystem. All microcontollers,
including the OBC, are connected to a serial data
bus. The data bus is based on the I12C [3] standard
and is discussed in more detail in section 5. A vi-
sual representation of the distributed architecture as
it would be implemented in the Delfi-C3 satellite can
be seen in figure 4.

QBC

p TFEC meas.

F

AWSE

EPS

SERIAL DATA BUS
CKE OF

F 3
i

Deploymant

COMMS +

Figure 4: Delfi-C3 distributed architecture

4.2 Details

4.2.1 Boot sequence

As soon as the CDHS receives power, the local mi-
crocontrollers will keep the subsystems switched off,

again to prevent the subsystems from potentially con-
suming all available power. Instead of directly pro-
ceeding to the sequential powering up of the subsys-
tems, the local microcontrollers will first wait for a
message from the OBC on the data bus. This mes-
sage will indicate that the OBC and the databus are
functioning properly. After the message has been re-
ceived, the OBC will check if all microcontrollers are
functioning and then start with the remainder of the
boot sequence, which includes sending updated op-
erational parameters to the microcontrollers if these
are present in the On-board Database (OBDB). This
remainder will essentially be the same as with the
star architecture, except that the commands will be
sent over the data bus to the local microcontrollers.
If the mictrocontrollers have not received a message
from the OBC after a certain amount of time, they
will each activate their back-up mode. This back-
up mode will be different for each microcontroller:
some will power down their subsystem while others
will perform either a reduced or nominal set of func-
tions. A sequential powering up of the subsystems is
possible in back-up mode, but will need to be based
on timers instead of commands.

4.2.2 Handling of telecommands

Although this architecture is in essence a distributed
system, some of its aspects do not adhere to this
concept. The first, as mentioned in section 4.2.4, is
the data transfer connection used during the back-up
mode. The second is the transfer of telecommands
from the communications platform to the OBC,
which is also a direct connection.

A direct connection was chosen here to put the
OBC in charge of verification and processing of the
received commands, similar to the star architec-
ture. The difference lies in the execution of those
commands as this is done by both the OBC, a
microcontroller or both, depending on the actual
command.

4.2.3 Measurement synchronization

With the distributed architecture also comes a dis-
tributed acquisition of the experiment measurement
data. Beside this acquisition the microcontrollers
initiate and possibly control the measurements, but
synchronization of these measurements is not as
straightforward as with the star architecture.

In short, there needs to be a central mecha-
nism to synchronize the measurements. With the
star architecture this was the software in the OBC,

but this is not an option here. Omne possibility
could be to have a central notion of time in the
satellite, for example by having a clock line available
in the satellite. This solution however is more
complex than using the serial data bus to transmit a
dedicated synchronization message. Upon reception
of this message, the microcontrollers will initiate the
measurements for their subsystem, thus making sure
that measurements are related in the time domain.
This message can also serve as the indication to the
microcontrollers that the OBC and data bus are still
functioning.

4.2.4 Back-up mode

The approach toward the back-up mode in the
distributed architecture is somewhat different. First
of all, since we now have microcontrollers available
at both the measurement system and the communi-
cations platform, the back-up data transfer from one
to the other can be slightly more complicated. We
could still choose to implement the simple analog
data transfer, but digital data transfers are also
possible. No decision has been made on this subject
yet but a secondary 12C bus, if supported by the
microcontrollers, is one of the options.

While the microcontrollers are operating in the
back-up mode, communication with the OBC could
be restored. This could be the case if the OBC’s
watchdog triggers a reset after a software freeze has
occurred. The OBC start to perform the normal
boot sequence of the satellite by sending out a
message on the data bus that it is functioning.
Once the microcontrollers receive this message,
they will stop operating in back-up mode and
switch to nominal mode. If for some reason the
OBC or databus fails after the boot procedure
has been completed, the microcontrollers need to
detect this and switch to back-up mode. This is
achieved by using a simple timer that will trigger the
switch to back-up mode when, after a certain amount
of time, no message from the OBC has been received.

The OBC must remain active in the back-up
mode. If the OBC would be deactivated when the
satellite is in back-up mode, the possibility of the
OBC recovering and being able to resume nominal
operations is eliminated. Chances of the OBC
unintentionally interfering with that mode are slim.
This requires a meaningful data transfer on the data
bus to which the microcontrollers would response.

4.2.5 Modularity

Placing a microcontroller at each subsystem or
PCB has greatly improved modularity. Each sub-
system is almost completely independent of other
subsystems from a hardware point of view. The
hardware interfaces to the OBC are the same for all
subsystems and do not change when the subsystem
hardware changes. The hardware interface to the
local microcontroller does change, but this is only
minor in comparison and only involves local changes
in routing and occupied pins on the microcontroller.
This also implies that subsystems can be in different
stages of development, as is often the case in cubesat
projects.

The interfaces between the subsystems and the
OBC have been moved to the software layer of the
CDHS. This has several advantages, beside the
hardware modularity mentioned earlier:

Software simplicity The software that is needed
to interact with the subsystems has become
less complex, although the the CDHS software
as a system becomes more complex. Divid-
ing functionality is still advantageous however.
First, the software in the microcontrollers will
be smaller and less complex, enabling a bet-
ter overview of its behaviour. Second, it en-
ables enables sharing of code segments between
the microcontrollers because some of their func-
tionality is identical, e.g. communication with
the data bus. Using the same code segments
in multiple microcontrollers will make these seg-
ments less error-prone, because of a larger range
of testcases. Finally, having multiple semi-
independent, smaller, software packages instead
of a single monolithic system, allows multiple
people to work on the CDHS independently.

Interface flexibility Having the data interfaces to
the subsystems in the software increases their
flexibility, because changing in the later stages of
the development process is easier than changing
hardware.

Subsystem testability Each subsystem can now
be tested completely independent of the other
subsystems. Since each subsystem now has a
standard hardware data interface and only re-
sponds to requests from the OBC, it is possi-
ble to develop a generic test platform. This test
platform is currently under development and in-
volves a computer connected to one or more sub-
systems by means of the serial data bus.

4.3 Drawbacks

The distributed architecture is the current baseline
of the Delfi-C3 CDHS and was put in place after
the star architecture’s drawbacks were becoming too
much of a problem. This architecture, however, is
not entirely without complications itself and these
will be discussed below.

The most obvious effect of introducing this ar-
chitecture is that the number of components for the
CDHS has significantly increased. More components
mean more occupied surface area on the PCBs and in
this case also an increase in power consumption. The
increase in power consumption is the most critical
because the available power in Delfi-C3 is, like with
all cubesats, very limited. Several optimizations in
the EPS and the ability to reduce the clock speeds
of the microcontrollers were needed to reduce the
power consumption to a more acceptable level.

The increase in microcontrollers also means an
increase in software packages, as they relate one-to-
one. A considerable amount of code segments can be
shared, but each one will still need to have at least
its own unique address for communicating on the
data bus. This means that very careful attention has
to be paid when putting these packages together.
Mistakes in the databus addresses can lead to un-
reachable, thus uncontrollable parts of the satellite.
In short, the management of the CDHS software
layer becomes quite complex with the identical yet
different parts.

5 DATA BUS

In this section we will discuss the databus that is
used in the distributed architecture presented in the
previous section. Since the distributed architecture
is the current baseline of the Delfi-C3 CDHS, this
databus is as well.

5.1 Bus functionality

In the distributed architecture the data bus is the
backbone of the CDHS, allowing the OBC to commu-
nicate with each microcontroller. The only function
of the bus it to get data from the sender to the re-
ceiver, preferably in a reliable fashion. The databus
of Delfi-C3 is based on te 12C standard [3]. This
means that on the physical level there will be at least
two wires running through the satellite: one for the
clock signal, one for the data signal. Each controller
in the satellite will have a unique address but it is also

possible to adress all controllers at once. A controller
can be either a master or a slave on the bus, a mas-
ter can initiate data transfers while a slave can only
respond. To preserve central control and simplify the
design of the entire CDHS, the OBC was designated
as the only master.

5.2 Choice of bus type

With the introduction of the distributed architecture
as the CDHS baseline design, the standard upon
which the databus would be based was clear. The
distributed architecture would still be using the
OBC and that only has hardware support for the
I12C and SPI standards. The same is true for the
type of microcontrollers that were chosen for the
subsytems, although there are also types available
that support the CAN bus.

One of the features that is not present in the
12C standard is a means of error detection. Although
each sent byte has to be acknowledged by the
receiver, this does not guarantee an error-free trans-
mission of that byte. Looking at serial bus standards
that are used in space, in particular Spacewire [2]
and CAN [4], we can see that these do provide
error-detection on the transmissions. These two
protocols are more extensive in general, as they also
provide error-handling and restarting procedures in
case such an error is detected. To compensate for
this lack of error detection in the protocol it will be
implemented in the CDHS software, creating a new
protocol layer on top the original I12C protocol.

5.3 Error Detection and Correction
strategy

In choosing a method for the error-detection func-
tionality that will be implemented on top of the 12C
protocol, two choices have to be made. The first is
the choice of the error correction algorithm itself.
Spacewire uses the odd-parity scheme while CAN
employs a CRC-16 checksum. Parity is the simpler
method of the two while CRC is the more powerful
one. The use of an even more powerful Error De-
tection and Correction (EDAC) scheme for the data
transfers on the Delfi-C3 databus is not required:
the data transfers are only very limited in length
which would mean that such a scheme introduces a
significant overhead on the data transfers and the ad-
ditional sensitivity detection would go unused. The
second is the choice error handling approach. This
can be either straightforward, i.e. simply retrans-
mitting the entire message, or more complex, i.e.

MESSAGE NOT OK

GET MESSAGE FROM CONTROLLER

CHECE
INTEGRITY

MESSAGE OK

Figure 5: State diagram for master transmitter

make use of forward error correction or only resend
the corrupted data instead of the entire message.
The use of forward error correction is directly re-
lated to the selection of the error correction algorithm

The parity scheme has been selected as error-
detection mechanism for the databus on Delfi-C3.
This scheme requires the least computational power
and because the microcontrollers will be running
at low clock speeds to save power, this is a scarce
resource. FEach byte transferred on the databus,
including the address, will be accompanied by a
parity bit to check its integrity. The error handling
was kept as simple as possible, a corrupted message
will be retransmitted entirely.

5.4 Transmission scenarios

Transmissions on the 12C databus are always initi-
ated by a master, i.e. the OBC, and never by a slave.
This makes the handling of detected errors a bit more
complicated. The following two transmission scenar-
ios will occur.

1. Master transmitter and slave receiver. The
OBC sends a message to a microcontroller. Upon
reception of the message, the microcontroller will
check the integrity of the content. Because it
can not initiate a tranmission itself, it waits for
the OBC to request information about the in-
tegrity of the message. This message is sent to
the OBC without the use of the error-detection
scheme and therefore needs to be insensitive to
corruption.

SEND MESS5AGE TO CONTROLLER

MESSAGE NOT OK

GET INTEGRITY INFO

GOT INFO

MESSAGE OK

DONE

Figure 6: State diagram for master receiver

2. Master receiver and slave transmitter. A
microcontroller sends a message to the OBC on
request. Upon reception of the message by the
OBC, the integrity is checked. If the message
has been received uncorrupted the OBC sends
a message to the microcontroller indicating that
the content has been received uncorrupted and
the transmission is complete. If there is a corrup-
tion of the message content, the OBC will restart
the transmission process by requesting the data
again.

5.5 Handling of internal commands

With the data bus, a notion of internal commands has
been introduced to the satellite. These commands
bare close resemblance to the telecommands that
are sent from the ground. The telecommands sent
to the satellite are always verified before execution
and a similar procedure needs to be followed for the
interal commands. If a command becomes corrupted
during or after transmission to the destination or is
incorrectly decoded there, resuming with execution
could have catastrophic results. The telecommands
are verified by means of forward error correction and
echoing of the commands to the ground. Since there

SEND COMMAND l’

RECEIVE COMMAND B

ECHQ OK b == B GOT ECHO

RESEND COMMAND A A !=B

ABORT

Figure 7: State diagram for internal command han-
dling by the OBC

DONE

will already be an EDAC layer in place on top of
the data bus, the internal commands will only be
verified using an echoing procedure. The procedure
is illustrated in figures 7 and 8.

First, a certain command is sent from the OBC
to a microcontroller, which stores the command.
This stored command is then sent back to the OBC
where it is checked against the original command
that was sent. If there these do not match, the
OBC can restart the procedure by sending a new
command. If the response is satisfactory the OBC
will again send the command to the microcontroller.
The microcontroller checks this command against
its memory and starts execution if these two are
identical.

This command handling procedure derives addi-
tional reliability due to the fact that:

e All messages are protected by the EDAC layer
as the command handling process is placed on
top of that layer

e Execution of a command is only possible when
all copies of the command are identical in both
memories and transmissions, limiting the sensi-

10

RECEIVE COMMAND A

GOT
COMMAND

ABORT

Figure 8: State diagram for internal command han-
dling by a microcontroller

WAIT

END COMMAND A ECHO

RECEIVE COMMAND B

GOT ECHO

A = B

tivity of this procedure for memory corruption
in between transmissions

e Each message carries an indication of the mes-

sage type, e.g. acknowledge, which helps to en-
sure the proper sequence of messages is observed

6 CONCLUSION

In this paper we have introduced the design start-
ing points for the Command and Data Handling
Subsystem design of the Delfi-C3 university nano-
satellite. We have presented the two architectures
that were considered during the design phase and
discussed several resulting implementation con-
cepts. We have also presented the databus used in
the distributed architecture and have presented a
simple protocol layer for the 12C protocol that will in-
crease the reliability of the data transfers on this bus.

For Delfi-C3, a relatively large cubesat, the dis-
tributed architecture has been selected over a star
architecture for the CDHS organization. With the
number of subsystems present in the satellite, the
star architecture simply became too cumbersome
to work with. The distributed architecture maps
elegantly onto the internal stack of subsystems,

improving modularity, testability and flexibility. For
larger nano-satellites a distributed architecture with
reliable internal communication is recommended,
while for smaller nano-satellites the star architecture
can still be considered.

REFERENCES

[1] Abe R. Bonnema et al., The delfi-c3 student
nanosatellite, TAC-05.B5.6A.02.

[2] European Space Agency, Spacewire - links, nodes,
routers, and networks, January 2003.

[3] Philips Semiconductors, The i2¢ bus specification,
version 2.1, January 2000.

[4] Robert Bosch GmbH, Can specification, version
2.0, September 1991.

11

AWSS Autonomous Wireless Sun Sensor

AE Aerospace Engineering

CDHS Command and Data Handling Subsystem
COTS Commercial Off The Shelf

EDAC Error Detection and Correction

EEMCS Electrical Engineering, Mathematics and
Computer Science

EPS Electrical Power Subsystem
MORON Malfunctioning OBC Recovery OptioN
OBC On-board Computer

OBDB On-board Database
OBDH On Board Data Handling
OBM On-board MORON Mode
PCB Printed Circuit Boards

RBF Remove Before Flight

SPF Single Point Failures

TFSC Thin Film Solar Cells

VCO Voltage Controlled Oscillator

12

