
1

Developing Applications for Polymorphic
Processors : The Delft Workbench

Koen Bertels,Member, IEEE,Stamatis Vassiliadis,Fellow, IEEE,Elena Moscu Panainte, Yana Yankova,
Carlo Galuzzi, Ricardo Chaves, Georgi Kuzmanov,Member, IEEE,

Abstract— Reconfigurable computing bears a great promise
as it provides the flexibility of software design as well as the
substantially better performance of hardware based execution.
In order for this technology to really catch on, the necessary
tools have to be developed that provide an integrated and (semi)
automated development platform. Such a development platform
should bridge as much as possible the differences that exist
between software and hardware development for which distinct
techniques and approaches are required. This article presents the
current state of the Delft workbench that allows the developer
of any kind of application to develop new or port existing
applications to a reconfigurable platform.

Index Terms— Reconfigurable hardware, hardware software
interface, compiler

I. I NTRODUCTION

Reconfigurable computing has gained increasing attention
from the industry over the last couple of years as it consti-
tutes a very interesting marriage between the performance of
hardware and the flexibility of software. Reconfigurable fabrics
such as FPGA’s can be used as stand-alone processors or in
combination with general purpose processors (GPP). In this
article, we focus on the latter use where the reconfigurable
device will contain application specific logic which previously
had to be implemented in either dedicated hardware or only in
software. The functions executed on the reconfigurable fabric
can be changed (at runtime or at compile time) in function
of the application at hand. However, for this technology to
really be adopted on a large scale, a number of important
gaps have to bridged of which some are considered to be
difficult. One of those challenges is the need for a machine
organization that provides a generic way in which different
components such as a general purpose processor and various
reconfigurable devices can be combined in a transparent way.1

Another challenge is that we need the necessary tools to
transform (existing or new) applications in such a way that
we can ultimately use the reconfigurable computing units.
We need such tools because application development in this
context is no longer a pure software writing effort but assumes
substantial hardware design capabilities. The resulting or en-
visioned hardware is application specific and the term used
to denote it is Application Specific Instruction Set processors
(ASIP). Where traditional general purpose processors have a

1We will use the terms reconfigurable devices, custom computing units and
FPGA interchangeably in this article. The terms kernel and code segments are
also used as synonyms. We define them as any combination of instructions or
a a combination of clusters of instructions that will be considered a candidate
for hardware acceleration.

fixed instruction set, ASIP’s have a flexible, extendible and
application specific instruction set which can even change at
run time. So for application developers to use this technology,
(semi-) automatic support in designing the hardware and to
generate the required executable code should be available. In
this article, we present the current state of the Delft workbench
project that targets the required toolset and which is based on
the Molen Programming Paradigm. In short, the design flow,
shown in Figure 1, consists of the following steps. Starting
point is an application written in, for instance, C. Using a
decision model, the application will be profiled to identify
those parts that could be implemented on the reconfigurable
fabric. Using a C2C-compiler, the original application then
needs to be transformed as the accelerated parts will have to
be replaced with the appropriate calls to the reconfigurable
fabric. Once those transformations have been applied, the
extracted functions have to be implemented in hardware. To
this purpose, they are translated into VHDL. This can be done
either automatically, manually or using an available IP-core
from a library. Once the configuration and execution code have
been implemented, the retargetable compiler can then generate
the appropriate binaries after which the modified application
can be executed on the heterogeneous platform. A feedback
loop ensures that certain choices can be evaluated and modified
after which the same design steps can be repeated. The
remainder of the paper will discuss each of those steps in more
detail and is structured as follows. We first introduce the Molen
programming paradigm which assumes a particular machine
organisation that combines a general purpose processor (GPP)
with one or more custom computing units (CCU). We then
introduce the different steps of the application design process
starting at the profiling phase and then moving to transforming
the application and defining the new instructions. Compilation
and hardware generation are the final steps after which the
applications can be executed. For each design step, we present
a small motivational example. We conclude the paper by
presenting a case study that concerns the implementation of
the AES-encryption algorithm and presents the programmer’s
interface to use such heterogeneous platforms.

II. T HE MOLEN PROGRAMMING PARADIGM

The Molen programming paradigm is a sequential consis-
tency paradigm in which an application can be partitioned
in such a way that certain parts can run (in parallel) on
the reconfigurable fabric and other parts run on the gen-
eral purpose processor. This paradigm assumes the Molen

2

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
������������

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
������������

����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����

����
����
����
����

g()
{

}

{

{

}

}

f(.)
����
����
����
����
����

����
����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����
����

����
����
����
����
����

g()
{

}

{

{

}

}

f(.)

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

f(.)

����
����
����
����
����

����
����
����
����
����

h(.)

����
����
����
����
����

����
����
����
����
����

}

{
}

h(.)
{
g()

SET f(.)

SET h(.)

EXEC h(.)

EXEC f(.)

Binary
Code

C
2C

ARCHITECTURE

R
E

T
A

R
G

E
T

A
B

L
E

C
O

M
P

IL
E

R

P
R

O
F

IL
E

R

M
O

L
E

N
 A

R
C

H
IT

E
C

T
U

R
E

GENERATOR
VHDL

Manual
Code

VHDL

entity CCU_F VHDL

entity CCU_H

Performance
Statistics

CODE

...

...

...

...

...

... ...

Directives
HumanCOST

MODEL

IP
LIBRARY

Fig. 1: The Delft Workbench Design Flow

Fig. 2: The Molen machine organization

organisation which defines the interaction between a general
purpose processor and the custom computing units (CCU),
implemented on the FPGA [1]. It consists of a one time
instruction set extension that allows the implementation of
an arbitrary number of CCU’s. The paradigm allows for
parallel and concurrent hardware execution and is intended
(currently) for single program execution. For a given ISA, a
one time architectural extension (based on the co-processor
architectural paradigm) comprising4 instructions (for the
minimal poloymorphic (π)ISA) suffices to provide an almost
arbitrary number of operations that can be performed on the
reconfigurable hardware. The four basic instructions needed
are set, execute, movtx andmovfx. By implementing the first
two instructions (set/execute) an hardware implementation
can be loaded and executed in the reconfigurable processor.
The movtx and movfx instructions are needed to provide
the communications between the reconfigurable hardware and
the general-purpose processor (GPP). The Molen machine
organization that supports the Molen programming paradigm
is described in Figure 2. The two main components in the
Molen machine organization are the ‘Core Processor’, which
is a GPP and the ‘Reconfigurable Processor’ (RP). Instructions
are issued to either processors by the ‘Arbiter’ by means
of a partial decoding of the instructions received from the
instruction fetch unit. The support for the SET/EXECUTE
instructions required in the Molen programming paradigm
is based onreconfigurable microcode. The reconfigurable
microcode is used to emulate both the configuration of the
CCU and the execution of implementations configured on the
CCU.

III. C OMPONENTS OF THEDELFT WORKBENCH

A. Profiling

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
������������

����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����

�������� ����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����

��������

P
R

O
F

IL
E����

����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����

����
����
����
����

g()
{

}

{

{

}

}

f(.)

����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

g()
{

}

{

{

}

}

f(.)

C
O

ST
E

ST
IM

A
T

IO
N ����

����
����
����
����

����
����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����
����

����
����
����
����
����

g()
{

}

{

{

}

}

f(.) HDL

HDL

Area
Delay
Clock
cycle

Cost

Overall Implementation Cost

...

...

...

...

...

...

...

...

...

Directives
Human COST

MODEL

Fig. 3: Profiling the application

As shown in Figure 3, profiling consists of identifying
those parts of an application that could be mapped on the
reconfigurable hardware. The goal is to determine as early as
possible in the design stage whether certain parts not only
provide the necessary speedup but can also be implemented
given the limited reconfigurable or other hardware resources.
Making this analysis is called partitioning. The goal is thus to
end up with certain parts that will be accelerated as a CCU
and the remaining parts of the application will be executed on
a regular general purpose processor. A ’part’ of the application
can be a whole function or procedure but it can also be any
cluster of instructions that is scattered throughout the appli-
cation. The partitioning itself will be determined in view of
a particular objective such as increased performance, reduced
power consumption or a smaller footprint.2 Even though such
a primary objective is the ultimate decision criterion, more
aspects come into play. The code that will be accelerated
must not only fit on the available area of the reconfigurable
chip, the cycle time should not be affected too much. This
cycle time can go down as the code segment executed on the
reconfigurable device grows in size, resulting in an overall
slower execution. So one of the tradeoffs the designer has to
make is to choose between larger accelerated code segments
and higher performance improvement but then also more area
and longer cycle time. These different trade offs that have
to be taken into account, combined with the large number of
possible code segments, make the design space very large. This
is why researchers have proposed various kinds of automatic
support.

Where some approaches do compile time profiling, most
estimation schemes in literature have focused on estimation
based on synthesis-like techniques, simulation, or simple
summation approaches. If it is known what hardware oper-
ators will (probably) be used, the profiler can use various
equations to predict the area consumed. For instance, in [2],
quadratic relations are used for multipliers and linear ones
for addition and subtraction. However, this information is
missing at the beginning of the design process where we are
merely looking at the application and trying to figure out what

2For the remainder of the paper, we will refer exclusively to performance
improvement but the approach holds mutatis mutandis for other objective
functions.

3

the computational hotspots are. For instance, when looking
at MPEG2, a profiler could for instance identify, through
trace analysis, that the functions Sum of Absolute Differences
(SAD), 2 dimensional Discrete Cosine Transformation (DCT)
and its inverse (IDCT) consume together around 65% of the
total MPEG2 execution time. Implementing them on hardware
could result in a significant speedup (see e.g. [3] for details)
as can be computed using

nmolen ' nsoft − nf + ncall ∗ cost (1)

with cost = xset + yexec where

• nmolen represents the total number of GPP cycles spend
in the application;

• nsoft represents the total number of cycles when com-
pleted executed by the GPP;

• nf represents the total number of cycles spent in a
function f;

• ncall represents the number of calls to function f in the
application;

• xset represents the number of GPP cycles required for
one configuration of the FPGA for the function f;

• yexec represents the number of GPP cycles required for
one execution on the FPGA for function f;

Performance improvement means that the total number of
GPP cycles needed by the Molen processor to execute the
application - nmolen - is less than the number of cycles
for a pure GPP-based execution -nsoft. Using equation 1,
nmolen < nsoft when the cost of using the reconfigurable
function expressed by the number of GPP cycles required to
perform the SET and EXECUTE instructions, is less than
nf/ncall. Where this simple model allows us to determine
whether a function could be beneficially implemented as
a CCU, it has two main disadvantages: first, it assumes
that complete functions will be mapped on the hardware.
It may however be useful that only a part of a function
is mapped or that a part of a function is combined with
a part of another function and then mapped on hardware.
The second drawback is that it does not make any kind of
prediction of the hardware resources that will be required.
Where the first problem could be (partially) addressed by
code rewriting, the second problem needs to be resolved in
a different way.3 What is required is a means to relate the
software function to the hardware. One possible approach
which is similar to [2], is to build a quantitative model on
the basis of a large data set of various kernels, belonging to
different application domains, having different sizes and for
which a VHDL-implementation is available. Each kernel could
then be characterized using several software metrics such as
McCabe’s cyclomatic number and Halsteads length, volume,
and effort. Using the VHDL-implementation, the kernels can
be synthesized for a specific reconfigurable platform, and
kernel wise executed to collect run-time information. From
this synthesis and execution, we could collect information
such as area, latency and speedup. Using standard regression
techniques, the relationship between the software metrics and

3This part, as well as the loop optimizations to be discussed in the next
section, is still under development and only the basic ideas are described here.

hardware characteristics could be estimated and consequently
used for prediction purposes. However, several attempts for
constructing such models have been tried but none so far
provide sufficiently accurate predictions.

B. Graph Transformations

G
R

A
P

H
R

E
ST

R
U

C
T

U
R

IN
G

L
O

O
P

T
R

A
N

SF
O

R
M

A
T

IO
N

S

Constraints

Estimates

Constraints

Estimates

Fig. 4: Transforming the original application

Even though the profiler made a first assessment of what
kernels could be mapped on reconfigurable hardware, whether
in the end this will be done depends on a number of subsequent
analyzes and transformations. An important next step, depicted
in Figure 4, is to determine how the proposed code segments
can be clustered. These clusters, if selected, will become the
new instruction in the instruction set. Speedup can be obtained
by exploiting available parallelism. This aspect therefore needs
to be carefully analyzed. An important source of parallelism
are loops. As loops are an indispensable control structure in
any application and as some of the clusters may either contain
loops or be part of a loop body, we need to see how the
loops can be transformed in order to achieve the envisioned
performance improvement.

Graph Restructuring The process of identifying the clus-
ters involves finding certain patterns in the data flow graph
(DFG).4 The starting point in this clustering process are what
are called MISO’s, clusters havingMultiple Inputs and a
Single Output. Even though the limitation to a single output is
restrictive, research has mainly focused on this kind because
they have the interesting property of convexity.5 This will
guarantee a feasible and proper scheduling by the compiler.
However, as will be explained below, we can overcome this
limitation by combining multiple MISOs into Multiple Inputs
Multiple Outputs (MIMO).

4A data flow graph is a graph in which each node represents an operation.
Going from one node to another means going from one operation to the next.
When control flow information is also available, we speak of control data
flow graphs(CDFG).

5A subgraphG∗ of a graphG is convex if there does not exist a path
from any of the nodes of the subgraph to the output node ofG∗ that does
not belong to the subgraphG∗.

4

Fig. 5: Convex MIMO instructions generation: (a) the original graphG is
partitioned in maximal MISO clusters; (b) the clusters are collapsed
in single nodes which have the same behavior (Ai 7→ ai); (c) the
collapsed nodes are combined per levels to obtain convex MIMO
instructions and can be connected asOp1 or disconnected asOp2.
The horizontal lines in (a) and (b) represent the level of the nodes.

As depicted in Figure 5a-b-c, growing the cluster is done
in several stages. In step (a), MISO-clusters are combined
with each other resulting in maximally sized MISO sub-
graphs, called MaxMISO’s. The motivation for generating
MaxMISO’s is that we do not want to have many small clusters
scattered all over the program which will create too much
overhead and only marginal, if any, performance improvement.
In step (b), these MaxMISO’s are then collapsed in single
nodes that represent the potentially new instructions. Finally,
in step (c), we finally will select two operations,Op1 and
Op2 using some decision criteria, that will be mapped onto
hardware as newly available instructions.

Loop Transformations Once the kernels have been clus-
tered and collapsed on a single node, we can now turn to
optimizations that allow to fully exploit the newly identified
instructions. An important source of performance improve-
ment are loops for which various optimisations exist, such as
loop tiling, loop fusion, loop unrolling and software pipelining.
As the impact of the different optimisations is still an open
research question and beyond the scope of this article, we will
illustrate some of the issues using an example.

The following loop contains a call to a reconfigurable
function. The question we want to answer is whether the
function that will run on the reconfigurable fabric needs to
be modified as to include the whole loop or whether we apply
loop unrolling in a partial or complete way.

for I = 1 to n
for J = 1 to n

a[I,J] = call_FPGA_OP1(A[I-1,J], A[I-1,J+1])
endfor

endfor

When it has been chosen to apply full loop unrolling for
the inner loop, the code becomes

for I = 1 to n
a[I,1] = call_FPGA_OP1(A[I-1,1],A[I-1,2])
a[I,2] = call_FPGA_OP1(A[I-1,2],A[I-1,3])

a[I,n] = call_FPGA_OP1(A[I-1,n],A[I-1,n])
endfor

Where determining the unrolling factor may be relatively
simple if the loop is executed on a GPP, it may not be so
evident in the context of hardware accelerators. Every unrolled
instruction will occupy additional area and can therefore not
be stretched unlimitedly. The unrolling may also increase the
cycle time as the hardware function will take more time to
execute as it grows in size. One way to counter this is to
introduce pipelining. Therefore, the number of stages in the
pipeline depends on the unrolling factor. There may also be
issues regarding the required vs available bandwidth if more
memory accesses are needed to feed the accelerator.

C. Retargetable Compilation

����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����

SET f(.)

SET h(.)

EXEC h(.)

EXEC f(.)

Binary
Code

ARCHITECTURE

R
E

T
A

R
G

E
T

A
B

L
E

C
O

M
P

IL
E

R

MOLEN ARCHITECTURE

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

f(.)

����
����
����
����
����

����
����
����
����
����

h(.)

g()
{

f(.)

h(.)

}

C CODE

...

...

...

Fig. 6: Compiling the modified application

As can be seen from Figure 1, the design flow now forks
into a compiler part and a VHDL generation part. As far as the
compiler is concerned, and represented by Figure 6, the target
architecture has now been augmented with the newly identified
instructions and the compiler needs to be able to exploit these
new features. As explained before, the Molen programming
paradigm requires for each new hardware function a SET
and EXECUTE instruction that will respectively configure
and execute the FPGA based CCU. It is the compiler’s task
to determine when to schedule the SET and EXECUTE
instructions and where to place them on the FPGA, denoted
as spatio-temporal compilation.

The ’temporal’ refers to the point in the execution flow
at which the configuration of the CCU is started. Given
the huge latency, the compiler should be able to hide this
configuration time such that the CCU is correctly configured
when its EXECUTE statement is read. The ’spatial’ aspect
refers to the available area on the FPGA. Each CCU occupies
a certain amount of the area and again it is the compiler’s
task to determine how many CCU’s will fit at any given time
on the FPGA. To address these spatio-temporal constraints,
we introduce advanced instruction scheduling and area allo-
cation algorithms. These algorithms minimize the number of

5

i = 0

i = i+1

i < 10

j = 0

j < 20

c < 0

j = j+1

SET op1

SET op2

SET op2

SET op3

SET op3

EXEC op3
SET op3

EXEC op2
SET op2

EXEC op1
SET op1

EXEC op2
SET op2

exit

entry

read c
20INITIAL:

SET op1 : 100 + 10 = 110
SET op2 : 200 + 10 = 210
SET op3 : 10 + 10 = 20

�����
�����
�����
�����

�����
�����
�����
�����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

OP1 OP3

OP2

EXEC op3
SET op3

EXEC op1
SET op1

10

10

10

10

10

10

10

10 100

10

200

200

200

10

100

20

20

100

FINAL:
SET op1 : 20
SET op2 : 10+10= 20
SET op3 : 10+10= 20

10FPGA AREA ALLOCATION

B1

B2

B4

B7 B5

B6

B10

B11

B16

B3

B8

B9

B12

B13

B14

B15

a) b)

Fig. 7: Intraprocedural Instruction Scheduling

executed hardware reconfiguration instructions based on the
application’s specific features while taking into account the
available area. Additionally, the compiler is capable to decide
not to schedule the function as a CCU but rather to schedule
the pure software based execution when the reconfiguration
latency could not be reduced or when the required area was
not available. The proposed scheduling algorithms are applied
at both the intraprocedural and interprocedural level.

For the intraprocedural instruction scheduling algorithm, we
present the following motivational example. Figure 7(b) shows
the control-flow graph of a procedure, whenop1, op2andop3
operations are performed on the reconfigurable hardware and
they are placed on the FPGA as presented in Figure 7(a). The
numbers associated with each edge of the graph represent the
execution frequency of the edge. One first observation is the
redundant repetitive execution ofSET op1at B5 in the loop
B4-B5-B6. Operationop1 is configured 100 times in B5 and
10 times in B13. By movingSET op1instruction on the (B1,
B2)-edge, we can reduce the number of configuration calls
for op1 to 20 and make redundant theSET op1instruction
at node B13. The hardware configuration forop2 at B10
cannot be moved earlier than node B7 as it will change the
hardware configuration forop3 that must be performed at
B7. There are no redundant configurations forop3, thus the
hardware execution ofop3 has to be preceded each time by
the hardware configuration. If the compiler detects that the
hardware configuration forop3 consumes all the performance
gain produced by the hardware execution ofop3, the scheduler
can switch to its software execution on the GPP.

D. VHDL Generation

Where the first fork in Figure 1 concerned the compiler
scheduling of the SET and EXECUTE instruction, the second
fork involves the hardware generation for the kernels that
have been transformed into new instructions. If these hardware
descriptions are not available as IP-cores, we have to generate

them either automatically or manually. To illustrate the idea
of the translation of a computation, expressed in a high-level
language (HLL), to a hardware model, consider the example
shown in Figure 8. The presented C code (Figure 8a) is the
fmult function from the G721 encoder as implemented in
the MediaBench benchmark suite [4]. The first step in the
hardware generation process is to transform the input source
into an internal representation that reflects the control and
data dependencies in the algorithm. The most widely used
representation is a hierarchical control- and data-flow graph
(HCDFG) (Figure 8b, Figure 8d). The hierarchy levels in the
HCDFG reflect the enclosure level of the statements. The
nodes of this graph are basic blocks or compound nodes,
corresponding to statements or called functions. The edges
of the graph represent the control and data dependencies.6

The basic blocks nodes refer to data-flow graphs (DFGs) that
describe the data-dependecies within the corresponding basic
block (Figure 8c). From the HCDFG the VHDL-compiler has
to infer a hardware model for the computation. The arithmetic
and logic operations within the basic blocks are mapped to
pure logic (Figure 8c- e). When a control structure such as
the for-loop in quan is found, a controller has to be
generated (Figure 8f). In the automated hardware generation,
controllers are usually described as finite-state machines.

After the computation model is derived, the actual genera-
tion of the hardware description is performed. This description
is expressed in a hardware description language. There are
several HDLs, but only two of them are widely supported
by the EDA-vendors both for simulation and synthesis. These
languages are VHDL and Verilog, and they are standardized
by IEEE (IEEE Std 1076-2002 [5], IEEE Std 1076.6-2004 [6]
and IEEE Std 1364-2005 [7], respectively). These languages
are relatively new as the first VHDL standard was issued in
1987 and the first Verilog standard in 1995.

The standardization and the efforts of EDA-vendors pro-
viding quality synthesis tools have contributed to the growing
acceptance of these languages as means for hardware design.
Over the last couple of years, a lot of research effort has
been invested in the automated HDL generation. Several
commercial tools that generate hardware from HLL input also
appeared (eg. Catapult-C [8], XPRES Complier [9]). Even
though they provide some kind of automation, the whole
process is strongly directed by the designer. Direct input is
required for applying certain low-level optimizations as well
as for the actual mapping process. In other words, the goal of
these tools is to save code-writing time and to use them one
still needs hardware-design knowledge.

The straightforward mapping of the different HLL con-
structs should not be considered an open issue (as illustrated
in Figure 8). However, the quality of the generated hardware
description is the main hurdle which is mainly due to the
gap that exists between the essentially sequential code and
the hardware computation model which is basically concurrent
and data flow oriented. As an example, refer to thefor -loop
in Figure 8a. There are no inter-iteration data dependencies,

6In the figure, the basic blocks are presented with solid boxes and the
compound nodes - with dashed boxes. The data edges are presented with
dashed arrows and the control edges - with solid arrows.

6

BB1

fcall

BB2

fmult

ansrn

anmag
DFG

quan HCDFG

−

&

SEL

>

0

0x1FFF

an

anmag

l r

l
r

t f c

− <

MUX

0
an 0

0x1FFF

anmag

(b) (c) (e)

BB2

BB3

BB4

BB1 i=0

i<size

val<*table++

i++

quan

i

i

i i

i

val table size
MUX

<+

MUX

+

<

S0 S1 S5

S2S4

S3

C1

C2

C1

C2

table

A

D
MEM

C1

C2

FSM

i

i

0 size table val

1 1

(a) (d) (f)

Fig. 8: C to HDL translation process:(a) fmult C Code;(b) fmult HCDFG; (c) fmult BB1 DFG; (d) quan HCDFG; (e) fmult BB1 schematics;(e)
quan schematics

hence the loop can be fully unrolled (within the particular
calling context, the upper bound is 15) and all comparisons
can be implemented in parallel. Furthermore, as thepower2
table has only 15 constant values, the element references can
be replaced with the corresponding values and the memory
accesses can be completely removed. These simple optimiza-
tions would produce much faster design at the expense of a
small increase of the area.

IV. VALIDATION

To validate the MOLEN computational paradigm and to
assess the current available toolset, algorithms taken from
various domains have been implemented for which significant
speedups have been reported. In the following, we will not
elaborate on all the stages of the design process but rather
emphasize the programmer’s interface. We will show how easy
it is for application developers to use the Molen polymorphic
processor. As an example, assume that a developer needs to
embed encryption in an existing application but because of
real time constraints, a pure software based solution is not an
option and the decision has been made to use an FPGA based
engine of the symmetrical encryption algorithm AES [10]. The
developer wants answers to the following questions: (i) how
can an FPGA-based accelerator be integrated in existing appli-
cations? (ii) how is the modified application being executed on
the Molen platform, and (iii) what are the speedups obtained?
The reported results were obtained using a XILINX Virtex II
Pro, which embeds a PowerPC as a GPP running at 300 MHz,
with a main data memory running at 100 MHz.

Symmetric encryption algorithm - AES

The AES [11] is the new NIST standard chosen to replace
DES, it uses the Rijndael encryption algorithm with cryptogra-

phy keys of 128, 192, 256 bits, the 128 bit key being the most
commonly used. It is beyond the scope of this article to present
in detail the AES algorithm but the algorithm manipulates data
input block, disposed in a 4 by 4 bytes matrix. The encryption
and decryption computation consists of byte substitution, bit
permutation and arithmetic operations in finite fields, more
specifically, addition and multiplications in the Galois Field28.
Each set of operations is repeated 10, 12 or 14 times depending
on the size of the key (128, 192, 256 bits respectively). This
critical part of the ciphering process was implemented as a
CCU whereas certain operations, such as key expansion, are
executed on the GPP.

Programmer’s Interface In order to use this CCU, the
existing software code is compiled by the MOLEN compiler as
described previously. For the compiler to be able to make the
appropriate scheduling and area allocation, a simple, pragma-
based annotation of the original source code is required as
well as some information on the area occupation, configuration
latency and the number of parameters.7 Where the original
function call to the AES-method was given byvoid AES(Key,
Data, Mode), the pragma annotation required for the Molen
compiler is

Function declaration:
#pragma call_fpga AESCipher
void AES(Key, Data, Mode)

and the function usage remains unchanged, namelyAES(Key,
Data, Mode).

Thus, for the application developer to use any reconfigurable
coprocessor is transparent: it is called as if the function was
implemented in software. Only thepragma notation has to be
added in order to inform the compiler which functions are im-
plemented in hardware. This capability allows reconfigurable

7This information is contained in an architecture description file.

7

TABLE I: MOLEN with AES
Hardware Software

(Mbps) (Mbps) Kernel
Bits Cycles ThrPut Cycles ThrPut SpeedUp

128 646 59 24216 1.59 43
4k 4366 281 738952 1.66 169

128k 31246 1258 23610504 1.67 751

coprocessors to be used in any existing application with minor
modifications to the source code.

Polymorphic Program Execution In order to understand
how the application is executed on the Molen platform (see
Figure 2), we briefly present its execution flow. Like in any
regular application, the instructions come from memory but
rather than being decoded by the GPP, they are first (partially)
decoded by the arbiter. The arbiter decides whether it concerns
an instruction for the GPP or for any of the available CCU’s,
in our case the AES-CCU. The exchange registers are used
to transfer parameters to and from the CCU. The data to
be (de-)ciphered by the AES-CCU, is retrieved directly from
the main data memory. If a SET instruction is found, the
corresponding configuration code is executed. In case an
EXECUTE-instruction is seen, the arbiter signals the CCU
with the Start flag. By receiving this signal, the control unit
in the CCU for the AES-core starts initializing the core, by
reading the memory pointers from the XREG which are used
to address the main data memory. This initialization process
includes the reading of an initialization vector and retrieving
the expanded key from main data memory. Afterwards, the
control enters a loop where each of the 128 bit data blocks is
read, encrypted (or decrypted) and stored back into memory.
Note that the AES-CCU only has to read the expanded key
only when it is altered. The implementation of this system
requires 1130 slices and 12 BRAMs. The maximum frequency
of 100 MHz is imposed by the main data memory and not by
the MOLEN processor.

Performance ImprovementTable I presents the throughput
and speedup results for a 128-bit key, using the pure software
implementation and the Molen processor with the AES CCU.
The speedups obtained for the AES-core are measured at
kernel and not application level and limited unrolling is used.
The impact of the initialization overhead is evident when
comparing the speedups obtained for small and large data
blocks, including the transfer of the (1408-bit) expanded key
which needs to be done only once. A speedup of 43 is achieved
when only one 128-bit data block is encrypted against a
speedup of 751 for a file with 128 kbits.8

V. CONCLUSION AND FUTURE RESEARCH

In this article, we have sketched the different steps involved
in developing applications that will run on a heterogeneous
platform such as the Molen polymorphic processor. Specific
about designing applications for such platforms is the blend of
hardware and software development. As both require different
techniques and skills, tools are required to provide sufficient
support to fill in the gaps as much as possible. We have pointed

8Evaluation prototypes are available at http://ce.et.tudelft.nl/MOLEN

out the different steps required to develop a new or modify an
existing application that can be executed on such platforms.
In the example given, we have emphasized the simplicity of
using the Molen processor for existing applications if CCU’s
are available as IP-cores. The presented example also clearly
illustrates the power of the approach yielding kernel speedups
of up to 750 times. Whether reconfigurable computing will
be largely adopted by the industry is highly dependent on the
availability of workbenches as the one described here.

REFERENCES

[1] S. Vassiliadis, S. Wong, G. N. Gaydadjiev, K. Bertels, G. Kuzmanov, and
E. M. Panainte, “The Molen polymorphic processor,”IEEE Transactions
on Computers, vol. 53, no. 11, pp. 1363–1375, November 2004.

[2] R. R. D. Kulkarni, W. Najjar and F. Kurdahi, “Fast area estimation to
support compiler optimizations in fpga-based reconfigurable systems,”
in IEEE Symp. on Field-Programmable Custom Computing Machines
(FCCM), April 2002.

[3] E. M. Panainte, K. Bertels, and S. Vassiliadis, “Multimedia recon-
figurable hardware design space exploration,” inProceedings of the
16th IASTED International Conference on Parallel and Distributed
Computing and Systems (PDCS 2004), November 2004, pp. 398–403.

[4] C. Lee, M. Potkonjak, and W. H. Mangione-Smith, “Mediabench: A
tool for evaluating and synthesizing multimedia and communicatons
systems,” inInternational Symposium on Microarchitecture, 1997, pp.
330–335. [Online]. Available: citeseer.ist.psu.edu/lee97mediabench.html

[5] (2002) 1076 ieee standard vhdl language refer-
ence manual, ieee std 1076-2002. [Online]. Available:
http://ieeexplore.ieee.org/servlet/opac?punumber=7863

[6] (2004) Ieee standard for vhdl register transfer level
(rtl) synthesis, ieee std 1076.6-2004. [Online]. Available:
http://ieeexplore.ieee.org/servlet/opac?punumber=9308

[7] (2006) Ieee standard for verilog hardware description
language, ieee std 1364 -2005. [Online]. Available:
http://ieeexplore.ieee.org/servlet/opac?punumber=10779

[8] C-based design. [Online]. Available: http://www.mentor.com/products/c-
baseddesign/

[9] Xpres compiler. [Online]. Available:
http://www.tensilica.com/products/xpres.htm

[10] R. Chaves, G. Kuzmanov, S. Vassiliadis, and L. A. Sousa, “Reconfig-
urable memory based AES co-processor,” inProceedings of the 13th
Reconfigurable Architectures Workshop (RAW 2006), April 2006, p. 192.

[11] NIST, “Announcing the advanced encryption standard (AES), FIPS 197,”
National Institute of Standards and Technology, Tech. Rep., November
2001.

